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The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lin-
eage prompted speculation that inhibitors of these isoforms could offer opportunities for
selective targeting of PI3K in the immune system in a range of immune-related pathologies.
While there has been some success in developing PI3Kδ inhibitors, progress in develop-
ing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the
search for alternative targets with which to modulate PI3K signaling specifically in the
immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-
1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring
to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-
selective inhibitor development. We then focus on the structure of SHIP-1 and its func-
tion in the immune system. Finally, we consider the current state of development of
small molecule compounds that potently and selectively modulate SHIP activity and
which offer novel opportunities to manipulate PI3K mediated signaling in the immune
system.
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INTRODUCTION
Studies using mice in which the genes encoding PI3Kδ or PI3Kγ

have been either altered to encode kinase-inactive mutants (e.g.,
PI3KδD910A mice) or deleted, have revealed that PI3Kδ and
PI3Kγ have non-redundant (but often co-ordinated), functions
in B cells, T cells, NK cell, neutrophils, mast cells, and den-
dritic cells (Vanhaesebroeck et al., 2005; Crabbe et al., 2007;
Randis et al., 2008; Saudemont et al., 2009; Ward and Marelli-
Berg, 2009). Indeed, when the immune system of these mice
is challenged they exhibit severely defective responses to infec-
tion (Vanhaesebroeck et al., 2005; Crabbe et al., 2007; Ward
and Marelli-Berg, 2009). The predominant expression of the
γ and δ isoforms of PI3K in cells of hematopoietic lineage
prompted speculation that inhibitors of these isoforms could
offer selective targeting of PI3K in the immune system in a
range of inflammatory and autoimmune diseases as well as in
transplantation and hematological malignancies. While there has
been some success in developing PI3Kδ inhibitors, progress in
developing selective inhibitors of PI3Kγ has been rather dis-
appointing. This has prompted the search for alternative tar-
gets with which to modulate PI3K signaling specifically in the
immune system. In this regard, attention has recently focused
on the lipid phosphatase SH2 domain-containing inositol-5-
phosphatase (SHIP), which de-phosphorylates PI(3,4,5)P3 at
the D5 position of the inositol ring to create PI(3,4)P2. This
review will focus predominantly on the role of SHIP as a
potential therapeutic target in the immune system and con-
sider progress in developing small molecule drugs that target this
protein.

DEVELOPMENT OF INHIBITORS TARGETING PI3Kγ AND
PI3Kδ – THE STORY SO FAR
There have been huge advances in the design of PI3K inhibitors
which utilize the ATP-binding pocket of PI3K to achieve greater
potency and selectivity as well as reduced toxicity (Walker et al.,
2000; Knight et al., 2006; Berndt et al., 2010). The development of
PI3K inhibitors with which to treat cancers has made substantial
recent progress (for in depth reviews on this subject see Marone
et al., 2008; Workman et al., 2010; Fruman and Rommel, 2011;
Shuttleworth et al., 2011; So and Fruman, 2012). However, the
development of PI3K inhibitors to treat inflammatory disorders
has to date, been less successful.

The discovery of the quinazolinone purine series, exemplified
by the ICOS compound IC-87114 (Figure 1) demonstrated that
the design of isoform-selective PI3K inhibitors with at least 50-fold
potency over other isoforms was possible to achieve (Sadhu et al.,
2003). In 2006 several members of ICOS Corporation formed
a spin-out company, Calistoga Pharmaceuticals. Calistoga devel-
oped CAL-101, a PI3Kδ specific inhibitor that exhibits 40–300-fold
selectivity over other PI3K isoforms. CAL-101 which was acquired
by Gilead in February 2011 and recently renamed GS-1101, has
shown success in clinical trials for treatment of B cell malignancies
where it causes rapid lymph node shrinkage and lymphocytosis
(Fruman and Rommel, 2011; Hoellenriegel et al., 2011; Lannutti
et al., 2011; So and Fruman, 2012). CAL-101 displays a dual mech-
anism of action whereby it both decreases cell survival and reduces
chemokine-mediated interactions that retain CLL cells in protec-
tive tissue microenvironments (Hoellenriegel et al., 2011; Lannutti
et al., 2011). These effects have been observed across a broad
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FIGURE 1 | Chemical structures of PI3K inhibitors and SHIP-targeting compounds.

range of other immature and mature B cell malignancies including
CD5+ mantle zone B cell lymphomas, follicular lymphomas, and
multiple myeloma (Herman et al., 2010; Ikeda et al., 2010; Fru-
man and Rommel, 2011; Hoellenriegel et al., 2011; Lannutti et al.,
2011). Hodgkin lymphoma (HL) is a malignant lymphoma of B-
cell origin. The malignant cells, known as Reed-Sternberg (RS)
cells, represent less than 2% of the tumor mass, the remainder
composed of a mix of reactive inflammatory cells attracted by the
RS cells. Recently Hodgkin Lymphoma (HL) cell lines and primary
samples from patients with HL have been reported to express high
level of PI3Kδ and constitutive PI3K pathway activation (Mead-
ows et al., 2012). As with CLL, CAL-101 was able to reduce the
positive interaction between stromal cells and malignant RS cells.
This inhibitor has therefore, demonstrated an essential role for
PI3Kδ in constitutive PI3K signaling that is required for the sur-
vival of malignant B cells. Oncogenic mutations of components of
the PI3K signaling pathway are infrequent in B cell malignancies.
A potential mechanism for PI3K activation in this setting is tonic
antigen-independent B cell receptor (BCR) signaling that requires
PI3Kδ for the transduction of proliferation and survival signals.

Inhibition of the PI3Kδ isoform for the treatment of inflam-
matory disorders is also being explored. Specifically, CAL-101 and
CAL-263 have entered clinical trials for allergic rhinitis (Table 1).
In addition, patents have been filed by several other companies

(Amgen, Intellikine, and Incyte) describing PI3Kδ inhibitors and
the majority are based on the same basic pharmacophore identi-
fied by ICOS (Norman, 2011). However, additional scaffolds have
now been reported by several companies; almost all of these are
with intended indications against B cell lymphomas (Norman,
2011).

Whilst there has been considerable success in designing
PI3Kδ-selective inhibitors with promise against lymphoid malig-
nancies, the progress in designing PI3K inhibitors for anti-
inflammatory/autoimmune applications has been disappointing.
Compounds that selectively inhibit PI3Kγ have been identified,
with a series of compounds designed by Merck Serono SA based on
the thiazolidinedione scaffold (Ruckle et al., 2006). One of these,
AS-605240 (Figure 1), exhibited superior potency compared to
related compounds, can be administered orally and has high cell
membrane permeability (Barber et al., 2005). These class of com-
pounds have been proven useful as experimental tools but do not
have requisite drug-like properties and have limited selectivity over
other class 1A PI3K isoforms. Possible reasons for the relatively
slow progress in developing PI3Kγ inhibitors include the close
structural conservation of class I PI3Ks and other lipid kinases in
the ATP-binding pocket and the limited ability of the commonly
used in vitro assays based on recombinant enzymes, to predict
cellular and in vivo kinase selectivity. However, Cellzome recently
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Table 1 | Clinical trials status of PI3K and SHIP-1 targeting compounds for the treatment of inflammatory disorders.

Compound Inflammatory

disorder

Protein

target

Clinical

trial

phase

Status of

clinical trial

Company Reference

AQX-1125 Asthma SHIP-1 IIa Initiated Aquinox Phar-

maceuticals

http://www.aqxpharma.com/content/aquinox-pharmaceuticals-

initiates-two-phase-iia-clinical-studies-airway-inflammation

CAL-101 Allergic

rhinitis

PI3Kδ I Completed Gilead Sciences http://clinicaltrials.gov/ct2/show/NCT00836914

CAL-263 Allergic

rhinitis

PI3Kδ I Completed Gilead Sciences http://clinicaltrials.gov/ct2/show/NCT01066611

IPI-145 Inflammatory

disorders

PI3Kδ/γ I Initiated Infinity and

Intellikine

http://www.intellikine.com/pipeline/ipi145.html

described a chemoproteomics-based drug discovery platform that
enables multiplexed high-throughput screening of native proteins
in cell extracts. The chemoproteomic approach preserves post-
translational modifications and protein interactions and hence
allows targeting of PI3K proteins under close-to-physiological
conditions in human primary cells (Bergamini et al., 2012). Using
affinity enrichment of target kinases afforded by immobilized
ATP-competitive lipid kinase inhibitors, the potency of small
molecule test compounds was evaluated in competition binding
assays. This revealed CZC24832 which exhibits superior selectiv-
ity for PI3Kγ than previously reported compounds (Camps et al.,
2005; Bergamini et al., 2012). Interestingly, CZC24832 shows anti-
inflammatory effects in a collagen-induced arthritis model that
correlated with reduced Th17 differentiation, a pro-inflammatory
helper T cell type characterized by expression of the cytokine IL-
17 (Weaver and Murphy, 2007). Indeed, CZC24832 treatment also
led to reduced IL-17 production (Bergamini et al., 2012). This
confirms the long-held belief that pharmacological inactivation
of PI3Kγ alone, can lead to amelioration of inflammatory dis-
ease. This recent breakthrough, may facilitate detailed mechanistic
studies of PI3Kγ in human primary cells and allow human clinical
studies in inflammation.

The non-redundant and often co-ordinated roles of PI3Kδ and
PI3Kγ in immune cell function have been reported (Rommel et al.,
2007) and provide a rationale for targeting both isoforms simulta-
neously with a single compound. Indeed, TargeGen described two
diaminopteridine-diphenol-based compounds with good selectiv-
ity for PI3Kγ and PI3Kδ that showed early promise in animal mod-
els of myocardial ischemia as well as asthma and chronic obstruc-
tive pulmonary disease (Doukas et al., 2006, 2009). The TargeGen
compounds did not progress beyond phase I/II clinical trails. How-
ever, Infinity and Intellikine are currently in pre-clinical trials with
IPI-145 (Table 1), which is the only PI3Kγ/δ inhibitor currently in
development for the treatment of inflammatory disease (Norman,
2011).

There is an increasing appreciation of a role for PI3Kβ in the
immune system including cooperation with PI3Kδ in the genera-
tion of reactive oxygen species (ROS) in neutrophils in response to
fungal infection or immune complexes (Boyle et al., 2011; Kulkarni
et al., 2011). Signaling responses of several Gi-coupled recep-
tors including those for the leukocyte chemoattractants C5a and
fMLP has been demonstrated to occur at least in part via PI3Kβ

(Guillermet-Guibert et al., 2008). Indeed, loss of PI3Kβ confers
substantial protection in a mouse model of a human autoimmune
blistering disease (Boyle et al., 2011; Kulkarni et al., 2011). Loss
of PI3Kβ also partially (but significantly), protected against the
development of clinical signs of arthritis in response to low does
of arthritogenic serum in the K/BxN mouse model of rheuma-
toid arthritis. However, no protection was seen mice lacking either
PI3Kβ or expressing kinase-dead PI3Kδ subjected to higher does
of arthritogenic serum. Remarkably, mice lacking both PI3Kβ and
PI3Kδ activity were highly protected at both high and low doses
of K/BxN serum. Collectively, these data provide a rationale for
targeting PI3Kβ as well as PI3Kδ in the treatment of inflammatory
disorders. Such dual isoform inhibitors could offer some benefit
in certain therapeutic settings, though it is important to recognize
that the pathogenesis of human inflammatory diseases such as RA
is complex and multi-factorial. As such, the precise contribution
of each isoform to disease pathology is likely to be subtle and com-
plex. Nevertheless, compounds with dual selectivity for PI3Kβ and
PI3Kδ have been reported suggesting that this approach is feasi-
ble (Knight et al., 2006). However, caution should be applied to
the use of PI3Kβ inhibitors in inflammatory disorders due to the
described role of PI3Kβ in thrombus formation and circulatory
homeostasis (Bird et al., 2011).

INCREASED UNDERSTANDING OF A ROLE FOR OTHER PI3KS
IN THE IMMUNE SYSTEM
The difficulties of developing PI3Kγ inhibitors with sufficient
selectivity over PI3K isoforms has led to the search for other targets
that might offer opportunities to selectively disrupt PI3K signaling
in immune cells. To this end, class II PI3KC2β, has been demon-
strated to play an important and unexpected role in CD4+ T-cell
activation downstream of the TCR (Srivastava et al., 2009), while
Vps34’s role in autophagy (Backer, 2008; Simonsen and Tooze,
2009), suggests it may prove important for immune recognition
of tumor antigens, regulation of T cell homeostasis, and immune
tolerance (Li et al., 2008; Nedjic et al., 2008; Walsh and Edinger,
2010). There is considerable evidence that class III PI3K is impor-
tant for phagocytosis (Fratti et al., 2001; Vieira et al., 2001; Ellson
et al., 2006; Anderson et al., 2008). There may be opportunities to
target Vps34 in destructive inflammatory/autoimmune diseases
where there is dysregulated phagosomal activity and antigen pre-
sentation of self molecules, for example. The publication of the
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Vps34 crystal structure in complex with PI3K inhibitors may allow
the design of more potent and selective Vps34 inhibitors which are
able to exploit differences between Vps34 and Class 1 PI3Ks (Miller
et al., 2010). However, the largely ubiquitous expression of Class
II and III PI3Ks makes selective targeting of the immune system
problematic.

SHIP-1: AN ALTERNATIVE TARGET FOR MODULATION OF
PI3K SIGNALING IN THE IMMUNE SYSTEM
The search for alternative targets with which to modulate PI3K sig-
naling specifically has therefore, recently focused on the lipid phos-
phatase SH2 domain-containing inositol-5-phosphatase-1 (SHIP-
1), which de-phosphorylates PI(3,4,5)P3 at the D5 position of the
inositol ring to create PI(3,4)P2. The INPP5D gene located on
chromosome 2 (2q37.1) encodes the 145-kDa SHIP-1 which was
originally recognized as an important component of the inhibitory
signaling pathway triggered by the IgG receptor FcγRIIB in mast
cells and B cells (Ono et al., 1996). Once recruited to the plasma
membrane by signaling complexes, its catalytic activity depletes
PI(3,4,5)P3 and prevents membrane localization of some PH
domain-containing effectors, leading to inhibition of extracellular
calcium influx and ultimately reducing transcription activation,
and cytokine release. One would predict that activators of SHIP-1
would lead to a reduction of cellular PI(3,4,5)P3 levels and hence,
mimic the effect of PI3K inhibitors. Its hematopoietic-restricted
expression should limit the impact of SHIP-1 targeted drugs to

the immune system making SHIP-1 an attractive drug target for
use in inflammatory and autoimmune diseases, hematological
malignancies as well as in transplantation settings.

SHIP-1: A CROSSROADS IN PI3K-DEPENDENT SIGNALING
The classical view of SHIP-1 is that it acts to switch off PI3K-
dependent signaling by degradation of PI(3,4,5)P3. However, the
metabolism of PI(3,4,5)P3 by SHIP-1 yields PI(3,4)P2 which
retains the phosphate grouping on the third position of the inositol
ring and thus, may retain some signaling ability (Figure 2). Pleck-
strin homology (PH) domains encoded in many proteins (e.g.,
Grp-1, Gabs, and Btk) bind exclusively to PI(3,4,5)P3, whereas
others such as those found in dual adaptor of phosphotyrosine
and 3-phosphoinositides-1 (DAPP1) and Src kinase-associated
phosphoprotein (SKAP), can interact with both PI(3,4,5)P3 and
PI(3,4)P2 (Lemmon and Ferguson, 2000; Zhang et al., 2009).
In addition, the tandem PH domain-containing protein TAPP-
1 encodes PH domains that show selectivity toward PI(3,4)P2

(Dowler et al., 2000). The ability of PH domain-containing pro-
teins to distinguish between different 3′-phosphoinositide lipids
suggests that SHIP-1 can act as a switch to redirect PI3K-dependent
signaling toward a set of distinct effectors that are temporally and
functionally separate from PI(3,4,5)P3-dependent events. Thus,
SHIP-1 may function to fine-tune phosphoinositide signaling,
rather than terminate it. In this regard, SHIP-1 promotes recruit-
ment of the GTPase Irgm1 to sites of phagocytosis in macrophages

FIGURE 2 | SHIP acts as a molecular “switch.” SHIP catalyzes the
conversion of the PI3K lipid product PI(3,4,5)P3 to PI(3,4)P2. Effector
proteins which express PH domains are recruited and activated by these
lipid second messengers at the cell surface membrane. PH domains of
proteins are able to discriminate between PI(3,4,5)P3 and PI(3,4)P2.
Examples of proteins which bind only PI(3,4,5)P3 (red), both PI(3,4,5)P3

and PI(3,4)P2 (green), or only PI(3,4)P2 (blue) as well as functional
consequences are shown, though there are many other PH domain
proteins present in immune cells and this is not an exhaustive list.
Functional read-outs downstream of PI(3,4,5)P3-interacting proteins and
Akt are context dependent, have been extensively reviewed elsewhere

(Manning and Cantley, 2007;Vanhaesebroeck et al., 2010, 2012) and are
summarized in this figure. Lesser known interacting partners of
PI(3,4)P2-dependent TAPP-1/2 and PI(3,4)P2/PI(3,4,5)P3-dependent
DAPP1 with roles in immune function are indicated (Costantini et al.,
2009; Zhang et al., 2009; Vanhaesebroeck et al., 2010; Wullschleger
et al., 2011; So and Fruman, 2012). Abbreviations: Btk, Bruton’s tyrosine
kinase; Gab1, GRB2-associated binding protein-1; Grp-1, general
receptor for phosphoinositides 1; PDK-1, phosphoinositide
lipid-dependent kinase-1; DAPP1, dual-adapter for phosphotyrosine and
3-phosphoinositides 1; SKAP, src kinase-associated phosphoprotein;
TAPP, tandem pleckstrin homology domain protein.
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via generation of PI(3,4)P2, a critical step in maturation of the
phagosome and engulfment of bacteria (Tiwari et al., 2009).
PI(3,4,5)P3 and PI(3,4)P2 appear sequentially following agonist
stimulation in many cell types including T lymphocytes, but show
temporal overlap. Some cell types, notably B lymphocytes and
platelets, exhibit sustained PI(3,4)P2 production, lasting for up to
45–60 min post-stimulation (Sorisky et al., 1992; Brauweiler et al.,
2001).

NON-ENZYMATIC ACTIVITIES OF SHIP-1
SH2 domain-containing inositol-5-phosphatase-1 protein pos-
sesses numerous structural domains in addition to its single cat-
alytic domain (Figure 3). The catalytic domain is responsible for
the hydrolysis of the 5-phosphate group on the PI3K product
PI(3,4,5)P3 to form PI(3,4)P2. Under basal conditions, SHIP-1 is
located in the cell cytosol and upon receptor ligation is recruited to
the surface membrane, bringing SHIP-1 within close proximity to
its lipid substrate. Numerous structural domains are required for

SHIP-1 to successfully re-localize to the surface membrane. The
SH2 domain within SHIP-1 interacts with proteins via the consen-
sus amino acid sequence pY[Y/S][L/Y/M][L/M/I/V]. Through this
SH2 domain, SHIP-1 binds to tyrosine phosphorylated proteins
such as Shc, Doks, Gabs, CD150, platelet-endothelial cell adhe-
sion molecule (PECAM), Cas, c-Cbl, certain immunoreceptor
tyrosine-based inhibitory motifs (ITIMs), and some immunore-
ceptor tyrosine-based activation motifs (ITAMs). Proline rich
regions within the C-terminal enable SHIP-1 to bind proteins
that contain a SH3 domain, for example phospholipase-Cγ and
Grb-2. The phosphorylation of tyrosine residues within the NPXY
motifs at the C-terminal tail of SHIP-1 provides sites of interac-
tion for various proteins which express phosphotyrosine-binding
(PTB) domains, such as Shc, Dok1, and Dok2. A newly identified
structural domain has been recently identified whereby a segment
of SHIP-1 adopts an independently folded structure predicted to
have PH domain-like topology. This PH-related (PH-R) domain
binds PI(3,4,5)P3 and is required for localization of SHIP-1 to the

FIGURE 3 | Schematic representation of the structure of SHIP-1 and
its isoforms. SHIP-1 possesses a centrally located 5′ phosphatase
catalytic domain, an SH2 domain at the N-terminus as well as a proline
rich domain and NPXY motifs at the C-terminus (Harris et al., 2008).
SHIP-1 also has a C2 domain adjacent to the catalytic domain which,
when bound to PI(3,4)P2, acts to allosterically enhance the catalytic
activity of SHIP (Ong et al., 2007). A pleckstrin homology-related domain

that binds PI(3,4,5)P3 has also been reported to exist adjacent to the
catalytic domain in SHIP-1 (and most likely the other forms of SHIP-1).
Structures depicted represent mouse protein; key differences in human
protein structure are annotated on the right-hand side (shaded blue
background). Abbreviations: PH-R, pleckstrin homology-related domain;
PRD, proline rich domain; SH2, src homology domain; UIM, ubiquitin
interacting motif; SAM, sterile alpha motif.
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phagocytic cup and SHIP-1 mediated inhibition of FcγR-mediated
phagocytosis by macrophages (Ming-Lum et al., 2012).

The various structural domains not only serve to bring SHIP-1
in close proximity to its substrate at the surface membrane, but also
allow SHIP-1 to perform a scaffolding role, recruiting other pro-
teins to the surface membrane independent of its catalytic activity.
Most of these interactions contribute to the negative regulation
of PI3K signaling by SHIP independently of its catalytic activity.
For example, binding of SHIP-1 to ITAM containing adaptor pro-
teins via the SH2 domain, can prevent PI3K recruitment via the
p85 regulatory subunit (Peng et al., 2010). Moreover, SHIP-1 has
also been shown to block, independently of its catalytic activity, the
recruitment of the tyrosine phosphatase SHP1 to the SLAM family
receptor 2B4 in NK cells (Wahle et al., 2007). Indeed, there is a pro-
found increase in SHP1 recruitment in SHIP null cells that tips the
balance toward constitutive inhibitory signaling via 2B4 (Wahle
et al., 2007). Other protein interactions allow SHIP-1 to negatively
influence different signaling pathways. For example, in B lympho-
cytes following BCR and FcγRIIB co-ligation, SHIP-1 interactions
with Shc inhibit Ras/MAPK activation either by displacing Grb-2
and Sos from their interaction with Shc and/or by recruiting Dok1
and RasGAP to FcγRIIB at the plasma membrane. In T cells, SHIP-
1 interacts with the Tec kinase and inhibits its function in T cells
(Tomlinson et al., 2004a) and participates in a negative signaling
complex comprising Grb-2-SHIP-1 and Dok1/2 that is recruited
to LAT and inhibits Akt and PLCγ activation (Dong et al., 2006).

There is evidence that the scaffolding role of SHIP-1 is not
restricted to facilitating negative regulatory mechanisms. For
example, adaptor functions of SHIP-1 potentiate EGF-induced
PLC-gamma1 activation in COS cells over-expressing SHIP-1
(Song et al., 2005). In addition, SHIP-1 facilitates a positive regula-
tory role in TLR-induced cytokine production from mucosal mast
cells (Ruschmann et al., 2012). Recently, SHIP-1 has been reported
to interact via its proline rich region with the Cbl-interacting
85-kDa protein CIN85 (Buchse et al., 2011) and the related CD2-
associated adaptor protein (CD2AP) in Bao et al. (2012). In T
cells, CIN85 binds to the adaptor molecule SH3 domain-binding
protein-2 (3BP2), which is involved in leukocyte signaling down-
stream of Src/Syk-kinase coupled immunoreceptors and forma-
tion of the immunological synapse (Le Bras et al., 2007), though its
role in B cells is unclear. In plasmacytoid dendritic cells, the CDAP-
SHIP-1 complex positively regulates BDCA2/FcεR1γ signaling by
inhibiting Cbl-mediated ubiquitination and degradation of the
activated Syk and FcεR1γ in plasmacytoid dendritic cells (Bao
et al., 2012). Finally, it appears that the SH2 domain of SHIP-1
interacts (both intra- and inter-molecularly) with phosphorylated
NPXY1020 within the SHIP-1 C-terminus that leads to dimeriza-
tion and oligomerization (Mukherjee et al., 2012). SHIP-1 lacking
its C-terminus is activated 8–10-fold more than full length SHIP-1
(Zhang et al., 2010), suggesting that the C-terminus not only con-
trols interactions of SHIP-1 with respective binding partners, but
also catalytic activity of SHIP-1.

ROLE OF SHIP-1 IN REGULATING IMMUNE FUNCTION
SH2 domain-containing inositol-5-phosphatase-1 is recruited
to the surface membrane following ligation of a variety of
receptors including,chemokine,Toll-like receptors (TLR),antigen,

co-stimulatory, and cytokine receptors as well as IgG engagement
by FcγRIIB (Harris et al., 2008; Keck et al., 2010; Table 2). SHIP-1
knock-out mice have proven invaluable in identifying the crucial
role of SHIP-1 in the regulation of mast cell degranulation, BCR
signaling and auto-antibody production, dendritic cell function,
and NK cell cytolytic function (Table 3). SHIP-1 also regulates
TLR signaling (Sly et al., 2004; Gabhann et al., 2010; Ruschmann
et al., 2012), leukocyte polarization, and migration (Nishio et al.,
2007; Harris et al., 2011; Mondal et al., 2012). It has also been
shown to play a central role in CD4-mediated inhibitory signal-
ing activated by HIV-1 gp120 that leads to disarmament of the
immune systems (Waterman et al., 2012). Remarkably, there is
evidence that SHIP is able to influence PI3K signaling not only
at receptors it is recruited to (in cis) but also at other receptors
where it is not recruited directly (in trans; Brauweiler et al., 2007;
Fortenbery et al., 2010). For example, CXCL12/CXCR4-induced
calcium mobilization and cell migration is impaired by prior acti-
vation of FcγRIIB and this inhibition is reduced in SHIP-deficient
B cells (Brauweiler and Cambier, 2003; Brauweiler et al., 2007).
Consistent with a role for SHIP-1 in inhibition, signaling through
CXCR4 by CXCL12 is dependent on PI(3,4,5)P3 (Brauweiler et al.,
2007). Similarly, SHIP-1 acting in trans from the 2B4 has been
proposed to oppose PI3K activity at other receptors such as the
MHC-I receptor in NK cells (Fortenbery et al., 2010).

It is also clear that SHIP-1 has a pivotal role in regulating
the balance between pro-inflammatory and anti-inflammatory
myeloid and lymphoid cells (Ghansah et al., 2004; Locke et al.,

Table 2 | Key receptors in the immune system that are known to

recruit and/or be regulated by SHIP-1.

Receptor Reference

B cell receptor Okada et al. (1998)

CD16 Galandrini et al. (2002)

CD22 Poe et al. (2000)

CD28 Edmunds et al. (1999)

TCR/CD3 complex Dong et al. (2006) and Osborne et al. (1996)

CXCR4 Wain et al. (2005)

FcεR1 Gimborn et al. (2005), Huber et al. (1998), and

Kimura et al. (1997)

FcγRIIa Nakamura et al. (2002)

FcγRIIb Ono et al. (1996)

Granulocyte

colony-stimulating

factor receptor

Hunter and Avalos (1998)

IL-3 receptor Liu et al. (1999)

KLRG1 Tessmer et al. (2007)

TLR2 Keck et al. (2010)

TLR3 Gabhann et al. (2010) and Ruschmann et al. (2012)

TLR4 Keck et al. (2010) and Sly et al. (2004)

TLR9 Ruschmann et al. (2012)

2B4 Wahle et al. (2007)

See main text for further details regarding whether SHIP-1 mediated negative or

positive impact on signal transduction events elicited via each receptor.
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Table 3 | Impact of SHIP-1 gene targeting on leukocytes.

Cell type Phenotype of SHIP-1 KO

Basophils SHIP-1−/− mice show increased Th2 skewing due to

increased IL-4 secretion from basophils (Kuroda et al.,

2011)

B cell Btk membrane association increased.

Hyper-responsive to cross-linking of BCR (Bolland

et al., 1998; Helgason et al., 2000)

Loss of anergy, production of auto-antibodies (O’Neill

et al., 2011)

Dendritic cell Enhanced survival and proliferation, but impaired

maturation (Antignano et al., 2010)

Reduced nitric oxide production; SHIP-1 null DC’s

suppress T cell proliferation (Antignano et al., 2011)

Mast cell Enhanced maturation of BMMC, CTMC, and MMC;

reduced IgE-induced BMMC survival; enhanced

degranulation of BMMCs, CTMC, and MMC

(Kalesnikoff et al., 2002; Ruschmann et al., 2012)

Enhanced TLR expression and TLR-induced cytokine

production from CTMCs via adaptor-mediated

pathway (Ruschmann et al., 2012)

Myeloid cell Increased myeloid suppressor cell numbers (Ghansah

et al., 2004)

Increased M2 macrophage skewing (indirect

mechanism via increased IL-4 secretion from

basophils; Kuroda et al., 2009)

Increased ratio of PI(3,4,5)P3 to PI(3,4)P2 on

phagosomal membrane. Decreased early NADPH

oxidative activity in phagosomes (Kamen et al., 2008)

Natural killer cells Deficient receptor repertoire. Defective IFNγ

secretion. Increase in peripheral number. Defective

cytolytic function (Fortenbery et al., 2010)

T cell Increased regulatory T cell differentiation, decreased

Th17 development (Locke et al., 2009)

Enhanced Th1 differentiation and CD8 cytotoxic

activity. Decreased Th2 differentiation (Tarasenko

et al., 2007)a

N.B data is derived from germline SHIP-1 knock-out cells, except where denoted.
aThe reported phenotype is derived from a T cell-specific SHIP-1 knock-out.

BMMC, bone marrow-derived mast cells; CTMC, connective tissue mast cells;

MMC, mucosal mast cells.

2009; Kuroda et al., 2011). For example, SHIP-1 deficient mice
exhibit more myeloid-derived suppresser cells (MDSCs) than their
wild type counterparts (Ghansah et al., 2004). Selective ablation
of SHIP expression in either myeloid or T lymphoid lineage cells,
has revealed that myeloid-specific ablation of SHIP leads to the
expansion of both MDSC and Treg-cell numbers, indicating SHIP-
dependent control of Treg-cell numbers by a myeloid cell type.
Conversely, T-lineage specific ablation of SHIP leads to expansion
of Treg-cell numbers, but not expansion of the MDSC compart-
ment, indicating SHIP also has a lineage intrinsic role in limiting
Treg-cell numbers (Collazo et al., 2012). G-CSF is required for
expansion of the MDSC splenic compartment in mice rendered

SHIP-deficient as adults. Thus, SHIP controls MDSC numbers,
in part, by limiting production of the myelopoietic growth factor
G-CSF (Collazo et al., 2012).

SH2 domain-containing inositol-5-phosphatase-1 also plays a
role in regulating the balance of M1 macrophages (implicated in
the first inflammatory response) and M2 macrophages (impli-
cated in inflammatory response termination, tissue repair, regen-
eration, and remodeling). SHIP-1 deficiency leads to increased
macrophage skewing toward M2 macrophages. This indicates that
PI(3,4,5)P3 drives macrophage progenitors toward an M2 phe-
notype and that SHIP-1 blocks this skewing (Rauh et al., 2005;
Kuroda et al., 2009). Moreover, SHIP-1 is essential for normal
Th17 cell development and plays a key role in the reciprocal
regulation of Tregs and Th17 cells (Collazo et al., 2009; Locke
et al., 2009). Germline SHIP deficiency promotes a preferential
expansion and/or accumulation of conventional Tregs that have
increased expression of FoxP3 indicating that SHIP limits Treg-
cell function in vivo and limits FoxP3 acquisition by naïve CD4+

T cells (Collazo et al., 2009). Mice carrying a T cell-specific deletion
of SHIP-1 uncovered a regulatory role for SHIP-1 in controlling
Th1/Th2 bias and cytotoxic responses as a result of its inhibitory
effect on T-bet expression. Hence, SHIP-1 null T cells do not skew
efficiently to a Th2 phenotype and display Th1-dominant immune
responses in vitro and in vivo (Tarasenko et al., 2007). This is in
contrast to evidence from germ line SHIP-1 null mice, which indi-
cates that SHIP-1 can also repress Th2 skewing by inhibiting IL-4
production from basophils (Kuroda et al., 2011).

T cell-specific deletion of SHIP-1 using CD4CreSHIPflox/flox

mice, had no affect on T-cell development, activation state, or
Treg-cell numbers (Tarasenko et al., 2007). However, a recent study
using in LckCreSHIPflox/flox mice reported significant reduction
in the frequency of splenic CD3+ T cells and CD4+ and CD8+

T cells in the peripheral blood relative to SHIPflox/flox controls
(Collazo et al., 2012). The discrepancy may be because deletion of
SHIP in CD4CreSHIPflox/flox mice may occur at a different time
point during T-cell development compared to SHIP deletion in
LckCreSHIPflox/flox mice.

THE SHIP NAVY: A FORCE FOR DIVERSITY AND COMPLEXITY
OF FUNCTION
Multiple forms of the INPP5D gene product can occur via post-
translational modification, degradation, or alternative mRNA
splicing. This produces SHIP-1 proteins of 145 kDa (SHIPα),
135 kDa (SHIPβ), and 110 kDa (SHIPδ) in size. In addition, other
130,125,and 110 kDa forms of SHIP-1 have been reported (Hamil-
ton et al., 2011; Kerr, 2011). Truncated SHIP-1 proteins exhibit
differential protein binding properties owing to the lack of/altered
expression of certain protein binding domains (Figure 3). For
example, s-SHIP and its human homolog SIP-110, are truncated at
the N-terminus and lack the SH2 domain, but retain the catalytic,
C2 and proline rich domains. This limits the repertoire of binding
proteins available for interaction and hence, these forms cannot
interact with Shc, yet can still interact with Grb-2. Moreover, s-
SHIP is mostly localized at the plasma membrane rather than the
cytoplasm (Hamilton et al., 2011; Kerr, 2011). Although originally
thought to be restricted to embryonic stem cells, s-SHIP expres-
sion has been reported in adult hematopoietic cells and synergizes
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with SHIP-1 to regulate the activation of macrophages (Nguyen
et al., 2011).

SHIP-2 is a 142-kDa protein encoded by a separate gene, yet
still retains approximately 65% homology with SHIP-1 within
the catalytic domain. Divergence between SHIP-1 and SHIP-2
occurs largely within the proline rich domains as well as within the
SH2 domain. In addition, SHIP-2 contains a unique sterile alpha
motif (SAM) domain that can be involved in SAM–SAM domain
interactions with other proteins, for example ARAP3 (Raaijmak-
ers et al., 2007). SHIP-2 also shows the presence of an ubiquitin
interacting motif at the C-terminal end and (unlike SHIP-1), it can
hydrolyze PI(4,5)P2 in vitro. SHIP-2 expression is not restricted to
hematopoietic cell lineages and can be detected in heart, skeletal
muscle, and brain tissues. SHIP-2 appears to have a major role in
the negative regulation of insulin signaling in non-immune cells
(Ooms et al., 2009). SHIP-1 and SHIP-2 are co-expressed in T cells
and both are potent negative regulators of PI(3,4,5)P3-mediated
signals (Bruyns et al., 1999; Brauweiler et al., 2001). Tyrosine phos-
phorylation of SHIP-2 in T lymphocytes has not been reported,
but it may still be enzymatically active and hence, the SHIP-1
knock-outs may have an incomplete phenotype. Interestingly, it
is becoming clear that although SHIP-1 and SHIP-2 can interact
with common binding partners, they additionally have their own
unique profile of interacting partner proteins (Table 4), that possi-
bly reflects the differences in their non-catalytic domains (Erneux
et al., 2011; Mehta et al., 2011).

THE ROLE OF SHIP-1 IN HEMATOLOGICAL MALIGNANCIES
Over-activation of PI3K-dependent signaling cascades is a com-
mon occurrence in many human cancers (Engelman, 2009).
The lipid phosphatase PTEN which also negatively regulates
PI(3,4,5)P3 accumulation by de-phosphorylating the D3 position
of the inositol ring, is a well characterized tumor suppressor gene
(Hollander et al., 2011). Likewise, evidence for mutations of SHIP-
1 have also been shown in acute lymphoblastic leukemia (Luo et al.,
2003) and in acute myeloid leukemia (Luo et al., 2004).

The loss of SHIP-1 has also been shown to promote the devel-
opment of erythroleukemia, with SHIP-1 identified as a target
gene of the oncogene fli-1 (Lakhanpal et al., 2010). There are at
least two mechanisms by which SHIP-1 expression may be down-
regulated. The first involves targeting of SHIP-1 by miR-155 in B
cells, where high levels of miR-155 and reduced SHIP-1 expres-
sion have been linked to the development of acute lymphoblastic
leukemia in mice (Costinean et al., 2009). miR-155 levels were
also found to be significantly increased in human patients with
diffuse large B cell lymphoma (Eis et al., 2005). The second
involves BCR-ABL (the oncogene responsible for chronic myeloid
leukemia), which either directly or via a Src kinase family member,
tyrosine phosphorylates SHIP-1. This leads to polyubiquitina-
tion of SHIP-1 and subsequent STAT6 dependent-proteasomal
degradation (Ruschmann et al., 2010). Interestingly, there is an
inverse relationship between expression of SHIP-1 and BCR-ABL
(Martino et al., 2001; Jiang et al., 2003). Thus, reduced SHIP-1

Table 4 | SHIP-1 and SHIP-2 interacting proteins.

SHIP-1 interacting proteins SHIP-2 interacting proteins SHIP-1 and SHIP-2 interacting proteins

CD2AP (Bao et al., 2012) Actin, non-musclea (Mehta et al., 2011) Btkd (Tomlinson et al., 2004b; Xie et al., 2008a)

Ezrin, Radaxin, and Meosina

(Mehta et al., 2011)

APSa (Onnockx et al., 2008) CIN-85a,c (Havrylov et al., 2009; Buchse et al.,

2011)

FUBP2a (Mehta et al., 2011) ARAP3b (Raaijmakers et al., 2007) DOk1a (Tamir et al., 2000; Havrylov et al.,

2009; Cunningham et al., 2010)

Grb-2a (Mehta et al., 2011) c-Cblb (Vandenbroere et al., 2003) Filamina,c (Dyson et al., 2001; Lesourne et al.,

2005)

KLRG1a (Tessmer et al., 2007) Glucose-regulated protein precursora(Mehta et al., 2011) Shca (Mehta et al., 2011)

LyGDIa (Mehta et al., 2011) Heat shock protein 90-betaa (Mehta et al., 2011) Tecd (Tomlinson et al., 2004a)

PKC-δa (Chari et al., 2009) Hematopoietic cell specific Lyn substratea(Mehta et al., 2011)

PLC-γ1a (Song et al., 2005) HSP90βa (Mehta et al., 2011)

Intersectin 1b (Xie et al., 2008b)

Protein disulfide-isomerase A3 precursora Mehta et al., 2011)

PR130c (Zwaenepoel et al., 2010)

PTP1Bc (Mertins et al., 2008)

p130Casa (Prasad et al., 2001)

JIP1b (Xie et al., 2008a)

Tubulin beta-2A chaina (Mehta et al., 2011)

Vinexinc (Paternotte et al., 2005)

Methods by which interactions have been identified are indicated: a immunoprecipitation; byeast two hybrid; cmass spectrometry; dGST-SH3 pull-down. Where known,

the domains within SHIP-1 that interact with these proteins are indicated in Figure 3. Protein interactions with SHIP-1 that are known to result in positive signaling

outcomes are indicated in red. Refer to main text for further detail.

ARAP3, Arf-GAP, Rho-GAP, ankyrin repeat and PH domain-3; CIN85, Cbl-interacting 85 kDa protein; FUBP2, far upstream element binding protein-2; JIP1, c-Jun NH2

terminal kinase (JNK)-interacting protein-1; KLRG1, killer cell lectin-like receptor G1; LyGDI, a Rho guanine nucleotide dissociation inhibitor originally identified in

lymphocytes; PTPB1, protein-tyrosine phosphatase 1B.
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activity might be a prerequisite for the proliferative advantage of
some chronic myeloid leukemia clones. A similar inverse rela-
tionship exists between a constitutively active oncogenic c-kit
receptor and SHIP-1, whereby inhibition of c-kit’s intrinsic tyro-
sine kinase activity with Imatinib reversibly raises SHIP-1 levels
(Vanderwinden et al., 2006).

The role of SHIP-1 as a tumor suppressor is also evident in the
ability of SHIP-1 to restrict myeloid suppressor cells and regula-
tory T cells (Ghansah et al., 2004; Locke et al., 2009). Therefore the
loss of SHIP-1 expression/function may lead to increased suppres-
sion of T-cell mediated anti-tumor immunity. Indeed, in murine
pancreatic cancer SHIP-1 expression was shown to be reduced in
splenocytes which also correlated with an increase in myeloid sup-
pressor cell numbers (Pilon-Thomas et al., 2011). Decreased SHIP-
1 expression has also been shown in myelodysplastic syndrome
progenitor cells, whereas over-expression of SHIP-1 inhibited
myeloid leukemic growth (Lee et al., 2012).

The role of SHIP-1 in leukemia however, appears more com-
plex than initially thought. For example, while PTEN can suppress
growth and apoptosis, SHIP-1 was shown not to act as a tumor
suppressor in myeloma cells (Choi et al., 2002). The use of a
small molecule SHIP-1 inhibitor demonstrated that catalytically
active SHIP-1 is required for the survival of multiple myeloma
cells (Brooks et al., 2010) and that therefore, in certain cases,
SHIP-1 actually supports cancer cell survival. This would be
consistent with increased levels of the SHIP-1 enzymatic prod-
uct PI(3,4)P2 promoting Akt activation and survival/proliferation
(Manning and Cantley, 2007). Indeed, another group has shown
that SHIP-1 inhibits CD95/Fas-mediated apoptosis of T cells,
albeit independently of its catalytic activity (Charlier et al.,
2010).

SHIP-1 AND THE STEM CELL NICHE
The crucial role of PTEN/Akt in the maintenance of stem cell
homeostasis is now evident (Hill and Wu, 2009; Song et al.,
2012). It is now becoming clear that SHIP-1 also has an impor-
tant role in maintaining the stem cell niche. Hemopoietic stem
cell (HSC) proliferation is increased in SHIP-1 null mice. Despite
expansion of the compartment, SHIP-1 deficient HSCs exhibit
reduced capacity for long-term repopulation and home ineffi-
ciently to bone marrow (Desponts et al., 2006; Hazen et al.,
2009). The role of SHIP-1 in the biology of both HSC and the
hematopoietic stem cell niche, suggests that it may be a useful
target for treatment of bone marrow failure syndromes caused
by viruses, radiation, chemotherapy, or malignancy. As already
mentioned, MDSCs are a type of immunoregulatory cell that
can repress allogeneic T cell responses. A common complication
arising after bone marrow transplantation is Graft-versus-host
disease (GVHD) which involves priming of allogeneic T cells.
Remarkably, SHIP-1 deficient mice express more myeloid sup-
pressor cells than their wild type counterparts and accept allo-
geneic bone marrow grafts with a reduced incidence of GVHD
(Ghansah et al., 2004; Kerr, 2008). In addition SHIP-1 null mice are
better able to accept bone marrow transplants compared to con-
trols (Wang et al., 2002) and SHIP-1 deficient mice have shown
reduced cardiac graft rejection compared to controls (Collazo
et al., 2009).

SHIP IS TARGETED BY PATHOGENS TO AVOID IMMUNE
RECOGNITION
The key regulatory role of SHIP-1 has been exploited by several
opportunistic pathogens that target these phosphatases in order
to evade immune detection. Thus, lymphocytes are particularly
sensitive to the cytolethal distending toxin subunit B (CdtB), an
immunotoxin produced by Actinobacillus actinomycetemcomitans,
that can hydrolyze PI(3,4,5)P3 to PI(3,4)P2. Exposure to CdtB
leads to cell cycle arrest and death by apoptosis. The lipid phos-
phatase activity of CdtB may therefore, result in reduced immune
function, facilitating chronic infection with Actinobacillus and
other enteropathogens that express Cdt proteins (Shenker et al.,
2007). The measles virus evades destruction by the immune sys-
tem, at least in part, by targeting negative regulation of PI3K/Akt
signaling. It induces expression of the SHIP-1 homolog SIP-
110 which depletes cellular PI(3,4,5)P3 pools, suggesting that the
threshold for activation signals leading to induction of T cell pro-
liferation is raised (Avota et al., 2006). The targeting of this protein
by pathogens to avoid immune recognition, emphasizes the notion
that SHIP-1 might offer opportunities for the design of new drugs
targeting PI3K-dependent signaling.

PHARMACOLOGICAL MANIPULATION OF SHIP
ALLOSTERIC SHIP-1 ACTIVATORS
In 2005, pelorol (a product of the marine invertebrate Dacty-
lospongia elegans) was described as an activator of SHIP-1 (Yang
et al., 2005). More potent synthetic chemical entities have since
been designed by Aquinox Pharmaceuticals (Figure 1). Along
with PI(3,4)P2, these compounds were shown to allosterically
enhance catalytic activity by binding to the C2 domain of SHIP-
1 (Figure 3). The C2 domains of SHIP-1 and SHIP-2 share 38%
homology (compared to 51% homology between total SHIP-1 and
SHIP-2 in humans), and it is believed that this reduced homol-
ogy in the C2 domain allows these pelorol based compounds to
achieve SHIP-1 selectivity. This is particularly important given
the crucial role of SHIP-2 in the regulation of insulin signaling
(Ooms et al., 2009). Two of these compounds, AQX-016A and
AQX-MN100, exhibited potent inhibition of immune cell acti-
vation in vitro and were anti-inflammatory in vivo using mouse
models of endotoxemia and acute cutaneous anaphylaxis (Ong
et al., 2007). Intriguingly, these SHIP-1 activating compounds
increased apoptosis of multiple myeloma cells in vitro and when
used in combination with bortezomib (an established multiple
myeloma treatment) proved more effective at inhibiting cancer
cell proliferation than bortezomib alone (Kennah et al., 2009).
Other compounds based on the structure of pelorol have been
developed by Aquinox Pharmaceuticals as SHIP-1 activating com-
pounds with a view for application in inflammatory disorders.
AQX-1125 is the most advanced and has passed Phase 1 clini-
cal trials in 2011, with Phase IIa clinical studies initiated in late
2011 for the treatment of mild and moderate asthma (Table 1).
With regard to the latter, the recent finding that TLR stimula-
tion augments IgE plus Ag-induced TNFa and IL-6 production
from MMCs (Ruschmann et al., 2012) might explain the exac-
erbation of IgE-mediated allergic episodes by infectious agents
(Qiao et al., 2006). Since IgE synergizes with TLR ligands to trig-
ger cytokine production from SHIP-1 null mucosal mast cells,
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activating SHIP-1 specifically in these cells might be useful for
treating chronic inflammatory diseases like asthma.

SHIP-1 INHIBITORS
A novel small molecule selective inhibitor of SHIP-1, termed 3 α-
aminocholestane (3AC, Figure 1) has also recently been identified
using high-throughput screening, though the site of drug-protein
interaction is unclear (Brooks et al., 2010). Consistent with obser-
vations from SHIP-1 deficient mice, treatment of mice with 3AC
led to increased numbers of myeloid suppressor cells and reduced
ability of peripheral lymphoid tissues to prime myeloid-associated
responses and protected against GVHD (Brooks et al., 2010).
The inhibition of SHIP-1 using pharmacological compounds may
therefore offer the potential to aid transplant acceptance in patients
undergoing transplant surgery. 3AC also increased levels of gran-
ulocytes, red blood cells, neutrophils, and platelets in mice and
could therefore, have potential to improve blood cell number
in patients with myelodysplastic syndrome or myelosuppressive
infection.

Remarkably, SHIP-1 inhibition using 3AC induced the apop-
tosis of human acute myeloid leukemia cell lines which is consis-
tent with SHIP-1 being anti-apoptotic under some circumstances
(Brooks et al., 2010). Further studies showed that 3AC inhib-
ited multiple myeloma cell growth in a tumor xenograft model
in mice (Fuhler et al., 2011). Since both substrate [PI(3,4,5)P3]
and product [PI(3,4)P2] of SHIP-1 have been shown to influence
Akt activation and cell survival, this may explain in part, why both
activators and inhibitors of SHIP-1 have shown efficacy against
leukemic cells (Kerr, 2011).

SHIP-2 INHIBITORS
SHIP-2 is thought to be involved in type-2 diabetes and obe-
sity (Ooms et al., 2009) as well as cancer and atherosclero-
sis (Suwa et al., 2010). The development of compounds which
selectively target SHIP-2 has therefore been of great interest.
Small molecule compounds which specifically inhibit the cat-
alytic activity of SHIP-2 have recently been described (Suwa et al.,
2009). In addition a novel biphenyl 2,3′4,5′,6-pentakisphosphate
[BiPh(2,3′,4,5′,6)P5] compound has demonstrated potent inhi-
bition of SHIP-2 catalytic activity (Vandeput et al., 2007).
BiPh(2,3′,4,5′,6)P5 in its current form is however not cell per-
meable and therefore does not possess drug-like properties. The
crystal structure of the phosphatase domain of SHIP-2 bound
to BiPh(2,3′,4,5′,6)P5 has identified a flexible loop which folds
over and encloses the ligand (Mills et al., 2012) and may have

implications for development of small molecules that target
SHIP-1. The targeting of this region may allow more SHIP-
2 specific drugs to be developed. Cell permeable pan-SHIP-
1/2 inhibitors have also recently been identified and have been
reported to kill multiple myeloma cells (Fuhler et al., 2011).
The development of SHIP-2 specific compounds suggests that
SHIP-2 may be a potential target with which to treat a range
of diseases, in addition to allowing the poorly understood role
of SHIP-2 in the immune system, to be probed in greater
depth.

SUMMARY
The difficulties of developing PI3Kγ inhibitors with sufficient
selectivity over other PI3K isoforms has in part, led to the search
for alternative drug targets to selectively modify PI3K signaling in
the immune system. This search revealed the potential for exploit-
ing the lipid phosphatase SHIP-1, an endogenous and leukocyte-
restricted regulator of PI3K signaling. Small molecule regulators
of this protein have shown early promise in inflammatory, trans-
plantation, and cancer settings, and are currently in phase IIa
clinical trials to evaluate the safety, tolerability, and pharmaco-
kinetics (Table 1). The selectivity profile of compounds targeting
SHIP-1 is at present quite limited and while they appear to exhibit
specificity for SHIP-1 versus SHIP-2 and PTEN, it remains to be
seen whether there are other off-target effects. Despite this early
promise, the targeting of SHIP-1 (particularly with inhibitors), is
not without its potential problems. For example,SHIP-1 deficiency
leads to a number of pathologies including fibrotic lung disease
(Rauh et al., 2005), osteoporosis (Moon et al., 2011), and the devel-
opment of spontaneous intestinal inflammation and fibrosis (Kerr
et al., 2011; McLarren et al., 2011). An important factor to con-
sider is that targeting catalytic activity may not be sufficient to
inhibit all SHIP-1 mediated effects, given that SHIP-1 also fulfills
key non-catalytic scaffolding functions (Song et al., 2005; Peng
et al., 2010; Bao et al., 2012; Ruschmann et al., 2012). Hence, small
molecule-based strategies to target catalytic activity are unlikely to
affect these non-catalytic functions. This may be beneficial on the
one hand, if pathological consequences are dependent on catalytic
functions as such approaches will likely retain the non-enzymatic
functions and hopefully limit unwanted side-effects. On the other
hand, such strategies may be ineffective if pathological conse-
quences are driven by non-enzymatic functions of SHIP-1. It is
interesting to note however, that prolonged inhibition of SHIP-1
with 3AC leads to proteasome-dependent degradation of SHIP-1
(Fuhler et al., 2011).
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