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Abstract: Respiratory diseases pose an increasing socio-economic burden worldwide given their
high prevalence and their elevated morbidity and mortality. Medical devices play an important role
in managing acute and chronic respiratory failure, including diagnosis, monitoring, and providing
artificial ventilation. Current commercially available respiratory devices are very effective but,
given their cost, are unaffordable for most patients in low- and middle-income countries (LMICs).
Herein, we focus on a relatively new design option—the open-source hardware approach—that, if
implemented, will contribute to providing low-cost respiratory medical devices for many patients
in LMICs, particularly those without full medical insurance coverage. Open source reflects a set
of approaches to conceive and distribute the comprehensive technical information required for
building devices. The open-source approach enables free and unrestricted use of the know-how
to replicate and manufacture the device or modify its design for improvements or adaptation to
different clinical settings or personalized treatments. We describe recent examples of open-source
devices for diagnosis/monitoring (measuring inspiratory/expiratory pressures or flow and volume in
mechanical ventilators) and for therapy (non-invasive ventilators for adults and continuous positive
airway pressure support for infants) that enable building simple, low-cost (hence, affordable), and
high-performance solutions for patients in LMICs. Finally, we argue that the common practice of
approving clinical trials by the local hospital ethics board can be expanded to ensure patient safety
by reviewing, inspecting, and approving open hardware for medical application to maximize the
innovation and deployment rate of medical technologies.

Keywords: medical devices; low-cost; low- and middle-income countries; flowmeters; mechanical
ventilator; CPAP device; Arduino; 3D printer; open-source hardware

1. Introduction

Chronic and acute respiratory diseases—including chronic obstructive pulmonary
disease, fibrosis, pneumonia, and acute respiratory distress syndrome—have been and
continue to be an important healthcare concern worldwide [1]. Moreover, their prevalence
and socio-economic burden are expected to grow owing to the progressive aging of the
population and because some of the leading causes of chronic respiratory diseases—namely,
air pollution, vaping, and tobacco smoking—are increasing, particularly in low- and middle-
income countries (LMICs) [1]. The morbidity and mortality from respiratory diseases
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that are further enhanced by the surge of current (COVID-19) and future pandemics
affecting the respiratory system along with the respiratory consequences of climate change
and environmental pollution, particularly in at-risk subjects (patients with comorbidities,
children, and the elderly), will only further accrue to the toll [2,3].

Vaccination strategies aimed at reducing the number of infected patients and the
disease severity in case of infection, and the development of new drugs for improving
treatment are two important tools for managing chronic and acute respiratory diseases.
However, irrespective of such advances, a fundamental tool to address both acute and
chronic respiratory illnesses consists of the use of a variety of medical devices. For example,
a type of frequently used respiratory medical device is aimed at exploring the patient’s lung
function for both diagnosing and monitoring the evolution of disease symptoms. Another
type of device is used for treatment and primarily consists of mechanical ventilators that
are required to support or replace the patients’ ability to breathe and, thus, maintain safe
levels of O2 and CO2 in the different body tissues and organs.

Fortunately, intense engineering and clinical research in the last decades have made it
possible first to invent and subsequently develop very sophisticated and effective medical
devices for respiratory diseases. This excellent progress comes, however, with the drawback
that, in practice, such advanced devices are not available to most of the populations in
LMICs [4,5]. Indeed, most medical devices are produced and commercialized by companies
in developed countries, with production costs; markup; and, thus, product prices that
make the devices unaffordable to most individual patients and healthcare systems in
LMICs. As a result, whereas almost all patients in developed countries and a small wealthy
minority in LMICs have access to commercialized medical devices, billions of inhabitants
in low-resource regions have scarce or no access to life-saving medical equipment such as
mechanical ventilators.

Such widespread inequity in access to life-saving solutions prompts a uniquely im-
portant question aimed at addressing and resolving this global problem. In other words,
what potential steps can be undertaken to eliminate or at least reduce this access inequality
problem besides passively waiting under the wishful thinking that economic differences
among countries will progressively disappear? Several strategies have been considered and
implemented over the years. For example, philanthropic donations of commercially avail-
able medical devices can be a helpful solution for specific sites and needs. Unfortunately,
philanthropy cannot be a universal solution owing to the very high costs involved (thus,
inefficient use of donations), and also because the functioning time of donated medical
devices to LMICs is short due to the lack of maintenance and repair capabilities [6]. Another
solution that may help reduce inequalities in the access to medical devices is to promote
their production and commercialization by local companies in LMICs since, in this case,
the production and distribution costs can be markedly reduced [7]. Building so-called
“frugal” medical devices can also help lower prices [8,9]. In frugal devices, the concept is to
produce devices providing the most basic and necessary functions, thus, avoiding the costs
corresponding to more complex or sophisticated functionalities that may be helpful for
slightly improving the treatment, increasing profitability for the for-profit medical center,
or for patient comfort, but are beyond the fundamental medical aim of the device. As a
clear example, current advanced mechanical ventilators offer a wide variety of ventilation
modes and monitoring options that are not essential for lifesaving and are not widely used
in routine clinical practice. The alternative of fabricating less expensive devices by reducing
non-fundamental functions or producing them in LMICs is very promising and should be
actively promoted [10]. However, the costs incurred in any conventional industrial process
and implementation, even in the case of not-for-profit companies in LMICs, may result in
product prices still not sufficiently low to be affordable for many patients in low-resource
regions. Indeed, a disproportionately large share of medical device companies’ revenues is
slated toward expenses beyond those needed to manufacture their products [11]. Interest-
ingly, a relatively new option, the open-source approach [12], may contribute to facilitate
the provision of affordable respiratory medical devices for patients in LMICs.
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2. The Open-Source Approach

Open source is defined as a way to design and distribute the technical information
required for building devices such that anybody can freely and unrestrictedly use the
know-how to replicate the device or modify the design for improvement or adaptation to
different applications.

The free open-source concept was born several decades ago in the software industry
as an alternative to proprietary software. The free and open-source software idea is that
contributing engineers write and freely distribute routine codes, platforms, or applications
so that other developers can eventually modify and incorporate them into their applications
(e.g., Linux, Android) [13]. Open-source creates a gift economy [14] that encourages rapid
innovation [15,16]. Free and open-source software development is now mature [17] and
well documented to be a successful technical development method [18,19]. The open-source
approach now dominates technical development in the software industry, with over 80% of
the IOT (internet of things) market [20], over 84% of the global smartphone market [21],
over 90% of the global cloud server market [22] (e.g., Facebook, Twitter, Yahoo, Google,
and Amazon), over 90% of the Fortune Global 500 (e.g., Wal-Mart and McDonald’s) [23],
and 100% of all supercomputers [24].

The concept of free open-source was subsequently expanded to hardware products,
mainly thanks to the extension of two new technological developments [25,26]. One of
them was the commercialization and widespread access to low-cost 3D printers through
the RepRap project (Self-Replicating Rapid Prototypers, which literally fabricated their
own components) [27–29]. Thus, open-source hardware developers contribute by building
and freely distributing the files containing driving codes readable by conventional 3D
printers [30]. Then, any individual can fabricate pieces made of different materials, which
otherwise would require an expensive traditional process of design and fabrication by
classical methods [31]. The use of low-cost desktop 3D printers [32] is now widely used
not just for prototyping but to fabricate consumer goods at prices that are beneath those
available in the conventional market [33]. The savings depend on the source of plastic
used in the 3D printers: commercial filament (82%), commercial pellets (94%), recycled
commercial pellets (97%), and self-recycled consumer plastics (98%) [34].

The other technological development that has expanded the open-source approach
is the creation of standardized and simple electronic platforms allowing to read signals
from sensors; carry out signal processing, including feedback control algorithms; and drive
actuators in real-time (e.g., the Arduino electronic prototyping platform) [35]. These low-
cost platforms do not necessarily have the highest performance offered by the most-novel,
high-price options provided by the industry, but allow an enormous range of applications
and are more than adequate for a vast array of scientific and medical applications [36–38].
Similarly, they also drive substantial cost savings. A recent survey of open hardware
for science found the average open hardware tool provided 87% savings compared with
equivalent or lesser proprietary tools, which increased slightly to 89% for those that used
Arduino technology and even more to 92% for those that used RepRap-class 3D printing [39].
Combining both 3D printing and Arduino increased the savings that averaged 94% for free
and open-source tools over commercial equivalents [39]. The combination of free open-
source software and hardware approaches makes it possible for either expert engineers or
individuals with basic technical knowledge to take advantage of the know-how provided by
a vast community of developers worldwide [40]. The approach allows for a democratization
of the production of high-value products not seen before [41].

Two relatively recent commercial novelties have made this all possible. First, the
progressive cost reduction of electronic components, sensors, and actuators as a result
of the globalization process in industrial chains. Second, the worldwide extension of e-
commerce distribution channels (e.g., Amazon, eBay, Alibaba) eases the retail purchase of
components. Consequently, it is currently possible for individuals or small labs to fabricate
complex devices in a way that was not possible historically or even a few years ago. The
fields of application of the open-source approach, which is considered a strategic and
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production-change paradigm, are ample in the current technology-based world, including
industry, research, and medical devices [42].

The new abilities the open-source approach provides have been particularly useful
during the COVID-19 pandemic. The conventional, centralized manufacturing of the
proprietary approach to design and manufacturing failed to respond to the crisis in time and
compounded existing inequalities in medical care, especially in LMICs [43,44]. There was a
massive grassroots response to provide communities with access to necessary customized,
locally produced equipment following a distributed manufacturing paradigm [45,46]. There
has been a virtual explosion of open-source devices due to the supply disruptions and
urgent need for medical hardware during the COVID-19 pandemic. Examples include the
production of a wide range of personal protective equipment such as face shields [47], N95
respirator alternatives [48], heat-sterilizable masks [49], full-face masks [50,51], and testing
supplies such as nasopharyngeal swabs [52,53] and infrared thermometers [54]. More
complicated devices were also developed, including sterilization equipment [55–57] and
open-source electronics for medical devices such as ventilators [58], among many others.

3. Low-Cost, Open-Source Devices for Respiratory Diseases

To better illustrate the potential of the open-source approach, this section provides a
detailed analysis of some recent examples of low-cost diagnostic and therapeutic devices
for chronic or acute respiratory diseases.

3.1. Device to Measure Maximal Inspiratory and Expiratory Pressures

Measurement of the maximal inspiratory (MIP) and expiratory (MEP) pressures that
a patient can exert allows for assessing the functional performance of his/her respiratory
muscles. MIP and MEP are altered in very prevalent diseases such as chronic obstructive
pulmonary disease (COPD), neuromuscular diseases (e.g., multiple sclerosis, muscular
dystrophies), or chronic heart failure. Since measuring MIP and MEP is non-invasive,
this technique helps in diagnosing and characterizing the disease and in monitoring the
evolution of the patient’s disease status and response to therapy. Given that commercial
devices for measuring MIP/MEP are expensive, a low-cost, open-source device has been
recently proposed [59]. The MIP/MEP measurement technique is straightforward from
both conceptual and technical viewpoints. It is based on recording pressures at a mouth-
piece, computing the average of the highest pressures generated over a 1 s period of stable
inspiratory/expiratory effort and providing the variability across values in subsequent
maneuvers to select the maximum value from several representative efforts. The device
(Figure 1A) was designed using simple, inexpensive, and easy-to-find components (most of
them purchased from e-commerce sources). The setting consisted of a development board
with an Arduino microcontroller, an LCD screen, a pressure transducer, a rechargeable
9 V battery block, a switch, a power supply base, and a customized enclosure produced
by using any plastic-based 3D printer (most of which are open-source or derived from
RepRap 3D printers). A measuring session starts by asking the user to select a MIP or
MEP measurement to run; then, data acquisition begins immediately. After 5 s of pressure
signal sampling, the device screen shows the corresponding pressure–time curve and the
MIP/MEP values are computed according to conventional rules [59]. The device asks the
user whether the maneuver should be accepted or rejected and whether a new maneuver
should be carried out (Figure 1B). After repeated maneuvers, the device shows all data
from previously accepted tests and informs on whether the quality control criterion to
select the final result has been achieved [59]. Figure 1A shows that the device has two
independent blocks connected through a 1 m length (3 mm ID) silicone tube. One of them
is the handheld framework, used by the health technician, containing the electronics and
digital display of the measurement process and results. The second block is a handheld
mouthpiece support for a disposable patient’s mouthpiece. The cost of all the components
was ≈ 80 €. Figure 1C,D show the results obtained when the low-cost, open-source device
was evaluated by simultaneous comparison with a laboratory reference setting (Bland-



J. Pers. Med. 2022, 12, 1498 5 of 16

Altman and linear regression plots, respectively). The average difference in MIP/MEP
values between the low-cost device and the lab reference setting was only 0.13 cmH2O
(limits of agreement from −0.86 to 1.12 cmH2O), which corresponds to ±1% accuracy.
Accordingly, the developed device is suitable for performing MIP and MEP measurements
within clinical ranges. The device design was published using the open-source hardware
approach. Therefore, it can facilitate measuring MIP/MEP by readily available point-of-
care devices for patient monitoring. Most importantly, it can make this respiratory function
measurement tool affordable to users in LMICs.
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Figure 1. (A) Complete external view of the device showing the operator’s handheld block and
the patient’s mouthpiece block, connected through a flexible silicone tube. (B) Example of one of
the screens during device operation, showing the result of an MEP maneuver test (time course of
expiratory pressure, MEP result, and the option to allow the user to accept or reject this specific
maneuver). (C) Bland–Altman plot showing the difference between values measured by the prototype
and by laboratory reference equipment, as a function of the measured values for both MIP (negative
values) and MEP (positive values). The green line is the prototype bias, and the blue–red lines
indicate the limits of agreement. (D) Linear regression of the values obtained with the developed
device and the laboratory reference. Reprinted with permission from Ref. [59]. Creative Commons
CC-BY license.

3.2. Device to Measure the Tidal Volume Delivered by Mechanical Ventilators

Tidal volume (VT), the volume of air achieved during inspiration, is one of the main
parameters required during mechanical ventilation in patients with respiratory failure.
Therefore, precise measurement of VT is of great importance for both controlling blood
gases and avoiding ventilator-induced lung injury. However, this measurement, usually
carried out by the ventilator, is complex since it requires a series of corrections for oxygen
concentration in the air, dead space of the ventilator circuit, and temperature and humidity
conditions. As each of these three corrections may induce up to 10% variance in measured
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VT, periodic quality control testing is required, particularly in clinical settings where
medical device maintenance could be suboptimal, for instance, in LMICs. To avoid the
need for reference devices measuring VT, which are based on expensive gold standard
sensors, a simple procedure has been recently described [60]. This procedure can be readily
followed by clinical staff who are not experts in instrumentation techniques. Figure 2A
shows a diagram of the rationale, which is based on measuring the volume of inspired air
(VT) directly from water displacement. Interestingly, for users in LMICs, Figure 2B shows
a low-cost implementation made using 15 cm diameter PVC tubing components that are
widely available in hardware stores. Assuming the 1 mm resolution in the common ruler
for assessing h in the setting in Figure 2B, the resolution in VT measurement corresponds
to 0.43% and 0.86% for maximum and typical VT values of 1000 and 500 mL, respectively,
being by far sufficient to detect any potential real-life errors when tidal volume is measured
by mechanical ventilators.
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Figure 2. (A) Diagram of the method described for directly measuring the tidal volume (VT) delivered
by a mechanical ventilator. A lung test, consisting of an orifice-type resistor (R) and a compliant
bag enclosed in a water chamber open to the atmosphere through a vertical tube, is connected to
the inspiratory and expiratory lines of the mechanical ventilator. The VT introduced into the bag
induces an increase in the height (∆h) of the water level in the tube, from end-expiration (blue) to
end-inspiration (red). (B) Example of low-cost implementation of the measuring setting. The chamber
was made with 15 cm diameter PVC drainpipe fittings. One of the cylinder bases was a screw cap to
allow replacing the bag. The transparent vertical tube has an internal diameter of 7.4 cm (section:
43.01 cm2); hence, VT (in mL) = 43.01 · h (in cm). Reprinted with permission from Ref. [60]. Creative
Commons CC-BY license.

3.3. Construction and Calibration of Accurate Pneumotachographs

Pneumotachographs, which are the sensors measuring ventilation airflow (and vol-
ume by flow integration), are basic integral components required in mechanical ventilators.
Given that standard pneumotachographs are expensive and require careful cleaning and
maintenance, a recent publication has provided full details for low-cost and simple con-
struction and calibration of robust pneumotachographs made by manual perforation of a
plate with a domestic drill [61]. Their pressure–volume relationship is characterized by a
quadratic equation with parameters that can be tailored by the number and diameter of
the perforations (Figure 3A–E). The calibration parameters of the pneumotachographs can
be measured through two maneuvers with a conventional resuscitation bag and by assess-
ing the maneuver volumes with an inexpensive and straightforward water displacement
setting. The performance of these simple, inexpensive pneumotachographs was assessed
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by comparison with a reference gold standard pneumotachograph in a bench test where
conventional mechanical ventilation was applied to a simulated patient. As shown in
Figure 3F,G, under realistic mechanical ventilation settings (pressure- and volume-control;
200−600 mL), the simple pneumotachographs were able to accurately measure inspiratory
flow and tidal volume (VT errors of 2.1% on average and <4% in the worst case). Therefore,
these easy-to-reproduce pneumotachographs and the calibration method facilitate the low-
cost and simple availability of pneumotachographs for accurately controlling mechanical
ventilation in low-resource settings, either by incorporating them into the ventilators or as
external measuring devices for quality control.
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Figure 3. Low-cost pneumotachograph. (A,B) Diagrams of resistors for the pneumotachographs.
(B,C) Photograph of the manually drilled resistor. (C,D) Diagram of resistor and (one side) standard
PVC tube piece to assemble the pneumotach. (E) Photograph of the assembled pneumotachograph.
(F) Example of the flow signals during pressure-controlled mechanical ventilation simultaneously
measured by a reference pneumotachograph (red) and by the pneumotachograph constructed and
calibrated by the low-cost procedures (black). (G) Volume measured during different magnitudes
of pressure-control and volume-control mechanical ventilation of a patient model. Volume was
simultaneously measured with the low-cost and the reference pneumotachograph (open circles).
Each set of four bars corresponds to the volumes measured by the low-cost pneumotachograph
using independent calibrations. Reprinted with permission from Ref. [61]. Creative Commons
CC-BY license.

3.4. Pediatric Continuous Positive Airway Pressure (CPAP)

The provision of therapy with continuous positive airway pressure (CPAP) has proven
efficacy in the treatment of pneumonia in children, the leading cause of death in under-5-
year-old patients in LMICs. Given the high cost of conventionally marketed CPAP devices,
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which are unaffordable for the majority of healthcare systems in low-resource regions,
expanding access to potential CPAP treatment relies on the provision of simple and cheap
devices for the application of this respiratory support therapy. Figure 4 shows in detail the
example of a recent open-source proposal to facilitate the local construction of pediatric
CPAP devices [62]. The setting (Figure 4A) is based on off-the-shelf, easy-to-purchase
components (a pump and a heater/controller domestic aquarium, and two rotameters),
which are assembled into a 3D printed enclosure. The total cost of the CPAP device was
<100 €. When tested on the bench on a simulated patient with realistic breathing [62],
the device was shown to provide CPAP support with precision and stability similar to
commercial devices (Figure 4B).
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applied at nasal prongs by the novel device for CPAP settings of 6 and 10 cm H2O. The simulated
newborn infant was breathing with a tidal volume of 20 mL and frequency of 55 breaths/min while
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Ref. [62]. Copyright by the American Thoracic Society.

3.5. Non-Invasive Pressure Support Ventilator

Current pricing of commercial mechanical ventilators in LMICs markedly restricts
their availability, and consequently, a considerable number of patients with severe respira-
tory diseases cannot be adequately treated. To reduce the serious shortage of ventilators in
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low-resource regions, a recent simple, open-source, non-invasive bilevel pressure ventilator
has been designed and evaluated in human subjects [11]. The ventilator (Figure 5A) was
built using off-the-shelf materials available via e-commerce and was based on a high-
pressure blower, two pressure transducers, and an Arduino Nano controller with a digital
display (total retail cost < 75 USD$). The ventilator was first evaluated and compared with
a commercially available device (Lumis-150, Resmed) on the bench using an actively breath-
ing patient simulator mimicking a range of obstructive/restrictive diseases. The low-cost
ventilator was able to provide inspiratory/expiratory pressures of up to 20/10 cmH2O, re-
spectively, with no faulty triggering or cycling. The ventilator was also tested in 12 healthy
volunteers wearing a high airway resistance and thoracic/abdominal bands to mimic
obstructive/restrictive patients. When applied under conditions mimicking patients, the
ventilator was able to support the subjects’ breathing with highly demanding inspiratory
and expiratory pressures with no artifacts in cycling and triggering. Figure 5B shows
an example of the pressure signal (provided by the ventilator sensor) when a volunteer
mimicking an obstructive–restrictive patient was supported with strenuous inspiratory and
expiratory pressures of 22 and 10 cm H2O, respectively. Interestingly, Figure 6 shows that
the ventilator function was comfortable for subjects. Indeed, the breathing difficulty score
rated (1–10 scale) by the loaded breathing subjects was significantly (p < 0.005) decreased
from 5.45 ± 1.68 without support to 2.83 ± 1.66 when using the prototype ventilator, which
showed no difference compared with the commercial device (2.80 ± 1.48; p = 1.000). Conse-
quently, this open-source proposal for a low-cost, easy-to-build, non-invasive ventilator
performs similarly to a high-quality commercial device, thereby allowing for free replica-
tion and use in LMICs, and thus, facilitating the application of this life-saving therapy to
patients who otherwise could not be treated.
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4. Discussion

The examples of low-cost (all of them below 100 €) and simple devices shown in
the previous section illustrate how high-performance respiratory medical devices can be
designed and built following a free open-source approach. It is interesting to note that many
respiratory devices, as well as many devices in other medical specialties, are particularly
suitable for this production approach because of their technical simplicity. Indeed, they
are based on principles and methods developed several years, and even decades, ago.
In addition, most of these devices can be built by small teams, e.g., within University
laboratories or public hospitals units, not requiring large industrial infrastructures and
companies (as would be the case to fabricate CAT scanners or MRI equipment; although,
it should be pointed out there are open-source efforts on these fronts as well, e.g., https:
//www.opensourceimaging.org/, accessed on 13 August 2022). For instance, the example
devices presented above were developed and constructed within the framework of the
final degree theses of biomedical engineering students. Whereas the know-how required
to achieve the design and to test the device performance required engineers and doctors
with great experience in technology and respiratory medicine, replication of the devices
using the open-source information provided can be carried out by anyone having trained
at the level of last-year engineering degrees with minimal electronic workshop tools and
now common desktop 3D printers, which makes it feasible in LMICs. In this context, it is
worth mentioning that the implementation and generalized use of a considerable number
of published medical device solutions that are low-cost but are not open-access would be
greatly enhanced should an open-source version become available.

Designing and distributing open-source projects for medical devices is so simple
that two cautionary notes should be issued. First, there is a plethora of such projects
in the literature, particularly in technological journals and environments, but very few
of them have been carried out by teams that not only develop a technical solution but
also, and most importantly, involve expert healthcare professionals. Ideally, medical
experts are involved in the design and the evaluation of the devices, first on the bench
and subsequently in patients. For example, during the first two years of the COVID-19
pandemics, when the lack of available mechanical ventilators was an important problem
worldwide [63,64], a considerable number of low-cost, simple ventilator projects were
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published [58]; however, most of these projects presented the technical design with no
or only with minor realistic testing in patient models, and only an exceptional minority
were tested in vivo either in realistic animal models (e.g., porcine acute lung injury) or
in patients. These devices provided a good open-source foundation for developing fully
functional and regulated ventilators but needed additional work to make them available
for anything other than an emergency. Noteworthily, open-source medical devices with
the potential for translation to clinical application should be thoroughly prepared, going
far beyond the relatively simple initial stage of technological design, involving a team
with wide expertise including electronic and instrumentation design experts, specialists
in respiratory physiology, and clinical practitioners. Specifically, open-source routines
and circuits should be tested under well-controlled conditions simulating real-life clinical
scenarios, and the documentation describing the devices should clearly explain the exact
conditions and operating procedures of their intended use. Moreover, if the project is aimed
at development in LMICs, it is important to also involve local professionals to ensure that
the project is suitable for implementation under local conditions [65,66]—specifically, to
facilitate “personalizing” the project to the characteristics of on-site healthcare staff and
patients. Therefore, completing such an open-source project is not an easy task for an
individual or even an established research group. Using the open-source model, however,
many people with the requisite skills can collaborate building the necessary expertise as
a whole. What should be very easy is the fabrication of the devices by potential users by
following the clear and detailed technical descriptions provided by the project authors that
are readily available online. A second cautionary note regarding the ease of obtaining the
information to build open-source devices is that well-meaning people without adequate
technical/biomedical training may dangerously misuse it. It is fundamental to discourage
such practice while further including cautionary statements that inform a priori the dangers
associated with such misinformed initiatives.

The open-source approach for fabricating medical devices in LMICs is a path clearly
different from the conventional proprietary-based system of products mainly commercial-
ized by companies in developed countries. The aim is not necessarily trying to establish a
commercial competence simply because, in practice and for financial reasons, the commer-
cial market is not operating in LMICs (with the exception of providing products for a small
minority of wealthy patients). This situation is not expected to change in the upcoming
decades given the huge gap between costs and prices in developed countries and financial
capabilities in LMICs. In this context, the open-source approach appears as a possible route
enabling access to medical devices for use by a significant proportion of patients in low-
resource regions, and this approach is already seeing results in closing the gap between the
haves and have-nots in scientific instrumentation [67]. There is room to define what could
be the best model to implement the open-source approach. Probably, different solutions
(e.g., commercial using open-source business models [68,69], or voluntary production [70])
could be implemented depending on the specific characteristics of each LMIC. A promising
possible model to start developing the production is such that the low-cost medical devices
are built by small technical teams linked to hospitals or to associated engineering schools,
which could work independently or be coordinated at the regional or national levels. This
would, for instance, mimic the successful process of building ventilators, CPAP devices,
and other innovations in the early times of invention and development of these devices [71].

A fundamental issue to be addressed regarding the local fabrication of medical devices
is their safety and patient protection. The normal rule in developed countries is that any
medical device to be used on patients should have been approved by the corresponding
regulatory body (e.g., FDA, CE mark). This process has the advantage of ensuring, at a
national or international level, that a device complies with minimal quality and safety
standards and conditions. These regulatory agencies were created to protect patients (and
clinicians) from using low-quality or unsafe medical devices. This protection model cer-
tainly works well in the market of developed countries. Unfortunately, the complexity
and cost of obtaining regulatory approval has morphed into a barrier against innovation
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and competition from new companies entering the medical technology market [72–74].
Indeed, the whole process required to obtain approval by any of these agencies is often
prohibitively expensive (and time-consuming), even for companies in those countries.
Obviously, this model for medical device safety control is conceptually and practically
not applicable for devices locally fabricated by the open-source approach. Although it
may appear in developed countries that control by national regulatory agencies is the only
possible procedure for ensuring safety and patient protection, it is not and was not the only
possibility. Indeed, decades ago in developed countries, when most innovations on medical
devices were invented and developed by building them locally before being industrialized,
patient safety was ensured by inspection and approval by hospital ethical boards [71],
which in fact is the way for currently approving clinical trials [75,76]. This local model
was in the past, and continues nowadays, to be useful for protecting patient safety when
subjected to new medical procedures. Therefore, this process could be equally applied
to approving devices built locally, provided that the ethics committees are supported by
technical professionals, either by including them in the ethical boards or by establishing
procedures for external consultation with technical experts prior to ethical board approval.
By sharing the requirements, using this method would ensure patient safety while leverag-
ing the benefits of rapid innovation and low costs observed with the open-source approach.
Establishing the concept that, to be used in LMICs, medical devices must have an FDA or
CE mark is in practice equivalent to prohibiting most inhabitants from having access to
potentially life-saving treatments and makes extremely difficult the development of a local
industry of medical devices.

In addition, developed economy medical regulators could also learn from the open-
source approach, as currently there are major challenges to using distributed manufacturing
of open medical hardware in regulated areas. For example, for those operating in the U.S.,
for open hardware to be used clinically an Investigational Device Exemption (IDE) is
needed to allow for a non-FDA-approved device. This is only temporary, and the complete
device would need full FDA approval for legal deployment (with the exception of when
laws are temporarily changed or suspended during a pandemic [77]). Emergency use
authorization (EUA) was approved for a number of technologies [78] during the pandemic
for those both made in the U.S. and imported [79]. Regulations for specific classes of medi-
cal technology could improve innovation rates by having the technical validation/testing
required published openly so that developers could ensure their technologies meets re-
quirements before anyone attempts to obtain regulatory approval. Having clear, freely
available methods of validation and testing allows for rapid response and deployment of
needed medical supplies and technologies during a pandemic.

5. Conclusions

As summarized in Table 1, the relatively novel, free open-source approach for design
and distribution may be a uniquely useful and valuable tool for facilitating affordable
respiratory medical devices for patients in LMICs who otherwise would not have access to
the instruments and devices that, in some cases, enable life-saving diagnosis and treatment.
The common practice of approving clinical trials by the local or hospital ethics board
can be expanded to ensure patient safety by reviewing, inspecting, and approving open
hardware for medical applications [80]. The sharing of the tests required can be made
openly accessible to maximize the innovation and deployment rate of medical technologies.
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Table 1. Summary of the main features of medical devices from the conventional industry market
and from open-source local production.

Item Sub-Item Conventional
Industry Market

Open-Source
Local Production

Technological complexity of
the device

Very high YES DIFFICULT *
Low–medium YES YES

Cost and availability for
most patients

Cost EXPENSIVE CHEAP
Availability LOW HIGH

Health provider perspective

Local servicing/repair DIFFICULT EASY
Adaptability to local needs DIFFICULT EASY
Local industry promotion LOW HIGH

Requiring team-building initiative NO YES

Regulations and safety
requirements

International standards (FDA, CE) YES DIFFICULT
Local approval NO YES

* Difficult with current distributed manufacturing technologies. However, it should be noted that with coming
open-source electronics and other multimaterial 3D printing, micromachining, and similar technologies, the
current barrier to very-high-complexity devices will be overcome.
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