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A B S T R A C T

The COVID-19 pandemic has lead to catastrophic number of deaths and revealed that much work still remains
with data and artificial intelligence. To fully comprehend the dynamics of a pandemic with relevance to artificial
intelligence, a primer on global health concepts is first presented. Following this, various aspects of diagnosis and
therapy and the relationship to artificial intelligence are presented along with a future projection of an ideal
deployment of artificial intelligence in a pandemic. Final thoughts are made about lessons learned and what lies
ahead.
Introduction

Camus was prescient as the world has seen the ravages of the novel
coronavirus and COVID-19 through most of this year with no immediate
relief in sight. The Canadian company BlueDot was purported to be the
first organization to disclose the possibility of an outbreak back in
December by using machine learning and natural language processing.
Artificial intelligence since then, however, has been somewhat under-
leveraged as a valuable resource to mitigate the stress and burden of
frontline healthcare workers in the tenacious fight against the virus ([1]),
and it is important to understand why artificial intelligence has not been
more effective. First and foremost, it is essential to have a full under-
standing of this virus and the pandemic in the context of global health
and epidemiological tenets. This foundation can then be applied to our
appreciation for how artificial intelligence has helped to combat this
virus currently and how it will be more impactful in the future.

Global health primer with relevance to artificial intelligence

SARS, MERS, and Ebola are familiar recent pandemics that strike fear
even amongst seasoned global healthcare workers even though the
mortality (774, 38, and 11,325 deaths respectively) was magnitudes less
than the number of people who have already succumbed to the COVID-
19 pandemic (close to 30 million cases including 1 million deaths
worldwide as of early September). As a comparison, the recent pandemic
of the novel influenza A virus H1N1 in 2009–2010 (the so-called “swine
flu”) lead to about 60 million cases with about 151,700 to 575,400
deaths worldwide.

The ongoing coronavirus disease 2019 (COVID-19) is a serious multi
history; yet always plagues and
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system disease (albeit respiratory distress appears to be the most serious)
as a result of infection from the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). COVID-19 as a disease is manifested by
fever, fatigue, cough, chest pain, and shortness of breath with the most
lethal pathology being ground-glass lesions in the sub-pleural areas of the
lungs with progression to consolidation but many other organs are also
affected. The coronavirus SARS-CoV-2, a very large RNA virus, is similar
to the SARS-CoV that was responsible for the SARS pandemic. SARS-CoV-
2 is covered in a lipid bilayer with protein spikes, which bind to the host
cell membrane via the ACE-2 surface receptor for entry and replication.
TMPRSS2 is an enzyme that aids the virion to enter the host cell.

There are several important epidemiological terms and concepts in
the context of a pandemic, which is large epidemic that has spread to
involve an entire country or several countries or regions; there is no set
number of countries or regions for this global aspect of a pandemic. The
testing of the virus (discussion here is focused on the RT-PCR test for viral
material in the nasopharynx) is an essential part of early management of
an epidemic or pandemic, remains a continual discussion and contro-
versy in the news. A broad testing protocol at an early stage (especially if
some individuals are relatively asymptomatic as in this pandemic)
coupled with contact tracing and surveillance is essential for discovering
the true number of new cases that is the underpinning of a successful
containment strategy. This is probably the singular reason for high level
of success seen in countries like Singapore, New Zealand, and Taiwan.
Lack of broad scale testing significantly impacts on any mechanism of
disease prediction in a pandemic, from the traditional epidemiological
susceptible-exposed-infectious-recovered-susceptible (SIR or SEIRS)
model to the IHME (Institute of Health Metrics and Evaluation at the
University of Washington) model that does not take into account the
wars take people equally by surprise.”Albert Camus, French author of The Plague.
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virus characteristics (transmission and disease).
There is much confusion and consternation with the number of new

cases: this is often more of a reflection of number of people who had
testing that turned out to be positive (in the past 24 h) rather than the
true number of new cases (which includes a much larger number of
people with infection who are not yet tested). Often the number of new
cases is increasing fast but is in actuality due to more people getting
access to the testing (as in the case in the US). Therefore, the total cases is
the cumulative number of cases to date (including those who have
recovered from the infection so this is prevalence as opposed to incidence
of new cases). In short, if testing is not widely available, the number of
true new cases and total cases are usually much higher then the reported
number of new and total cases (due to number of people who are infected
and not yet tested and diagnosed).

Another key concept to appreciate is the incubation period (or delay
in diagnosis) that is about 2–14 days between time of actual SARS-CoV-2
infection to time of symptoms (which then can lead to a positive test).
Even though the lockdown in Wuhan had an immediate impact (in
retrospect back tracking the status of all the true new cases), the number
of new cases in the news at that time did not reflect this downward trend
until 12 days later. In addition, the contagiousness of an infectious agent
can be estimated by R0, which is the estimated number of people that any
infected person can transmit the infectious agent. While the typical
influenza has an R0 of about 1 and measles has an R0 of about 16 (the
highest of any infectious disease), R0 for COVID-19 is estimated to be
about 2.0–3.0 (so more contagious that the average flu but less conta-
gious than SARS, MERS, or Ebola, all with R0 of 4 or greater). Conta-
giousness, however, needs to be in the context of time of manifestation of
the disease, as a major challenge of COVID-19 has been the lack of
obvious symptoms for many especially during early phases of the infec-
tion. In addition, contagiousness can be mitigated with measures such as
aggressive testing, hand washing and sanitizing, contact tracing, tem-
perature checkpoints, travel restrictions, and bans of gatherings above a
certain size; more stringent measures include: closing sports events and
bars and restaurants, closing of schools, and home quarantines except for
food and urgent services (which can close as well). The ultimate “worst
possible” virus, therefore, would have the following characteristics: high
case fatality rate like Ebola, high contagiousness (R0) like measles, and
long incubation time with majority of hosts with little or no early
symptoms like SARS-CoV-2. The latter renders data collection for new
cases of COVID-19 exceedingly difficult if not impossible in countries
with no stringent public health interventions.

The case fatality rate (in%) is the number of people dying from the
disease (total deaths from disease) divided by the number of people
diagnosed with the disease (total cases with the disease); it is not number
of people dying from the disease divided by the number of people in the
entire population, as that is the mortality rate. Hence, the number of
deaths from COVID-19 disease is much more reliable as an index of
disease than the case fatality rate as number of people diagnosed with the
disease is dependent upon access to testing. The case fatality rate for
pandemics range widely between the seasonal flu of about 0.1% (with
about 500,000 deaths per annum worldwide) to 2.5% for the Spanish flu
of 1918 (that resulted in 50–100 million deaths worldwide), and is most
lethal at about 50% for Ebola (hence the negative publicity). The case
fatality rate for COVID-19 has ranged from an astonishingly low 0.05% in
Singapore to above 10% in countries like Italy, Belgium, and the United
Kingdom. This case fatality rate not only depends on the demographics of
the population (as it is more lethal for the senior population) but also
how capable any region’s health system is in accommodating the rela-
tively large and sudden influx of critically-ill patients. In short, the case
fatality rate can be high because of: 1) relatively low level of testing
(smaller denominator of the case fatality rate so the final number is
bigger); 2) relatively high number of deaths from the disease mainly from
an overwhelmed health system (larger numerator so the final number is
bigger) or 3) both (as in the case of Italy). Again, accurate data collection
of new cases is key for calculating case fatality rate. Of note, the number
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of deaths per 100,000 population has ranged from 0.03 in Taiwan to the
60s (2000x higher) in countries like the United Kingdom and United
States.

The present state of artificial intelligence and COVID-19

Artificial intelligence and its panoply of methodologies were
rendered only partly effective during the pandemic ([2]). The following
not an exhaustive review but rather a summary of some of the activities
in using artificial intelligence in the 1) epidemiology, 2) diagnosis, and 3)
therapy during the pandemic, with each section followed by a short
personal observation:

1) Epidemiology of COVID-19

Prediction Models. The two types of models are statistical and
mechanistic: while the former uses machine learning for short-term
forecasting, the latter takes into account future transmission scenarios.
Although the IHME model, a statistical model, won early praise for its
more accurate predictions, it appears that it is simply very difficult for
any model to be the continual preferred oracle for accurately predicting
deaths and spread of the disease. This is in part due to the differences in
assumptions amongst models: while the IHME model currently utilizes
anonymized mobile phone data and social distancing policies to estimate
degree of contact (changed since early May), other models assume other
elements (such as stay-at-home orders) for various decreases in contact
between people. The aforementioned traditional SIR or SEIRDmodels are
mechanistic in nature and are favored by epidemiologists as these models
have a feedback mechanism from ongoing transmission information
([3]). Machine learning to help model social networks can add an
important dimension to pandemic prediction models by calculating the
likelihood of different people interacting, but these contact rates are
difficult at best to predict especially given complex geopolitical land-
scape of the U.S.

In short, the exceedingly complex nature of pandemics as a result of bio-
logical and human forces has been understandably challenging due to rela-
tively inaccurate number of confirmed cases, and these prediction models
needed to be more dynamic and flexible as well as more real-time with more
nonlinear approaches to decrease uncertainty.

2) Diagnosis of COVID-19

Medical Image Interpretation. There are many reports of artificial
intelligence used in COVID-19 in radiologic imaging of COVID-19 with
the deployment of deep learning and convolutional neural network
(CNN) of chest X-rays and CT or MRI lung images ([4]) ([5]). Deep
learning architectures included visual geometry group (VGG)-16 or
VGG-19, Resnet 50, Xception, DenseNet201, Inception_ResNet_V2 and
Inception_V3 with data sources that ranged from Kaggle, GitHub, and
various hospitals, especially from cities in China. Impressive variations of
CNN for medical imaging included: combined CNN-LSTM network ([6]),
faster regions with CNN ([7]), and a hybrid VGG-based neural network
and data augmentation and spatial transformer network (STN) with CNN
(VDSNet) ([8]). There were also reports of using synthetic data from
generative adversarial networks (GANs) ([9]). Despite the large volume
of papers that reported very high area under the curve for receiver
operating characteristics (AUROC), this capability was perhaps limited in
utility for the front line clinicians as the clinical manifestations of
COVID-19 is usually not a diagnostic enigma and radiologic findings
were often normal in early infection ([10]). Furthermore, there was a
paucity of coupling the CNN usage for medical images with short and
longer term clinical outcomes to stratify disease and risk with therapy
alternatives.

The collaboration amongst scientists and clinicians and the focus of arti-
ficial intelligence in the form of deep learning on medical imaging of the chest
and lungs of COVID-19 have been laudable, but perhaps the interest was



A.C. Chang Intelligence-Based Medicine 3-4 (2020) 100012
exuberant in this area and insufficient in other areas such as decision support
and risk stratification.

Viral and Antibody Testing. There are mainly three tests: 1) the mo-
lecular reverse transcriptase-polymerase chain reaction (RT-PCR) test for
detection of viral RNA during active infection; 2) the antigen test for
detection of specific proteins on the viral surface (also for active infec-
tion); and the COVID-19 antibody serology test for past infection. In these
tests, particularly the former two which test for an active infection, an
important aspect of testing would be the prior probability of likelihood of
infection in accordance to Bayes’ Theorem. There is also ongoing strategy
using machine learning as a tool to support the concept of test pooling. In
test pooling, samples from many people are combined into one for
testing; if such a combined sample is negative, then the assumption is that
everyone in the cohort is negative. Estimating the risk for each of the
cohort can be a task that machine learning take on by using data from a
myriad of sources to find the optimal grouping strategy. This combined
test pooling-machine learning strategy can render this approach very
efficient and cost-effective, not to mention more real-time from a timing
perspective ([11]).

One of the most underappreciated aspects of testing for COVID-19 is the
significance of pretesting probability of having the disease in the test inter-
pretation of the disease, and this focus can be particularly useful if testing is
adopting the test pooling strategy that will be efficient and effective in testing
the population.

3) Therapy of COVID-19

Clinical Knowledge. As of early September, there are close to 50,000
papers searchable in PubMed alone and scientific manuscripts are
currently doubling about every 20 days. Yet it was relatively late during
the pandemic that intensive care clinicians were sharing the important
information that some COVID-19 patients fared better with the proning
position compared with being mechanically ventilated. The capability of
artificial intelligence to gain valuable and usable insight from thousands
of publications has been challenging, at least in the early phases of the
pandemic; to complicate matters even more, several initial reports of
drugs and their effects in prestigious journals were retracted due to
problems with data integrity ([12]). This profound schism between in-
formation and knowledge was partly reconciled with the inception of
COVID-19 Open Research Dataset (CORD-19), a collaboration between
the Allen Institute for AI and leading research groups to form a free
resource of over 130,000 scholarly articles on COVID-19. This effort has
beenmade evenmore meaningful withmachine learning algorithms with
a human curation overlay for certain topics in COVID-19. A better
curated effort is the 2019 Novel Coronavirus Research Compendium
(NCRC) from Johns Hopkins School of Public Health to select out papers
that lack adequate peer review. In addition, there were studies that
examined the impact of artificial intelligence in the prediction of coro-
navirus clinical severity ([13]), but there was simply not enough sharing
of data, especially from the thousands of ICUs, on an international scale.
This dismal failure to have a robust data-sharing system for large-scale
real-time analysis in health care is now costing thousands of lives and
mandates change ([14]).

It is more vital than ever before to have open access to all scientific papers
that will be curated and organized using the latest natural language processing
tools for clinicians to have actionable insights, and to have an international
data repository of patient data for all to gain knowledge by agile clinical
research.

Drug Discovery. There were reports on the use of artificial intelli-
gence and deep learning in the AlphaFold system from DeepMind that
involved quaternary protein folding prediction to allow scientists to find
drugs that can neutralize the viral proteins. The new methodology called
free modeling uses deep learning to predict protein structure without
relying on prior templates ([15]). Of note, some of this work and update
are published without a peer-reviewed process to expedite the potential
benefit of this work for the scientific community. In addition, artificial
3

intelligence can be coupled with drug repurposing by analyzing various
sources such as Scopus, Google Scholar, PubMed, and IEEE Xplore da-
tabases ([16]). One of the companies that is focused on such a strategy is
BenevolentAI based in the United Kingdom, which has discovered the
drug baricitinib to be a candidate for treatment of COVID-19. Lastly,
machine learning was applied to the design and development of a vaccine
that is a hybrid containing structural proteins and a non-structural pro-
tein using reverse vaccinology tools for an effective complementary im-
mune response ([17]).

The potential for an artificial intelligence-empowered strategy for protein
structure prediction in free modeling form as well as drug repurposing and even
vaccine design and development using combinations of viral proteins has been
promising but will need to deliver what it is capable of accomplishing.

The future AI-Enabled strategy for epidemics

The quote from the venerable Dr. Anthony Fauci: “You don’t make the
timeline, the virus makes the timeline” should be challenged this coming
decade by mankind taking control of the human vs virus eternal struggle.
Let’s imagine our strategy against a future “COVID-29” in the near future
and how artificial intelligence can be a tour de force in the future man-
agement of pandemics:

A novel coronavirus outbreak is detected in southern France with
clinical manifestation of bleeding and seizures with an R0 of 7.5 and a
case fatality of greater than 50%. The AI-enabled MRI scans of the brain
revealed an unusual pattern of brain inflammation and convolutional
neural network and natural language processing using GPT-7 as well as
unsupervised learning (cluster analysis) are used to collect data on these
patients using their ICU data. Zero-shot learning with transfer learning
are deployed for ICUs around the world as an alert for these cases. In
pursuit of an effective anticipation and containment strategy of the novel
virus, mandatory daily testing at home (15 s for results) with wirelessly
automated data entry is immediately started for all of France and its
surrounding countries. Edge computing is used to complement the digital
technology for relevant data entry into the data repository.

A real-time epidemiological map is made publicly available with
proactive approach for case identification and tracing of these in-
dividuals using devices for temperature monitoring (including infrared
scans now required in all public areas and transportation hubs) and travel
history with internet of things and everything (IoT and IoE). Public
health measures are immediately implemented in the surrounding
countries in a precise format using deep reinforcement learning and
Monto Carlo tree search (MCTS): some areas are in containment with
individuals followed via their smart phones while other areas are in
surveillance mode so businesses and schools are not disrupted in most
surrounding regions. A multi-agent modeling process is available for
scientists to follow the virus. Drones with food and medical supplies are
dispatched to people who reside in the containment areas, and telehealth
visits with telemonitoring are available for anyone who is in need.

Simulations of disease models using emulators (deep emulator
network search, or DENSE) and AI are deployed to speed up simulations
many times over of this small outbreak. There is now a global health
system central data repository for sharing of data for federated learning
using agile clinical research methodology that obviates the absolute de-
pendency on randomized controlled trials during this critical time. Using
crowd-sourced AI (including high school and college AI student cham-
pionship teams as well as startups and NIH), and providing genomic
sequencing and protein folding with structure predictions, the novel
coronavirus and its complex quaternary biomolecular structure is suc-
cessful delineated within 2 h by this collective swarm intelligence. A list
of the top 10 anti-viral agents with highest benefit-risk ratios via in silico
trials is collected within 6 h for use in critically-ill ICU patients. There are
also repurposed drugs that are immediately approved by the FDA, which
had representatives as part of this process. The patients and their phar-
macogenomic profiles are delineated for therapy based on precision
medicine and AI. In addition, a new design vaccine is made available in



A.C. Chang Intelligence-Based Medicine 3-4 (2020) 100012
24 h as there was already ongoing work on a universal coronavirus
vaccine (following the success of the universal flu vaccine in 2025).

After 2 months of this small outbreak, a total of 47 patients were
infected with 2 deaths and AI with training on synthetic data generated
from generative models that is widely utilized in the management of
these patients from a global database. The workers in the hospitals had
access to AI-enabled 3D-printed equipment including masks and gowns
and intelligent robots attended the COVID-29 patients while they were
infectious on mechanical ventilation with weaning protocols utilizing
fuzzy logic. For some hospitals, a digital twin concept is in place to
forecast resource needs and determine allocation. A group review of
COVID-29 at the international Biomedical Research and Intelligence
Center (iBRAIN) and its Global Pandemic Prevention Task Force
(collaborative international center formed after COVID-19 that claimed
over 25 million lives, with WHO and CDC as well as representatives from
109 countries with a rotating directorship) include a discussion of the last
pandemic of the current era, COVID-19, as a case history; no mitigation
or suppression measures are necessary as surveillance and immediate
containment with good individualized precision therapy obviated the
need for such historic and draconian strategies.

Conclusion

Several important takeaways in reflecting about the role of artificial
intelligence in global health crises such as the COVID-19 pandemic:

1) This pandemic exposed the myriad of inadequacies of healthcare data
as well as the lack of sharing of this data;

2) The dire need for an agile clinical science approach with real-time
data science to providing caretakers the information they so badly
need to care for those afflicted with the infection;

3) The mismatch between data science approach to epidemiology and
the complex nature of pandemics with its high degree of human
behavior and biomedical uncertainty.

To eradicate a pandemic, we need a proactive case identification and
tracing strategy by serial mass screening coupled with sophisticated real-
time data science-driven modeling as well as an innovative AI-centric
therapeutic program. Digital technologies have been and will continue
to be an essential part of public health response to COVID-19 with focus
on population surveillance, case identification, contact tracing, and
containment measures ([18]); these sources of data will be valuable for
prediction models. This overall philosophy will separate the infected
individuals from the rest of the population while preserving both the
hospital capacity to care for the sickest and the economy to continue in
the midst of a pandemic. We need artificial intelligence to help guide us
to execute an intervention that is effective and to devise novel therapies
with a much shorter timeline. This AI-inspired strategy-outcome
coupling using deep reinforcement learning and fuzzy thinking as well as
human swarm intelligence will minimize mortality while concomitantly
preserving economy (akin to how ICU doctors titrate blood pressure and
cardiac output with varying doses of combinations of inotropic
medications).

Viruses are the near perfect complex adaptive system (CAS) as these
machine-like automata self-organize, pursue a common goal (finding a
live host to replicate), and do this without a central leader. Albert Camus
described a pandemic s as “a shrewd, unflagging adversary; a skilled
organizer, doing his work thoroughly and well.” Future pandemics
(including a second wave of COVID-19 later this year and early next year)
may very well be even more dangerous adversaries as these become even
4

more contagious and lethal. We can, however, surpass their capabilities
with passion, inspiration, and creativity but we humans also have greed,
selfishness, and independence.

Just as we work towards synergy between clinical medicine and
artificial intelligence, there also needs to be such a union between global
health and data science. COVID-19, the biggest pandemic since the 1918
Spanish flu, is the current generations’ world war. Going into battle with
viruses without a sound public health strategy is like going to battle
without armor, and going into war with viruses without artificial intel-
ligence is akin to going to war without weapons; in both cases, the human
toll is unacceptable. As Alan Turing so presciently stated: “One must
design machines to fight machines”. Our viral overlords are definitely
more like machines.
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