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Spiral waves are observed in wide variety of reaction- 
diffusion systems. Those observed in cardiac tissues are 
important since they are related to serious disease that 
threatens human lives, such as atrial or ventricular 
fibrillation.We consider theunpinning of spiralwaves
anchored to a circular obstacle on excitable media using 
high-frequency pacing. Here, we consider two types of 
the obstacle; i.e., that without any diffusive interaction 
with the environment, and that with diffusive interac-
tion.Wefoundthatthethresholdfrequencyforsuccess
in unpinning is lower for the obstacle with diffusive 
interaction than for the onewithout it.Wediscuss the
threshold frequency based on the angular velocity of a 
chemical wave anchoring the obstacle.
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Our hearts consist of a large number of cardiomyocyte 
cells, and they can pump blood to the whole body by a regu-

lar contraction with synchrony. The region of contraction 
propagates as a wave on the cardiac tissue; the cardiomyo-
cyte cells transmit the information to the neighbor cells as an 
electric signal [1,2]. Once a cardiomyocyte cell receives the 
electric signal from the neighbor cell, the auto-catalytic pro-
cess occurs and ion flow is induced through the cell mem-
brane. At the same time, the cell itself contracts. The ion 
flow induces the electric signal and propagates to the neigh-
bor cell at the opposite side. This process is modeled as a 
reaction-diffusion system by considering the array of cardio-
myocyte cells as continuum excitable medium. Here, the 
“excitable” means the property that the system is activated 
through an auto-catalytic process only when it receives a 
signal exceeding a threshold value. In this case, a cardio-
myocyte cell contracts and ion flow occurs only when it  
is suffered by an electric signal exceeding a threshold. 
Reaction- diffusion systems with excitable dynamics are 
important because they are good models representing not 
only wave propagation on cardiac tissues but also wave 
propagation in neuronal systems [2], on retina [3], on a sur-
face of fertilized egg [4], and so on. The systems that can be 
described as excitable reaction-diffusion systems are not 
limited within the biological systems. Chemical systems like 
Belousov-Zhabotinsky (BZ) reaction [5–7] and carbon mono-
oxide oxidation catalyzed by platinum surface [7,8] are also 
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Spiral waves in reaction-diffusion systems
In this section, we introduce the fundamental knowledges 

on theoretical approaches to the dynamics of spiral waves in 
reaction-diffusion systems, which have been widely used as 
a mathematical model describing time evolution of a system 
with spatial distribution. We consider a dynamics of a chem-
ical system that is described by the local concentrations of 
some chemical species. The time evolution of the system is 
described by two terms; a reaction and a diffusion terms as

∂ci

∂t  = fi(c1, c2, ..., cn) + Di∇2ci. (1)

The first term of the right-hand side represents the local 
change determined by the local concentration and the second 
one the diffusion process of the chemicals which leads the 
system to a uniform state. Here, we consider n chemical 
 species, where the concentration of i-th species is ci, whose 
local dynamics and diffusion coefficient are represented as fi 
and Di, respectively.

As for the local change in chemical concentration, we 
here adopt a so-called “activator-inhibitor” system with two 
varia bles. That is to say, we consider that the system is rep-
resented by two variables corresponding to the concentra-
tions of two relevant chemical species, which are called an 
acti vator and an inhibitor. Here, an activator tends to activate 
the system, i.e., it increases the concentration of the inhibi-
tor, and it also increases the concentration of activator itself 
through auto- catalytic reaction, while an inhibitor decreases 
the concentration of the activator. The time evolution of the 
concentrations of activator and inhibitor, A and I, is repre-
sented most simply as follows:

dA
dt  = f (A, I), (2)

dI
dt  = ɡ(A, I). (3)

The fixed point of the systems in Eqs. (2) and (3) is defined 
as a set of the values of A and I that satisfies dA/dt = dI/dt = 0. 
Assuming that the system has only one fixed point A = A0 
and I = I0, then the following condition typically holds for an 
activator-inhibitor system.

∂f
∂A  | A=A0, I=I0

 > 0,   
∂ɡ
∂A  | A=A0, I=I0

 > 0,

∂f
∂I  | A=A0, I=I0

 < 0,   
∂ɡ
∂I  | A=A0, I=I0

 < 0. (4)

It is known that activator-inhibitor systems often exhibit 
excitability. Here “excitability” is defined as follows; a sys-
tem with “excitability” has the following properties: (i) A 
system has one stable steady state. (ii) When an external 
stimulus is smaller than a certain threshold value, the system 
linearly relaxes to the stable steady state. (iii) When the 

examples of excitable reaction-diffusion systems.
When a human being suffers from disease like vascular 

infarction and some parts become inactive, the wave of the 
electrical signal cannot be transmitted regularly but the 
 spiral wave occurs, which causes irregular contraction. A 
heart with such irregular contraction cannot deliver a suffi-
cient amount of blood to the body. This situation is called  
a tachycardia, atrial fibrillation, and ventricular fibrillation, 
and may threaten our life. Therefore, it is important to 
remove spiral waves from the cardiac tissue for saving lives. 
In fact, an automated external defibrillator (AED) is used to 
eliminate spiral waves on a heart [1]. AED is effective for 
the recovery from serious pathology but the body suffers 
from the damages by the high electric voltage. Therefore it is 
important to develop the better cure for tachycardia, atrial 
fibrillation, and ventricular fibrillation. Since spiral wave 
formation is not specific for the cardiomyocyte cell system, 
but universal for the reaction-diffusion systems with excit-
able dynamics, and thus there have been many studies on the 
manner of elimination of spiral waves in reaction-diffusion 
systems [1,9–13]. These studies may contribute to develop 
such cure for the disease.

Spiral waves in reaction-diffusion systems are not only 
important from the viewpoint of medicine but also inter-
esting as one of scientific topics in mathematics, physics 
and biology, because the spiral wave formation is considered 
to be a spontaneous pattern formation in nonlinear non-
equlibrium systems. A number of analytical approaches to 
the formation of spiral waves have been performed, and sev-
eral important theoretical frameworks have been developed 
to analytically understand the dynamics of spiral waves [14–
18] together with experimental observation [19,20].

As for the elimination of the spiral wave, there have been 
also many studies. It has been clarified that spiral waves can 
be eliminated by applying high-frequency pacing. In such a 
case, chemical waves with shorter wave length are gener-
ated, and the spiral waves are pushed away by pair annihila-
tion with the generated chemical waves with shorter wave 
length. In many studies on the elimination of spiral waves, 
the behaviors on homogenous media are considered [1,21,22]. 
However, in recent studies, it is known that spatial hetero-
geneity is important; for example damaged regions by vas-
cular infarction play an important role in the behaviors of 
spiral waves.

In the present article, we first briefly introduce the mecha-
nism of spiral waves in excitable systems and their elimi-
nation by high-frequency pacing. Then, we introduce the 
outline of our recent results on the unpinning of spiral waves 
attached to a circular inactive region called “obstacles” 
[12,13]. We here consider the unpinning of spiral waves 
around two types of obstacles; i.e., that without any diffusive 
interaction with the environment, and that with diffusive 
interaction. We found that the threshold frequency for the 
success in unpinning is lower for the obstacle with diffusive 
interaction than for the one without it.
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phase is set such that the highest concentration state of acti-
vator corresponds to the phase of an integer multiple of 2π, 
for example. Then, spiral waves are considered to be curves 
connecting the points where the phase is an integer multiple 
of 2π. It is noteworthy that such periodic behavior is not seen 
at the center of the spiral wave, and thus the phase cannot be 
defined there; that is to say, the center of the spiral wave is a 
“phase singularity point”. When detecting the phase along 
the curve surrounding the singular point, the phase is shifted 
by ±2π per one rotation in a general case (see Fig. 1b). The 
phase singularity point is characterized by the phase shift. 
When the two phase singularity points around which the 
phase is shifted by 2π and –2π, respectively, i.e., with differ-
ent chirality, collide with each other, then they disappear, i.e., 
pair annihilation occurs. In contrast, the pair generation of 
spiral waves is also important; If a travelling wave is passing 
over an obstacle or a heterogeneous media, a pair of phase 
singularity points with opposite phase shift, i.e. 2π in almost 
all cases, are generated. Thus, the behavior of the phase 
singularity point is important and has been widely studied 
[25–27].

BZ reaction as an excitable system and myocardial 
cells

In this section, we introduce Belousov-Zhabotinsky (BZ) 
reaction as an example of an excitable reaction-diffusion 
system. BZ reaction [5–7] is an oscillatory chemical reaction 
that can be realized by mixing several chemical species. It is 
often observed as an oscillation in a redox potential of metal 
ions or metal complexes, which corresponds to the periodic 
change in solution color. For example, when ferroin, a com-
plex composed of ferrous iron and phenanthroline, is used  
as a metal complex, it shows periodic change between blue 
and red, which corresponds to oxidized and reduced states of 
the metal complex, respectively. This BZ reaction shows 
sustained oscillation or excitability depending on the initial 
concentration of chemicals. In the sustained oscillation, the 
period is in the order of seconds to several tens of seconds. 
In the excitable state, the solution is relaxed to be in a 
reduced state without any fluctuation or stimulation, and 
when it is given a stimulus such as contact with a silver 
wire and a voltage application with an electrode, it becomes 
excited, that is to say, the system quickly changes to the oxi-
dized state and then relaxes to the reduced state again. So far, 
its reaction mechanism has been clarified; the bromide ion 
(HBrO2) works as an activator, while the bromide ion (Br–) 
works as an inhibitor, and the dynamics is well reproduced 
with the mathematical model named Oregonator [28–30], 
though there may be still some discrepancies between actual 
experiments and simulation results.

BZ reaction medium poured into a petri dish or a filter 
paper immersed with BZ reaction medium is considered to be 
a pseudo two-dimensional reaction-diffusion system, that is to 
say, spontaneous pattern formation occurs; spiral patterns as 

external stimulus exceeds the threshold value, large response 
called “excitation” occurs and then relaxes to the stable 
steady state. Of course, an activator-inhibitor system does 
not always show excitability. It often shows sustained oscil-
lation instead of excitability. There are many actual systems 
that show excitability and sustained oscillation, depending 
on the system parameters. It should be noted that a system 
can have more-than-one fixed points, and it is known that 
bistability can be observed in such a system. Mathematical 
discussion on the dynamics of such systems is extensively 
studied in the field of “dynamical systems” [2,23,24].

In a reaction-diffusion system with an excitable activator- 
inhibitor-type dynamics as a reaction term, a travelling wave 
propagating in one direction can be seen. A travelling wave 
consists of a region with a high concentration of activator in 
front of the wave followed by a region with a high concen-
tration of the inhibitor as shown in Figure 1a. Unlike waves 
in linear systems such as light, sound, ripples at water sur-
face etc., these traveling waves exhibit pair annihilation and 
structural stability. Pair annihilation means that two waves 
disappear when two traveling waves collide with each other, 
and structural stability means that the shape and speed of the 
traveling wave are determined by the parameter of the sys-
tem. These properties show clear contrast to the waves in 
linear systems; two waves pass through without any inter-
action and waves with any amplitude can stand in linear 
 systems.

Propagation of a spiral wave can be seen in a two- 
dimensional system with activator-inhibitor-type dynamics. 
When such a spiral wave is propagating, periodic change in 
concentration of chemical species is observed in each point. 
Therefore, it is possible to define the phase so that one period 
corresponds to 2π as shown in Figure 1b. The origin of the 

Figure 1 (a) Schematic diagram of a chemical wave propagating in 
a one-dimensional excitable system with activator-inhibitor dynamics. 
The activator-rich region precedes the inhibitor-rich region. (b) Sche-
matic diagram of a spiral wave. Phase distribution (left) and front of a 
spiral wave (right) is shown. The center of the spiral wave corresponds 
to a phase singularity point.
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matically, the boundary of the obstacle obeys the Neumann 
boundary condition for concentration field. The second one 
is a “soft” obstacle, which has diffusive interaction across 
the boundary, and thus excitability is repressed. Mathemati-
cally, the local dynamics are different inside and outside the 
obstacle, and an increase in activator concentration is sup-
pressed within the obstacle.

We reported that a spiral wave anchored by these two 
kinds of obstacles can be unpinned by the chemical waves 
generated with the periodic stimuli at high frequency in the 
peripheral part, i.e., high frequency pacing. We confirmed 
that this method can work in actual experiments using a 
rat-derived cardiomyocyte culture system and BZ reaction 
system [12]. The chemical waves generated by high fre-
quency pacing had shorter wave length than the spiral wave 
anchored to the obstacle, and in such a case they unpinned 
the spiral wave from the obstacle. After unpinning, the phase 
singularity point of the spiral wave was shifted and disap-
peared by the collision with the outer boundary.

In the BZ reaction system, we realized these two kinds of 
obstacles, i.e. hard and soft obstacles, and demonstrated the 
unpinning of the spiral wave anchored to the obstacle as 
shown in Figure 2; A hard obstacle was realized in a filter 
paper immersed with BZ medium after dropping a fine oil 
droplet onto the filter paper, while a soft obstacle was real-

well as target patterns, i.e., chemical waves propagating with 
the shape of concentric rings, are seen. Using the reaction- 
diffusion equation with the above-mentioned Oregonator 
model, the patterns observed in the experiments are well 
reproduced, and therefore, the Oregonator model has been 
widely adopted for the reproduction of spatio- temporal 
 pattern formation in BZ reaction.

Next, myocardial cells are considered. As described above, 
a heart is a tissue composed of a large number of cardio myo-
cytes, which can be regarded as excitable activator- inhibitor 
systems, though activators and inhibitors do not correspond 
to specific substances. Actually, activator concentration cor-
responds to the membrane potential of cardiomyocytes, and 
inhibitor concentration is the recovery process of ion localiza-
tion by pumps on the cell membrane [2]. Therefore, a cardiac 
tissue can be regarded as a continuous excitable media in a 
macroscopic scale. A group of cells named a pacemaker is 
located at a sinoatrial node, and these cells exhibit oscillatory 
behavior, which initiates a wave propagating on an excitable 
media, which induces a regular contraction enabling blood 
circulation.

Unpinning of spiral waves anchored to obstacles
Here we would like to discuss how to eliminate spiral 

 patterns in an excitable system. Considering that the center 
of a spiral wave is a phase singularity point, what we have to 
do to eliminate a spiral wave is, (1) to apply strong external 
force that greatly changes the local behavior of the medium, 
(2) to collide with a phase singularity point with the opposite 
chirality, or (3) to shift the phase singularity point across the 
medium boundary. The mechanism of AED is also discussed 
based on the dynamics of phase singularity points on excit-
able media [2,31,32]. Actually, there have been a number of 
studies to eliminate spiral waves with more moderate stimula-
tion, which does not significantly change the local dynamics. 
Therefore, the most important thing is to shift the position of 
phase singularity points for a homogeneous excitable field. 
However, if there is an obstacle, i.e., a region with no excit-
ability, a spiral is easily anchored to the obstacle. In detail, a 
travelling wave can generate a pair of phase singularity points 
that become spiral cores. If one of the cores are trapped and 
the other is shifted in space, and then a spiral wave is 
anchored to the obstacle. It is also known that the location of 
the core of a spiral wave is affected by the obstacle, and the 
core position can shift to the obstacle [33,34]. Once anchored, 
it is difficult to be unpinned from the obstacle. Therefore,  
we investigated the manner how an anchored spiral wave 
can be unpinned from the obstacle. After unpinning from the 
obstacle, the previous knowledge can be adopted on the pair 
elimination of spiral waves or the shift out of the boundary 
of the field.

There are two types of obstacles existing in excitable 
fields. The first one is an obstacle without inflow or outflow 
at the boundary, which we call a “hard” obstacle. Mathe-

Figure 2 Experimental observation of high-frequency unpinning 
in the excitable BZ reaction. (a) and (b) Pinned spirals on hard and soft 
obstacles, respectively. (c) An example of the unpinning process of a 
spiral anchored on a soft obstacle. The wave train approaching from the 
bottom led to unpinning at t~400 s. The unpinned spiral wave was 
forced to drift upward together with subsequent traveling waves. The 
waves of the train were suppressed by strong light illumination of 
60 klx at t~470 s to verify detachment of the spiral, i.e., accomplish-
ment of the unpinning. Reproduced with permission from Figure 6 in 
 reference [13].
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In the next section, we will introduce fundamental but 
important results on the behavior of the chemical wave 
anchored to a soft and hard obstacles, especially noticing 
dispersion relation.

Numerical results on the chemical wave anchored 
to obstacle

We performed numerical calculation on the chemical wave 
propagation to obtain fundamental knowledge related to the 
mechanism of unpinning. We adopted the Oregonator for the 
photosensitive BZ reaction [28–30,37]:

∂u
∂t  = 

1 [u(1 – u) – ( fυ + ϕ(r))
u – q ]ε u + q  + D∇2u, (5)

∂υ
∂t  = u – υ, (6)

where u and υ are variables which correspond to the concen-
trations of the activator and inhibitor, respectively. In the 
actual BZ reaction, u corresponds to the concentration of 
HBrO2, and υ corresponds to that of the oxidized catalyst 
Ru(bpy)3

3+. ε, f, and q are the parameters which determine 
the characteristics of the BZ reaction. In detail, ε determines 
the inverse of excitation time scale, i.e., the rate of rapid 
increase in u, and q corresponds to the order of minimum 
value of u in the time course. By changing f, the system can 
shift between an oscillatory state and an excitable state.  
ϕ corresponds to the light intensity, and D is the diffusion 
constant of the activator. The parameters were set as follows: 
ε = 0.1, f = 2, q = 2×10–3, and D = 1. Here it should be noted 
that the Oregonator model uses the dimensionless values 
and, for example, D = 1 means the scales of space and time 
are rescaled such that D becomes 1. Under the above condi-
tions, we confirmed that a spiral wave exhibited rigid rota-
tion with a radius and period of Rfree = 1.6, and Tfree = 7.44. 
The calculations were performed in cylindrical coordinates 
using the explicit method, and the discretized time step and 
mesh sizes were Δt = 2×10–5, Δr = 0.1, and Δθ = π/200. The 
Neumann boundary condition was adopted for the boundary 
corresponding to the periphery, whose radius was set to be 
15, though the outer boundary did not play an important  
role in the unpinning of a spiral wave. As for a hard obstacle, 

ized by using photosensitive BZ reaction with a small circu-
lar region with high light intensity of the light illumination 
with a liquid-crystal projector controlled by personal com-
puter [13]. In order to theoretically approach the mechanism 
on the unpinning of spiral waves anchored to an obstacle,  
we discussed using Oregonator model corresponding to BZ 
reaction mentioned above. As the result of numerical calcu-
lation, there is a threshold for the frequency of high fre-
quency pacing above which a spiral wave can be unpinned 
from the obstacle. We found that such a threshold frequency 
is lower for a soft obstacle than that for a hard one. It was 
also found that the threshold is higher for the obstacle with 
larger size.

Discussion
First, we consider the unpinning of a spiral wave anchored 

to a hard obstacle. To discuss analytically, the shape of a 
chemical wave is characterized by a curve that connects the 
points at which the activator concentration suddenly 
increases in time. This curve is often called a front of the 
chemical wave. So far, Tyson discussed the shape of the 
front of a spiral wave in a uniform excitable field using the 
Eikonal approximation in which the local propagation veloc-
ity of the front depends only on its curvature [13–15]. It is 
known that the front of a chemical wave orthogonally inter-
sects with a boundary of the hard obstacle considering that 
there is no diffusive interaction at the boundary of the obsta-
cle, which corresponds to the Neumann boundary condition 
for the time evolution of chemical concentration. Based on 
this boundary condition, we discussed the front shape of a 
spiral wave anchored to a hard obstacle. One of important 
characteristics of propagation of chemical waves is that the 
velocity of the following front is affected by the distance 
from the preceding front. The shorter the distance is, the 
slower it is. In addition, when the distance is less than a cer-
tain threshold distance, the following wave cannot propagate 
[35,36]. Such a relationship between the wave length of  
the chemical waves and the propagation speed is called the 
dispersion relation. Based on such dispersion relation, the 
condition for unpinning of a spiral wave anchored to a hard 
obstacle can be discussed; whether the velocity of the chem-
ical wave induced by high frequency pacing but modified  
by the curvature effect is greater or smaller than a certain 
threshold velocity is important to determine the success or 
failure of unpinning.

On the while, at the soft obstacle boundary, the front of a 
chemical wave is not orthogonal to the boundary of the 
obstacle. In order to apply the discussion for a hard obstacle, 
we considered a virtual obstacle such that the front of a  spiral 
wave was orthogonal to the boundary of the virtual obstacle. 
It was found that the spiral wave was unpinned from the 
obstacle when the front speed in the vicinity of this virtual 
obstacle became almost the same value as in the case of a 
hard obstacle as shown in Figure 3.

Figure 3 Schematic diagram for a hard obstacle (a) and a soft 
obstacle (b). The black region indicates a region with high activator 
 concentration. Reproduced with permission from Figure 4 in reference 
[13].
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a hard obstacle and the dynamics of a spiral wave is per-
fectly changed.

The difference between a chemical wave anchored to a 
hard obstacle and that to a soft one measured in numerical 
calculation is important for whether unpinning by high fre-
quency pacing succeeds or not. In the previous work, we have 
shown that the chemical wave anchored to a hard obstacle 

the Neumann boundary condition was also adopted at the 
boundary of the obstacle at |r| = R and ϕ(r) = ϕmed for all 
region, while for a soft obstacle, we set ϕ(r) as

ϕ(r) ={ ϕobs, |r| ≤ R,
ϕmed, |r| > R,

 (7)

where R is the radius of a circular obstacle. We set ϕmed = 0.01 
and ϕobs = 0.02 or 0.2.

We initialized a wave propagating counterclockwise, and 
measured the angular velocity for a hard obstacle, and soft 
obstacles with ϕobs = 0.02 and 0.2. The snapshots are shown 
in Figure 4. In both cases, a chemical wave was rotating 
anchored to the obstacle. The angular velocity was the high-
est for a wave anchored to the hard obstacle. As for the wave 
anchored to the soft obstacle, the angular velocity was higher 
for smaller ϕobs. In Figure 5, we show the radius-dependence 
of the angular velocity of the chemical wave anchored to 
each obstacle. For each R, the angular velocity was the high-
est for a hard obstacle, and it was higher for the lower ϕobs in 
the same way as shown in Figure 4. There existed a thresh-
old radius below which a chemical wave was not anchored 
to the obstacle. The threshold radius for a chemical wave 
anchored to a soft obstacle and the corresponding angular 
velocity were almost the same as the rotating radius and 
angular velocity of a free spiral. On the other hand, the thresh-
old radius was larger and corresponding angular velocity 
was higher for a chemical wave anchored to a hard obstacle. 
This seems to be because the chemicals can diffuse across  
a soft obstacle though the dynamics inside the soft obstacle 
affects to some extent, while the chemicals cannot go through 

Figure 5 Dependence of angular velocity ω of a chemical wave 
anchored to an obstacle with a radius of R. Red open circle, blue circle 
filled with cyan, and green filled circle correspond to the chemical 
waves anchored to a hard obstacle, soft obstacle with ϕobs = 0.02, and 
that with ϕobs = 0.2, respectively. For the radius R smaller than 1.6 (for 
a soft obstacle) and 1.9 (for a hard obstacle), the chemical wave was not 
anchored to the obstacle. The radius of the core and angular velocity for 
a free spiral (Rfree = 1.6, and ωfree = 2π/Tfree = 0.845) are shown with a 
open black square.

Figure 4 Snapshots obtained by numerical calculation based on Eqs. (5) and (6). We considered a circular obstacle with a radius of R = 3. The 
waves anchored to (a) a hard obstacle, (b-1) a soft obstacle with ϕobs = 0.02, and (b-2) a soft obstacle with ϕobs = 0.2 are shown. The angular velocity 
was highest for a hard obstacle. For a soft obstacle, the angular velocity was higher for smaller ϕobs.
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