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Abstract

Background

The Phase coordination index (PCI), a temporal gait measure that quantifies consistency

and accuracy in generating the anti-phased left-right stepping pattern, assesses bilateral

coordination of gait in various cohorts (e.g., Parkinson’s disease, post stroke). As PCI is

based on mean values calculated across a series of gait cycles, individuals are required to

perform lengthy walking trials, prolonging gait assessments which cause discomfort to

some of them. This study introduces an algorithm to identify the required number of strides

to obtain a reliable, characteristic PCI value.

Methods

Simulated data sets, as well as physiological data (obtained from healthy elderly and young

persons, from over ground and treadmill trials) were used in this research. A series of N-1

PCI values was calculated for i = 2,3,4. . .N gait cycles for each participant. There is a value

i = k, representing certain number of cycles, for which no significant change in PCI occurs as

additional cycles are added, termed point of stabilization (POS). The algorithm presented

here uses a 2-stage iterative process to determine POS. Stage 1 searches for the gross

location of the interval of PCI values containing the POS. In stage 2, the algorithm performs

a high-resolution recursive, iterative process within this interval to find the exact point. The

criterion for defining stability within a window of PCI values is a coefficient of variation (CV)

of� 5%.

Results

Our recursive, iterative algorithm indicates that ~23 strides on average should be captured

to attain a characteristic PCI.
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Conclusions

Gait trials with at least 23 strides on average should suffice to obtain a reliable estimation of

PCI in healthy young adults. While this methodology may be considered generic, future

studies should obtain POS values based on additional cohorts (e.g., disabled participants,

fixed walking speeds).

Introduction

The problem—How many gait cycles are needed to characterize temporal

gait parameters?

In recent years, there has been increasing interest in gait analysis of temporal gait parameters

and their long term dynamics. Therefore, in some experiments, gait measurements are

obtained during relatively long walking periods, with the use of treadmills (TMs) [1] and also

with wearable gait technologies during over ground walking [1–6]. Thus, data from a large

number of gait cycles can be collected, avoiding the limitations imposed by the confined space

of classic gait analysis laboratories [7].

In order to assess gait variability, the coefficient of variation (CV) of the stride-to-stride-

time [5, 8] is calculated. To assess bilateral coordination of gait, the phase coordination

index (PCI), can be calculated [9]. The PCI quantifies the degree of the consistency and the

accuracy in generating anti phased left-right stepping [10–13]. This article focuses on the PCI

measurement.

For calculating PCI, vectors of left right stepping phase values, φ, are calculated from the

timing of consecutive heel strikes. Mean values are calculated, which requires a sufficient num-

ber of gait cycles. Thus, on one hand experimental gait trials should be long enough to obtain a

‘sufficient’ number of gait cycles, but, on the other hand, lengthy trials can cause fatigue in the

elderly and in participants with maladies, and consequently may affect the sampling [14].

The objective of this theoretical assay is to estimate the required number of gait cycles

which is sufficient to reliably assess the value of the PCI in a gait trial. In other words, to iden-

tify from which gait cycle and on, additional data will not yield a significant change in the

value of PCI.

Stabilization period detection methods

Detection of a stabilization period (steady-state) in any series of data (or signal) is important

for performance assessment [15, 16]. Steady state refers to the state where the mean of a

series is practically unchanging, thus represents the true nature of a system. At present, many

offline detection methods exist [17–19]. Examples for such methods include cumulative sum

(CUSUM) plots [20], exponentially weighted moving average control charts [21], statistical

process control method[19] and the marginal standard error rules (MSER and MSER-5) [22,

23]. Other methods include the goodness-of-fit test [24], wavelet-based spectral method [25,

26], batch-means-based tests [27], t-tests, F-tests [28], the sequential method [24], the scale

invariant truncation point method [29] and filter method [30]. These offline steady-state

detection methods have some downsides that should be acknowledged: (a) relatively lengthy

calculations (e.g., [22, 31]); (b) statistical tests are sensitive to the distribution of the test statis-

tics, making it challenging to modify the algorithm once implemented in a software applica-

tion; and (c) may be complex (e.g., wavelet transform method,[26]).

Number of strides for estimation of the phase coordination index
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Additionally, a few online detection methods exist and include, for example (a) slope detec-

tion method (SDM) where linear regression is performed over a moving window and the fitted

slope is tested [32–34]; (b) t-test on two means of two adjacent windows with pooled standard-

deviation [35]; (c) variances ratio test [36]; (d) algorithm using Bayesian inference techniques

[31]. The online methods have certain limitations as well, e.g., one common disadvantage is

that a data window must be used. A moving window that is too wide may spuriously delay the

detection of steady state, while too narrow a window may increase the false detection rate.

This paper proposes a steady-state detection algorithm based on size-adapting moving win-

dows and calculating the coefficient of variation (CV = standard deviation/mean). This algo-

rithm was tested for usability and feasibility on simulated gait data and was shown applicable

on real data.

Methods

PCI definition

The PCI metric is based on a series of left- right stepping phases (φi, ideally = 180˚; [9]), briefly,

the stride duration, i.e, the time difference between consecutive heel strikes of one foot is

defined as a gait cycle (represented as 360˚). The relative timing of contra-lateral heel strikes

determines the phase, φ (Eq 1). i.e., φ is obtained by normalizing the step time with respect to

the stride time. Ideally, φ = 180˚ for every step (Fig 1).

φi
�½ � ¼ 360�

tAi � tBi

tBðiþ1Þ � tBi
¼ 360�

steptimeA
stridetimeB

ð1Þ

where tAi and tBi denote the time of the ith heel strike of one leg and the other leg, respectively.

It is noted that tB(i + 1) > tAi > tBi. The legs can be arbitrarily chosen, i.e. right as leg A and left

as leg B or vice versa. Based on this, φ can be calculated as right step time relative to the left

stride time (RreL) and/or left step time relative to the right stride time (LreR).

A vector series of φi is obtained for each gait trial. The PCI, expressed in percentile units, is

the sum of the coefficient of variation of φ and the mean absolute difference between φ and

180˚, normalized to 180˚ (Eq 2) [9].

PCI %½ � ¼ φ CV þ Pφ ABS ¼ 100 �
stdevðφÞ
meanðφÞ

þ 100 �
meanðjφ � 180�jÞ

180�
ð2Þ

Data sets

The algorithm presented was developed based on training data which was simulated as

described below. The results shown later demonstrate the performance of the algorithm on

both real participants (young and elderly healthy, total n = 59) and on another set of simulated

data (n = 20). These latter five data sets are considered as the test data sets.

All processing development and analysis of data was done via Matlab software 2015b

(MathWorks, Inc.).

Simulation sets. The simulation generated a series of left-right stepping phase values (φi)

with 50 samples per ‘simulated participant’. From these a series of PCI values was obtained,

where PCIk is calculated based on a series of k φ values (k6¼1; φ1, φ2. . . φk. . . φi). The data

meets these two constraints: (a) each φ vector has a mean within the normative range, and (b)

each ‘simulated participant’ produced final PCI values (i.e., based on all 50 φ values) compati-

ble with those seen in young healthy adults [9]. To simulate the complementary stepping

phases (i.e., for both cases RreL and LreR, see PCI definition above), stride times for one leg

Number of strides for estimation of the phase coordination index
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with mean stride time of 1.07±0.02 seconds [1, 37–40] were computed. Step times of the other

leg were derived from Eq 1 and initializing the first HS at time 0 to obtain all HS event times.

Two φ vectors were obtained. From each φ vector a series of N-1 PCI values were calculated

(introduction Eq 2) for i = 2,3,4. . .N gait cycles per ’virtual participant’. A few examples of the

simulated data, i.e., φ vector and PCI values, are shown (Fig 2). It can be seen that in these

examples the value of PCI fluctuates when only few strides are taken, and stabilizes when suffi-

cient number of strides are taken. Simulated values of φ and PCI are available in the support-

ing files (S1 and S2 Files).

Physiological data. The experimental protocol was approved by the Human Studies

Committee of the Sheba Medical Center and all participants provided informed written con-

sent prior to entering the trials. For the present analyses we used four sets of physiological

data:

1. Historical data [41] of 16 healthy young participants (self-paced treadmill -SPTM trials- see

below; Age: 32.9 ± 5.5 y; 8 women).

2. Data from over ground (OG) walking—healthy young participants (n = 15; Age: 27.4± 3.2

y, 6 women).

3. Data from healthy elderly participants (SPTM trials; n = 15; Age: 68.7± 6.1 y, 5 women).

4. Data from OG walking—healthy elderly participants (n = 13; Age: 70.2± 5.5 y, 7 women).

Fig 1. Left- right stepping phase definition, i.e., φ, with respect to the full gait cycle (360˚). The time difference

between consecutive heel strikes of the two feet (red and grey feet) normalized to gait cycle duration (red to red heel

strike), is defined as the phase.

https://doi.org/10.1371/journal.pone.0192049.g001

Fig 2. Examples of simulated data for 3 ‘virtual participants’. Generated φ values are marked by red circles (right ordinate) which

are scattered, as expected in normal walking, around a red dashed 180˚ reference line. Calculated PCI values as a function of the

number of strides is indicated by the blue circles connected by thin blue line (left ordinate). In the top right corner of each panel the

calculated value of PCI for the complete set of the generated φ values (n = 50) is shown. It is noted that the data series are displayed

as RreL (i.e: φ was calculated as Right leg step versus Left leg stride), the LreR values were also calculated.

https://doi.org/10.1371/journal.pone.0192049.g002
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Participants were included if they: (1) were between 20–40 years old (young) or� 64 years

old (elderly); (2) self-declared ability to participate in gait trials for about an hour. The exclu-

sion criteria were: (i) any orthopedic, rheumatic, neurological or cardiovascular diseases, or

morbidity in the past or present that affects joint range of motion, muscle strength, gait or bal-

ance; and (ii) inability to understand written or oral instructions.

Apparatus and data collection and handling

SPTM protocol. A TM (R-Mill, ForceLink, The Netherlands) that is part of a virtual real-

ity facility (V-Gait, Motek Medical, the Netherlands) was used. The TM speed was regulated in

a self-paced mode by a built-in controller algorithm that is described elsewhere [41–43]. Thus,

each participant walked at his/her own natural speed. Three-dimensional kinematic data of

body fixed markers were recorded at 120 Hz with a VICON capture system (Oxford, UK); for

the present analysis only heel marker data were used. Data from an interval characterized by

steady state speed were analyzed in this study (see Fig 3).

OG protocol. Wireless Opal inertial sensors (APDM, Inc., Portland, OR, USA) were

placed on the participant (at the lumbar spine and lower limbs). The Opal sensor includes tri-

axial accelerometers, gyroscopes and magnetometers and records signal data at 128 Hz. Each

participant performed four consecutive 10 meter walking test (10MWT). The participants

were asked to walk continuously back and forth, at a comfortable speed in a 24 m long corri-

dor. Data from an interval characterized by steady walking without acceleration/deceleration/

turns were analyzed in this study.

Heel strike detection. SP-TM protocol—A MATLAB GUI was built in order to assess

gait cycle parameters, including heel strike (HS) (see section A in S1 Appendix for more infor-

mation). HS events for this study were defined when the heel marker’s vertical position was at

minimum.

OG protocol—HS event times were obtained from the sensors placed on lower limbs.

These event times were processed and analyzed via Mobility Lab software (APDM, Inc., Port-

land, OR, USA).

From these HS event times, the φ values were computed, and PCI data series were obtained

for all participants. Data from these participants are included in the supporting information

files (S3 File).

Algorithm development

The equations for the phase φ and PCI were presented above (Methods Eqs 1 and 2). Since

both the elements comprising the PCI metric (i.e.: φ_CV; Pφ_ABS) are based on means from

Fig 3. SPTM data collecting. (a) Treadmill belt speed graph of one participant walking in a self-paced comfortable

walking speed. The shaded area, is the interval analyzed. (b) PCI data series of n = 16 young healthy participants.

https://doi.org/10.1371/journal.pone.0192049.g003
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accumulative data from {1, 2, . . ., n,. . .N-1} strides, it is expected that as n grows PCI stabilizes,

provided walking conditions are not changed. However, until reaching this stabilization, dif-

ferent patterns of fluctuations may appear in the PCI values. Therefore, a definition of a point

of stabilization (POS) suitable for all types of fluctuation patterns is needed.

Herein an algorithm is proposed to define the POS, i.e., the required number of strides

needed to provide a reliable PCI value estimation which represents reaching steady state (i.e.,

from this point, all calculated PCI values should be similar).

Input: A vector of N-1 consecutive PCI values. The nth value in
this vector is PCI calculated based on n-1 gait cycles.
Output: POS.
Rationale for the proposed algorithm:

A CV-based algorithm was developed. The algorithm utilizes a moving window that ana-

lyzes the data over a predefined interval of K consecutive values and computes the CV of the

PCI values within the window. A criterion of CV� 0.05 was set to establish that PCI is stable

over a given block (see section B in S1 Appendix for validation of initial block size). Note that

the CV threshold assesses the fluctuation of the PCI signal, independent of whether the PCI

has high values (i.e., less coordination) or low values (i.e., more coordination, e.g., in young

healthy).

The algorithm operates in two stages: (i) systematic search for the Region of Interest (RoI),

and (ii) Localization of the POS.

Stage 1- Systematic ‘backward’ search for RoI (Fig 4a–4c). The purpose of this iteration

process stage is to find (from ‘right’ to ‘left’, index moving leftward defined as S) the first win-

dow of PCI values that are "unstable”, i.e., the RoI. Instability is defined if either one of the fol-

lowing happens: (1) The K = 15 consecutive values starting from S to the ‘right’ have CV>0.05

(Fig 4a, 4b1 and 4c1); (2) The 15 values evenly dispersed from S to the last stride (‘rightmost’)

have CV>0.05 (Fig 4a, 4b2 and 4c2). Once S is found, the respective 15 elements (block of

K = 15) from option 1 and 2 (please note that in option 2 the 15 dispersed values are now

“compressed” to generate the block, see passage from c2 to d) are passed on to stage 2 and are

defined as the RoI (where stability isn’t met).

For example, suppose the PCI data series consists of 50 values. The instability check for

the S = 21st stride will involve CV computations for (1) strides 21,21,23,. . .,35 and (2)

21,23,25,. . .,50. If both CV are below 0.05, the algorithm moves on to check the 20th stride.

Otherwise, the 15 corresponding values of PCI are passed on to stage 2. The POS is determined

in stage 2 for both options from stage 1, and the maximum between the two is set as the POS.

Stage 2- Localization of the POS within the RoI (Fig 4d–4m). Once the RoI is identified,

an iterative process begins to find the POS. This stage acts as a higher resolution "fine-tuning"

step that tests stability of smaller windows within the RoI, while looking for the transition

point between instability and stability. The algorithm keeps decreasing window size, and iter-

ates on either left or right sub-windows until reaching a stopping condition of block size k = 2,

and returns the element to the right as the POS, which is the onset of stabilization. In other

words, the algorithm increases its resolution in order to ’zoom’ into this unstable block, and

searches again for the unstable sub-block within.

See an illustrative example (Fig 4); the figure legend that shows all the stages. A flowchart

also available in the supporting files (S1 Fig).

Estimation of the algorithm performances. The POS was obtained for each participant.

The estimated required number of strides to reach POS was obtained by the group mean and

defined as mean POS. Estimated required number of strides to reach POS for RreL, LreR and

average PCI (i.e., 3 groups) was compared by paired t-tests for the simulation test set. Algo-

rithm performance was assessed by evaluating the true error (TE) and absolute error (AE)

Number of strides for estimation of the phase coordination index
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Fig 4. POS determining algorithm illustration. Stage 1: Gross location of the Region of Instability (RoI) (a-c). (a). the rightmost

block of K = 15 is checked for stability starting from s to the ‘right’. Two options (op 1 and op 2), both applied in the algorithm,

are performed if stable (CV�0.05)! (b1). Addressing the next block of K elements, by moving this window to the left / (b2).

Moving s to the left, testing K = 15 evenly dispersed elements! (c1). Repeated, constantly moving the window, until the first

unstable block of 15 elements is found, and defined as the Region of interest (RoI) / (c2). Repeat moving s to the left, and testing

K = 15 elements dispersed, until stability not met, define these elements as the RoI. RoI is shaded in red. Stage 2 is the "fine-

tuning" step (Fig 4d-m). An iterative process begins to find the POS. Each iteration results in choosing the right or left sub-block

of size K-1. (d) first, the algorithm tries to omit the leftmost point in the RoI and checks stability. (f) if the criterion of stability is

Number of strides for estimation of the phase coordination index
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between the PCI value calculated based on the mean POS estimated strides, versus the overall

PCI value calculated from all strides. These are calculated via Eqs 3 and 4 respectively.

TE ¼
PCIðmeanPOSÞ � PCIðend valueÞ

PCIðend valueÞ
ð3Þ

AE ¼ jTEj ð4Þ

The distributions of TEs were plotted in a histogram and tested with the Shapiro–Wilk nor-

mality test. The distributions were assumed to be approximately normal (W = 1 for the normal

distribution). If the test rejected normality (p< 0.05), normal quantile–quantile plots would

need to be examined to determine the nature of the deviation from normality [44].

Statistical analysis of physiological results

For each data set, mean and SD of the POS detected by the algorithm was computed. One-way

ANOVA test was used to determine differences between the means. If the null hypothesis was

rejected (significance level of 5%), post hoc tests were run to compare two groups.

Results

Simulated set results

Applying the algorithm on the PCI data series, we found that the mean number of strides

needed to reach POS across all 20 simulated data sets, for PCI RreL, PCI LreR and average

PCI, was 22.4 ± 9.4, 20.2 ± 8.4 and 19.4 ± 8.4, respectively (p>0.2; for all possible within-

groups comparisons, paired t-test). POS data for each ‘simulated participant’ is available in the

supporting files (S4 File). This algorithm was also compared to two other methods. See section

C in S1 Appendix.

Based on these results we set 23 strides as mean POS = 23, the required number of strides to

obtain a reliable estimate of the PCI for a stabilization criterion of 0.05. The true error (TE)

between the 23rd value and the end value was calculated for each ‘simulated participant’. The

distributions of the TE of the comparison of PCI values are presented in a histogram (Fig 5),

and it closely approximates that of a normal distribution (W> 0.94, p-value> 0.05). The aver-

age AE for the characteristic PCI from all ‘simulated participants’ is 7.05 ± 6.07%.

Physiological results

Fig 6 depicts application of the algorithm to real data (Fig 6a), and provides comparison of

detected POS values from 16 real data sets (Group A) to simulated data sets (n = 20; Fig 6b).

Table 1 summarizes the results of the algorithm performance per each group (A-D), i.e., the

mean POS values for RreL data sets. PCI values and walking speed are also provided. There

were no statistically significant differences between group means as determined by the one-

way ANOVA (F(3,55) = 0.92, p = 0.44). The cross group mean value of POS was 22.6 strides

(SD = 8.6). Similar results were obtained in a post-hoc analysis adding the simulated data (see

above) as a fifth ‘group’ (F(4,74) = 0.65, p = 0.63).

met, the left sub-block of the same size is chosen for further testing. (e) if the criterion of stability is not met the right sub-block is

chosen. (g-l) Process continues with size of K-2. The algorithm stops when K = 2, and returns the index to the right element of

the unstable window as the POS. (m) illustrates the whole process and shows the unstable blocks and the resulted POS (shown

via a green square).

https://doi.org/10.1371/journal.pone.0192049.g004
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Fig 5. True error histogram. Histogram with bin size of 10% summarizing the true error percentage % between the

POS value of the PCI vs. the last PCI value in the series (n = 20). Shown for average PCI.

https://doi.org/10.1371/journal.pone.0192049.g005

Fig 6. Comparison physiological set vs. simulated set. (a) Detection examples for three young healthy real participants. A green square marks the

detected POS; a red line and shaded area represent the mean and 95% confidence interval for the mean number of stride to reach POS obtained from

‘simulations’. (b) Comparison between POS values obtained from simulated vs. physiological data (group A).

https://doi.org/10.1371/journal.pone.0192049.g006
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The correlation analyses showed no significant correlation between gait speed values and

POS values (Group A: spearman’s ρ = 0.12, p = 0.66; Group B: spearman’s ρ = 0.21, p = 0.46;

Group C: spearman’s ρ = -0.11, p = 0.68; Group D: spearman’s ρ = -0.15, p = 0.63), suggesting

that algorithm performance is unrelated to gait speed.

With respect to real gait data, algorithm performance is illustrated in Fig 7, where the AE

drops drastically before the POS detection and decreases moderately after that. Fig 8 and

Table 1 summarizes results per group. TE and AE between the mean POS PCI value and the

final value was calculated for each participant. The distribution of the TEs are close to that of a

normal distribution (W> 0.9, p-value > 0.05). These results are also shown in Table 1. POS

detection per participant can be found in the supporting information files (S4 File)

Table 1. Summary of mean POS per each data set of real participants, walking at a comfortable speed.

(Group A)

Young SPTM (n = 16)

(Group B)

Young OG (n = 15)

(Group C)

Old SPTM (n = 15)

(Group D)

Old OG (n = 13)

PCI (%) 3.3 ± 0.83 3.4 ± 1.1 4.4 ± 1.4 5.03 ± 2.07

POS (#strides) 22.3 ± 5.6 24.9 ± 12 22.4 ± 5.5 19.6 ± 9

AE (%) 6.3 ± 4.4 11.1 ± 8.2 6.2 ± 5.4 8.9 ± 5

TE (%) -2.7 ± 7.3 -0.5 ± 14.1 0.5 ± 8.4 4.2 ± 9.5

Gait speed (m/sec) 1.4 ± 0.2 1.3 ± 0.16 0.99 ± 0.34 1.2 ± 0.15

SPTM, self-paced treadmill walking; OG, over ground walking; AE, Average error; TE, true error. Numbers shown are mean±SD.

https://doi.org/10.1371/journal.pone.0192049.t001

Fig 7. Algorithm performance on real data sets. (a) The average of the last 3 PCI values was considered the ‘final PCI’. PCI data of all participants

were aligned to POS. The absolute error from the ith stride after POS was calculated for POS+i, where i = {-20,. . .,20} and averaged per group. Note

that each of the four lines shows the average of one tested group of participants. As expected, the error significantly decreases before POS and only

slightly decreases after POS. It is noted that the PCI vector was padded with the first and last PCI values at either end to obtain a larger vector in

cases where there are less than 20 values before/after POS per participant in each group. (b) Distribution of the True Errors calculated from the

detected POS relative to the ‘final PCI’.

https://doi.org/10.1371/journal.pone.0192049.g007
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Discussion

A newly developed algorithm, that estimates the required number of gait cycles for assessing

PCI values, was applied on heel strike timing data. Our findings in multiple datasets support

the conclusion that about 23 gait cycles, on average, are sufficient to reliably define a partici-

pant’s characteristic PCI value. The algorithm is based on the use of a steady-state detection

algorithm based on size-adapting moving windows, and a stability criterion based on the CV

of the values within the window.

Point of stabilization of gait parameters—Earlier estimations from the

literature

Lord et al. [45] reported uncertainty about the number of steps required for optimal assess-

ments of gait variability, but suggested collecting at a minimal number of 12 steps, based on

intraclass correlation coefficients (ICCs) for Test-Retest Reliability.

Hollman et al. used a pressure sensitive sensor carpet (i.e., GAITRite) for recording inter-

mittent walking trials. They measured velocity, cadence and variability in stride velocity. The

number of strides required to achieve reliability was estimated by the Spearman-Brown proph-

ecy formula. They concluded that about 370 strides are recommended for gait variability esti-

mation [2]. Galna et al concluded that gait variability was more reliable during continuous

walks (rather than intermittent protocol), and stated that 50 steps was the optimal number of

steps needed for reliable estimation [46], a figure which is comparable to the results of the pres-

ent work (i.e., ~23–25 strides = ~46–50 steps).

As the aforementioned estimations were obtained from repeated trials and theoretical for-

mulas (e.g., ICC & Spearman-Brown prophecy [2]), an automated detection algorithm for real

data like the one proposed here is preferable as it ’interacts’ with the actual collected data mak-

ing only one a priori assumption (i.e., more gait cycles lead to a more stable value).

Advantages of the method presented in this article

Compared to other existing steady state detection methods (see Introduction), the CV-based

algorithm presented here has the advantage of an adaptive size, whereas other methods using a

Fig 8. Plots illustrating the absolute error per stride (independent of the algorithm) averaged per participant

within each group.

https://doi.org/10.1371/journal.pone.0192049.g008
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window can detect an area and not a single point. Other disadvantages of existing methods

may include: complexity, large calculations, model-fitting, offline application only, need to

adjust parameters arbitrarily, etc.

The following are advantageous elements that can also be noted: (a) the algorithm is based

on a well-known and easy-to-understand statistic measurement (i.e., CV); (b) it is insensitive

to the absolute values (e.g., of the PCI), and considers only how they relate to each other; this

enables setting one threshold criteria (in the present study, CV = 5%) for various data sets; (c)

The algorithm can be easily adjusted to be more or less rigorous, via a single parameter (i.e.,

threshold for the CV criterion); (d) it also mimics human action—low-resolution examination

followed by a high-resolution fine tuning step; (e) the window decreases in size in correspon-

dence to the variance of the data, automatically adjusting to the data; (f) the CV metric enables

the algorithm to detect stability while considering not only the variance of the signal, but also

how this variance is compared to the absolute values of the overall signal. This is useful where

the higher the value of the signal, the higher the tolerance for its variance (e.g., a signal oscillat-

ing between the values 99–101 is considered “more steady” (1% change in signal) than a signal

oscillating around values 1–3 (>1% change in signal). Standard methods like linear regression

SDM do not take this tolerance into account; (g) the algorithm is applied on data from a single

walking trial and returns a POS, i.e., no need for repeated trials as in the ICC method [2, 46].

Implications

Several implications and future directions arise from the present work. We introduced a

generic method to assess the minimal number of gait cycles in order to obtain a reliable mea-

sure that is based on parameter’s statistics. It was demonstrated here on the PCI metric but we

posit that it can be generalized to other measures.

It is important to note that from practical point of view, the method provides those who are

designing gait experiments additional degrees of freedom in protocol planning.

For example, we found that on average (based on simulated data and 59 empirical exam-

ples) PCI values stabilizes on average after 22.6 strides (SD = 8.6). It is therefore up to the

experimenter to decide upon the margins he/she will apply (e.g., setting a minimum of mean +

x�SD strides).

As the algorithm operates on data from a single walking trial and returns a POS, it may be

beneficial for several applications. For example, in the future, this algorithm can be incorpo-

rated within the recording device that obtains all the data in real time, as it only takes into

account ‘previous’ data, and indicates whether more steps must be recorded to achieve the sta-

bilized PCI estimate.

Study limitations and future directions

Some limitations of this study should be acknowledged. Our pilot analyses [47] suggests that

this estimation is compatible with real gait data, yet this should be further established.

This algorithm also addresses some edge cases where there is a slow and moderate uniform

slope in the data which has a CV which is below the threshold (i.e., branch of op2 is applied).

Such an instance may introduce a systematic error of ±1–2 strides in the detected POS.

The described algorithm to ascertain the minimal strides required for reliable estimation of

PCI was assessed on gait segments that were derived from steady state walking velocity periods

obtained from trials performed with a self-pace treadmill. Indeed, in self-paced treadmills con-

siderable walking is carried out before gait speed stabilizes (e.g., ~37 meters see [41]), however,

during over ground walking only 2–3 (~2 meters) strides are required to establish a constant
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walking speed (10MWT). Thus practically, gait cycle data should be evaluated with respect to

the procedure in use.

Finally, to demonstrate efficacious usability analyses employing the present algorithm

should be applied to other gait metrics calculated based on parameters’ statistics (e.g., stride-

to-stride time CV, see preliminary outcome in section D in S1 Appendix) and to participants

with gait impairments.
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Terminology used for variable naming: window_size—size of the current moving window, i-
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rent segment of PCI values to analyze (length of vec matches window_size). CV—coefficient

of variation. POS—point of stabilization. The process starts with an input of a vector of N con-
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size until the POS is determined (Op 1 is depicted in this flowchart. For the whole process see
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