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We develop and test a new two-dimensional model for
binocular combination of the two eyes’ luminance
profiles. For first-order stimuli, the model assumes that
one eye’s luminance profile first goes through a
luminance compressor, receives gain-control and gain-
enhancement from the other eye, and then linearly
combines the other eye’s output profile. For second-
order stimuli, rectification is added in the signal path of
the model before the binocular combination site. Both
the total contrast and luminance energies, weighted
sums over both the space and spatial-frequency
domains, were used in the interocular gain-control, while
only the total contrast energy was used in the
interocular gain-enhancement. To challenge the model,
we performed a binocular brightness matching
experiment over a large range of background and target
luminances. The target stimulus was a dichoptic disc with
a sharp edge that has an increment or decrement
luminance from its background. The disk’s interocular
luminance ratio varied from trial to trial. To refine the
model we tested three luminance compressors, five
nested binocular combination models (including the
Ding–Sperling and the DSKL models), and examined the
presence or absence of total luminance energy in the
model. We found that (1) installing a luminance
compressor, either a logarithmic luminance function or
luminance gain-control, (2) including both contrast and
luminance energies, and (3) adding interocular gain-
enhancement (the DSKL model) to a combined model
significantly improved its performance. The combined
model provides a systematic account of binocular
luminance summation over a large range of luminance
input levels. It gives a unified explanation of Fechner’s
paradox observed on a dark background, and a winner-
take-all phenomenon observed on a light background. To
further test the model, we conducted two additional
experiments: luminance summation of discs with
asymmetric contour information (Experiment 2), similar
to Levelt (1965) and binocular combination of second-
order contrast-modulated gratings (Experiment 3). We
used the model obtained in Experiment 1 to predict the

results of Experiments 2 and 3 and the results of our
previous studies. Model simulations further refined the
contrast space weight and contrast sensitivity functions
that are installed in the model, and provide a reasonable
account for rebalancing of imbalanced binocular vision
by reducing the mean luminance in the dominant eye.

Introduction

The human brain devotes enormous resources
toward providing a cyclopean view of the world by
combining the separate inputs from the two eyes. The
process of binocular combination has been studied in a
wide variety of different tasks including luminance
change detection (Anstis & Ho, 1998; Baker, Wallis,
Georgeson, & Meese, 2012; Cogan, 1987; Cohn &
Lasley, 1976), contrast detection (Anderson & Mov-
shon, 1989; Campbell & Green, 1965; Legge, 1984),
contrast discrimination (Baker, Meese, & Georgeson,
2007; Ding & Levi, 2016; Georgeson, Wallis, Meese, &
Baker, 2016; Legge, 1981, 1984; Meese, Georgeson, &
Baker, 2006), contrast matching (Baker et al., 2007;
Ding, Klein, & Levi, 2013b; Huang, Zhou, Zhou, & Lu,
2010; Legge & Rubin, 1981), Vernier acuity (Banton &
Levi, 1991), orientation discrimination (Bearse &
Freeman, 1994), visual direction (Mansfield & Legge,
1996), phase perception (Ding et al., 2013b; Ding &
Sperling, 2006, 2007; Huang et al., 2010; Zhou,
Georgeson, & Hess, 2014), and orientation perception
(Yehezkel, Ding, Sterkin, Polat, & Levi, 2016).
However, precisely how the brain combines the two
eyes’ images is still unclear. Typically, a model was
developed specifically for one binocular task, but
seldom addressed other tasks (Blake & Wilson, 2011).
For example, Ding and Sperling (2006) proposed a gain
control model to explain their phase data while Meese
et al. (2006) proposed a two-stage model to explain
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their contrast discrimination data. Most models were
only tested in a zero-dimensional space—with two
numbers as inputs and one number as output rather
than using two-dimensional (2D) images as the model’s
input and output.

The Ding–Sperling model was originally developed
to account for the binocular combination of the two
eyes’ luminance profiles (2D), but it was only tested
based on 0D phase data in a narrowly banded spatial
frequency channel. In principle, it could be modified to
explain other binocular combination tasks. Indeed,
some efforts have been made to modify the model to
address multiple binocular tasks (Ding et al., 2013b;
Ding & Levi, 2016; Hou, Huang, Liang, Zhou, & Lu,
2013; Huang et al., 2010). By adding interocular
contrast enhancement and a sensory fusion mechanism
to the Ding–Sperling model (the DSKL model), we
were able to successfully predict both binocular phase
and contrast combination using one set of model
parameters over a large range of input contrasts and
phases in both normal (Ding et al., 2013b), and
amblyopic observers (Ding, Klein, & Levi, 2013a). By
inserting a contrast discrimination mechanism, either a
nonlinear contrast transducer (NCT) or multiplicative
noise (MN) into the model, we showed that the Ding–
Sperling and the DSKL models could also predict
binocular contrast discrimination (Ding & Levi, 2016).
The best combination involved inserting early MN
before the DSKL model, which successfully predicts
the binocular advantage in contrast discrimination at
high contrast levels. By inserting a binocular disparity
energy mechanism, both the Ding–Sperling and DSKL
models can also explain both disparity thresholds of
Dmin and Dmax (Ding & Levi, 2016).

Interocular enhancement was first exposed in a study
on amblyopic binocular vision (Ding et al., 2013b)
where the interocular suppression is very asymmetric
and the suppression from the nondominant eye (NDE)
to the dominant eye (DE) is almost absent, thus
revealing the NDE-to-DE’s interocular enhancement.
Interestingly, a recent physiological study (Shooner et
al., 2017) confirmed our findings. They found asym-
metric dichoptic masking in visual cortex of amblyopic
macaque monkeys, and in the most severe amblyopes,
they found the gain enhancement from the NDE to the
DE. However, in normal symmetric binocular vision,
the interocular enhancement is typically concealed by
stronger interocular suppression and cannot be ob-
served directly. In a modeling study, we demonstrated
that adding interocular enhancement to a gain-control
model results in significant improvement in model
fitting in normal binocular phase and contrast combi-
nation (Ding et al., 2013a; Ding & Levi, 2016). More
recently, adding interocular enhancement to the Ding–
Sperling model successfully predicted binocular orien-
tation combination (Yehezkel et al., 2016). The

interocular enhancement correctly accounts for the
reduced interocular suppression when base contrast is
increased (Yehezhel et al., 2016).

So far, both the Ding–Sperling and the DSKL
models have only been tested in experiments when the
mean luminance of the two eyes was equal and
remained constant, and therefore, no parameters reflect
luminance variance. However, in the real world, the
luminance might differ in the two eyes while viewing a
three-dimensional (3D) surface and it may vary from
time to time. In a recent study (Ding & Levi, 2014), we
found that the interocular gain-control was dependent
on the background luminance; reducing one eye’s
luminance reduces its suppression of the other eye,
which makes it possible to rebalance binocular vision in
people with asymmetric binocular vision (e.g., those
with amblyopia) by wearing a neutral density filter in
front of the dominant eye to reduce its suppression of
the nondominant eye. Clearly, to account for binocular
vision when the luminance differs in the two eyes, the
luminance-modified interocular interactions should be
added to a binocular combination model.

A luminance compressor, which allows the visual
system to adapt to a wide range of luminance levels, has
long been studied both psychophysically (Geisler, 1981,
1983; Hayhoe, Benimoff, & Hood, 1987; Hayhoe,
Levin, & Koshel, 1992) and physiologically (Mante,
Frazor, Bonin, Geisler, & Carandini, 2005; Yeh, Lee, &
Kremers, 1996). However, remarkably no luminance
compressor has ever been included in a binocular
luminance summation model, although it is an essential
process in the visual system. Depending on the
background luminance, binocular luminance summa-
tion behaves very differently. For example, in binocular
summation of luminance increments on a dark
background, the equal perceived luminance data fall
close to the linear contour over most of the range of
interocular luminance ratios, but fold back to lower
luminance excursions close to each axis (Engel, 1970;
Levelt, 1965). This is Fechner’s paradox—the obser-
vation that the appearance of unequal luminance in the
two eyes seems dimmer than the brighter luminance
viewed monocularly. In contrast, in the binocular
summation of brightness decrements on a light
background, the equal perceived luminance contour
follows a winner-take-all rule (Anstis & Ho, 1998;
Baker et al., 2012)—the perceived luminance decrement
is the larger luminance decrement in the two eyes
(similar to binocular contrast combination). Many
alternative models have been proposed to account for
luminance matching results (e.g., Anderson & Mov-
shon, 1989; de Weert & Levelt, 1974; Engel, 1969;
Grossberg & Kelly, 1999; Lehky, 1983), but none can
explain these two different nonlinear phenomena
simultaneously.
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Recently, Baker et al. (2012) proposed a descriptive
model for binocular brightness combination with one
stimulus-dependent parameter, the power parameter
(gamma), which is not fixed but dependent on the
background luminance. Varying the gamma value
produces a family of equal-brightness contours of
differing curvature, which provides a good description
of both Fechner’s paradox and the winner-take-all
phenomenon when using different gamma values. In a
preliminary study (Ding & Levi, 2015), we added a
luminance compressor (luminance gain-control) before
the Ding–Sperling model, resulting in a systematic
prediction of binocular luminance summation over a
large range of luminance inputs.

Levelt (1965) reported several experiments on binoc-
ular summation of luminance discs on a dark back-
ground with or without a monocular contour. He found
that the two eyes probably had equal weight in the
summation when viewing the luminance discs without a
concentric circle. However, when only one eye was
presented with amonocular contour (a concentric circle),
the eye with the contour dominated the summation,
having more weight than the other eye. He also found
that a local contour had more weight than a global
contour, i.e., the target luminance hadmore weight when
it was closer to the contour. Both the Ding–Sperling and
DSKL models can give a reasonable account of this
phenomenon—the eye with a concentric circle has more
contrast energy and therefore has more weight in
binocular luminance summation. However, without
details of a more general model, precise predictions are
impossible. In the current study we first develop a full 2D
model for binocular combination of the two eyes
luminance profiles, and then re-run the experiments of
Levelt (1965—our Experiments 1 and 2) to see if the
model simulation can give precise predictions.

Recently, Zhou et al. (2014) reported the ‘‘linear
binocular combination’’ of responses to contrast
modulation (CM) of second-order stimuli when their
carrier contrast (CC) was identical (i.e., CC ratio¼1) in
the two eyes. However, this linear phenomenon might
be just a subset of a nonlinear system under special
input conditions—the two eyes inputs are identical in
the total contrast energy (TCE). Actually, all five
nested nonlinear models, including the Ding–Sperling
and DSKL models, tested in Ding et al. (2013b) predict
that when the two eyes have equal TCE, they have
equal weights in the binocular combination, which
correctly predicts Zhou’s data. Zhou et al. (2014) used a
monocular probe (zero contrast in the other eye, i.e.,
CC ratio¼ 0) in a matching task, providing another
data point to demonstrate that the ocular weights
might vary with relative contrast in the two eyes. They
noted that variations in relative contrast alter the
weights assigned to each eye, but variations in
modulation depth do not. They proposed a contrast-

weighted model, in which the weight or gain assigned to
each eye depends on the contrast in that eye relative to
the other eye. The model successfully explained the
linear binocular summation of CM depth when the two
eyes have identical carrier contrast (i.e., CC ratio¼ 1),
and can also explain the results when CC ratio¼ 0.
However, it is not clear whether the model works at a
CC ratio other than 1 or 0. To test whether a model,
originally developed for first-order stimuli, also works
for second-order stimuli, experiments should be per-
formed with their carrier contrast varied (more than
two points) in the two eyes. In Experiment 3 we
examined binocular combination of second order
stimuli when their carrier contrast differed in the two
eyes, and simulated the full 2D model developed in this
study to predict the results.

Methods

Stimuli

Experiment 1 used luminance discs (38 in diameter)
with sharp edges as stimuli (Figures 1A–C). The target
luminance was either increased against a dark or light
background (white discs) or decreased against a light
background (black discs). The stimulus duration was
200 ms and the interstimulus duration was 500 ms. The
observer’s task was to match the luminance increment
or decrement from the background of the test disc to
that of the standard disc. Test discs were presented with
different target luminance in the two eyes; the standard
discs had identical target luminance in the two eyes.
The background luminance was the same for each eye,
and the same for test and standard discs. The spatial
layout of discs and contours (Figure 1A–F) was also
the same for test and standard stimuli.

Stimuli were presented on a 22-inch NEC MultiSync
CRT monitor (NEC, Tokyo, Japan) with a 192031440
spatial pixel resolution and 75 Hz vertical refresh rate.
The experiments were controlled by a Mac Mini
running MATLAB (MathWorks, Inc.) with the Psy-
chophysics Toolbox extensions (Brainard, 1997; Pelli,
1997). A special circuit (Li, Lu, Xu, Jin, & Zhou, 2003)
was used to yield 14 bit grayscale levels. Gamma
correction was applied and verified by measuring 10
luminance levels using a Minolta LS-110 photometer
(Minolta, Tokyo, Japan). The luminance of the
monitor with all pixels set to the minimum value was
0.2 cd/m2; the luminance with all pixels set to the
maximum value was 74.2 cd/m2. Displays were viewed
in a mirror stereoscope and positioned optically 68 cm
from the observer.

Experiment 2 used luminance discs with asymmetric
contour information in the two eyes (Levelt, 1965). The
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target luminance was increased from a dark back-
ground. In Experiment 2a (similar to experiment 2 in
Levelt, 1965), the luminance discs were 58 in diameter
with a black concentric circle (inner and outer

diameters were 28 and 2.48, respectively) either in the
left or right eye. Figure 1D shows a pair of discs with a
circle in the LE. In Experiment 2b (similar to
experiment 3, in Levelt, 1965), the luminance disc and

Figure 1. Sample stimuli presented to the left and right eyes (LE and RE). (A) A pair of discs with luminance increment from a dark

background (Experiment 1a). (B) A pair of discs with luminance increment from a light background (Experiment 1a). (C) A pair of discs

with luminance decrement from a light background (Experiment 1b). Test discs luminance differed in the two eyes, but the standard

discs luminance was identical. (D) A pair of discs with luminance increment from a dark background with a concentric black circle only

in the LE (Experiment 2a). (E) A pair of discs with luminance increment from a dark background with a black circle in each eye, one

near the top of the LE disc and the other near the bottom of the RE disc (Experiment 2b). The target luminance was inside the top

circle. (F) Stimuli for Experiment 2c. (G) Second-order contrast modulated (CM) gratings for Experiment 3 to measure the perceived

CM phase and depth when interocular CM depth ratio (equal carrier contrast in the two eyes) or interocular carrier contrast ratio

(equal CM depth in the two eyes) varied.

Journal of Vision (2017) 17(13):4, 1–32 Ding & Levi 4



circle were identical to those in Experiment 2a, except
that each eye was presented with a black circle on a
luminance disc, one near the top and the other the
bottom (Figure 1E). The target luminance to be judged
was the region inside the top circle. The other
conditions were similar to Experiment 1. The stimulus
duration was 200 ms and the interstimulus duration
was 500 ms. The observer’s task was to match the
brightness of the test disc to that of the standard disc.
Test discs were presented with different target lumi-
nance in the two eyes; the standard discs had identical
target luminance in the two eyes.

In Experiment 2c (similar to experiment 4 in Levelt,
1965), one eye (e.g., RE) was presented only with a
large luminance square (148 3 148) and the other eye
(e.g., LE) with a square (148 3 148 ) plus a central disc
that varied in size from trial to trial (Figure 1F). The
target luminance was the central area of the disc. For a
test, the luminance was fixed in the two eyes; the RE’s
square luminance was fixed at 72 cd/m2, the LE’s disc
luminance was fixed at 12 cd/m2 and its surrounding
square luminance was fixed at 3.7 cd/m2. For a
standard, the RE’s square and LE’s central disc had
identical luminance that was varied via a staircase to
match a test luminance, and the LE’s surrounding
square luminance was always 1/3.25 of the luminance
of the central disc. The background was always dark
(0.2 cd/m2). We tested seven different disc sizes (18, 38,
58, 78, 98, 118, 138 in diameters). The stimulus duration
was 200 ms and the interstimulus duration was 500 ms.

Experiment 3 used second-order contrast modulated
(CM) gratings as stimuli (Figure 1G) to measure the
perceived CM phase (a) when the CM depth and phase
differed in the two eyes but the carrier contrast (CC)
was identical (¼0.2), or (b) when the CC and the CM
phase differed in the two eyes but the CM depth was
identical (¼0.7), and to measure the perceived CM
depth (c) when the CM depth differed in the two eyes
but the CM phase and CC (¼0.2) were identical, or (d)
when the CC differed in the two eyes but the CM depth
(¼0.7) and phase were identical. To make the results
comparable with the previous study (Zhou et al., 2014),
we also used a static, binary noise carrier for CM
gratings. A horizontal CM sinewave grating was
presented on a static, binary noise carrier (4.58 3 4.58
square with sharp edges), with identical spatial
frequency (¼0.68 cpd) of CM in the two eyes, circularly
(38 in diameter) windowed with Gaussian-blurred
edges, and duration of 1 s.

Procedure

For Experiment 1, there were two stimulus inter-
vals: a standard, with equal luminance presented to
the two eyes, and a test, with the interocular

luminance ratio varying from trial to trial (RE/LE¼0,
0.125, 0.25, 0.5, 0.707, 1, 1.414, 2, 4, 8, or ‘ ). The test
disc could be either in the first or second interval. For
the luminance increment test there were five back-
ground luminances (0.2, 2.2, 4.2, 8.2, and 16.2 cd/m2),
and at each background luminance five luminance
increments (1, 2, 4, 8, and16 cd/m2) were tested.
However, for the luminance decrement test, there were
three background luminances (4.2, 8.2, and 16.2 cd/
m2). At 16.2 cd/m2 background luminance, four
luminance decrements (1, 2, 4, and 8 cd/m2) were
tested; at 8.2 cd/m2, three luminance decrements (1, 2,
and 4 cd/m2) were tested; at 4.2 cd/m2 , two luminance
decrements (1 and 2 cd/m2 ) were tested. For each pair
of background luminance and luminance increment/
decrement (luminance excursion) conditions, 22 one-
up-one-down staircases (11 ratios 3 2 presentation
orders) were interleaved in one session to match the
luminance increment or decrement from the back-
ground of a test disc to that of the standard disc. Each
staircase contains 30 trials and a total of 660 trials
were run for each session, which can be finished in
about 1 hr. Observers were allowed to take short
breaks inside the dark room during a session. The
observer’s task was to judge which interval contained
a brighter disc for increment tests (white discs) or a
darker disc for decrement tests (black discs). For each
staircase, a psychometric function was fit to the
response data, and the perceptually matched lumi-
nance was defined as the luminance that was equally
likely to be judged above and below the standard
luminance. The matched luminance was averaged
across the presentation orders of test and standard
discs.

The procedure for Experiment 2 was similar to
Experiment 1. For Experiments 2a and 2b, 9 inter-
ocular luminance ratios (RE/LE¼ 0, 0.125, 0.25, 0.5, 1,
2, 4, 8, or ‘) at one luminance increment (8 cd/m2)
from a dark background (0.2 cd/m2) were tested. In
Experiment 2a, two sessions, each with 18 one-up-one-
down staircases (9 ratios3 2 presentation orders), were
run for the two conditions when a concentric circle was
either in the left or right eye. Similarly, in Experiment
2b, two sessions were run for the two conditions when
the top circle (target) was either in the left or right eye.
For Experiment 2c, the test luminance was fixed in the
two eyes while the disc size varied (see details in
aforementioned Stimuli section). Two sessions, each
with 14 one-up-one-down staircases (7 disc sizes 3 2
presentation orders), were run for the two conditions
when a luminance disc was either in the left or right eye.
Each staircase consisted of 30 trials. The final results
were averaged across presentation order and across the
two eyes.

For Experiment 3 to measure the perceived CM
phase and depth of a cyclopean CM grating, the
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procedure was similar to our previous study with first
order stimuli (Ding et al., 2013b). To measure the
perceived phase, a horizontal reference line was
attached to the sides of the stimuli. There was only one
stimulus interval with one CM gratings present to each
eye that either (a) differed in CM depth at a fixed equal
CC or (b) differed in CC at a fixed equal CM depth.
There were two phase orders in the two eyes: (1) LE
phase¼ 458 and RE phase¼�458; (2) LE phase¼�458,
and RE phase¼ 458. Observers were asked to make a
judgment of the position of the middle low contrast
stripe relative to the attached reference line in a one-up-
one-down staircase. One session with 18 one-up-one-
down staircases (9 ratios3 2 phase orders) was run for
each experiment. Each staircase consisted of 30 trials.
The final results were averaged across phase orders.
For the experiment to measure the perceived CM
depth, there were two stimulus intervals, one with a
reference CM grating only presented to one eye (the
other eye is blank with mean luminance) and the other
with test CM gratings presented to the two eyes, which
either (c) differed in CM depth at a fixed equal CC or
(d) differed in CC at a fixed equal CM depth. The
observer was asked to match the perceived test CM
depth to the reference by varying the reference in a one-
up-one-down staircase. One session with 10 one-up-
one-down staircases (5 ratios 3 2 presentation orders)
was run for each experiment. Each staircase contains 30
trials. The final results were averaged across the
presentation orders.

Observers

Four observers with normal or corrected to normal
vision participated in Experiment 1. The data were
averaged across the four observers. Three observers
with normal or corrected to normal vision participated
in Experiment 2. The data were averaged across the
three observers. Two observers with normal or
corrected to normal vision participated in Experiment
3. The data were averaged across the two observers. All
observers signed written consent forms.

Model

Let IL(x,y) and IR(x,y) be input luminance profiles in
the two eyes. The binocular perceived profile is
assumed to be the weighted summation of the two
inputs, i.e.,

Î x; yð Þ ¼ wLðIL; IRÞIL x; yð Þ þ wRðIL; IRÞIRðx; yÞ ð1Þ
where the weights wL and wR depend on the two inputs.
In principle, the perceived image features (e.g.,
brightness, contrast, contrast differences, contrast

modulation depth, and phase) can be obtained from the
perceived profile, making it possible to test the model
across different tasks. Ding and Sperling (2006)
proposed the first model with the property of Equation
1, in which the two weights were calculated according
to gain-control theory. However, they only tested the
model in binocular phase combination with a constant
luminance background in a narrowly banded spatial
frequency channel. Later, the Ding–Sperling model was
further tested in other binocular tasks, such as phase
and contrast, contrast discrimination, binocular dis-
parity, brightness, and orientation, and was modified
accordingly.

To predict binocular phase and contrast combina-
tion, we modified the Ding–Sperling model by adding
interocular enhancement and a binocular fusion
mechanism (the DSKL model; Ding et al., 2013b). We
tested five nested models, including both the Ding–
Sperling and the DSKL models, all with the property of
Equation 1, and the DSKL model (the full model) gave
the best fit for both phase and contrast data. However,
because the tasks were performed on a constant
luminance background, the models lack luminance
components. In this study, we added luminance
components to these five nested models to predict
brightness perception of dichoptic luminance discs.
Because the data in this study cannot be used to test the
binocular fusion mechanism in the DSKL model,
which was proposed to account for binocular contrast
combination of two sinewave gratings with different
phases, we did not include it in our current model.

Figure 2A shows the full model. One eye’s luminance
profile (e.g., IL x; yð Þ) first goes through a luminance
compressor (LOG: luminance logarithmic function or
LG: luminance gain-control), and then after filtering
though LoG (Laplacian of Gaussian) filters, the signal
in each channel goes through a contrast-and-luminance
gain-control-and-gain-enhancement unit (CLG), which
receives gain-control and gain-enhancement from the
other eye (say, the right eye). To avoid excessive
interocular suppression and enhancement in binocular
vision, the gain-control and gain-enhancement need to
be constrained (Ding et al., 2013a, 2013b; Ding &
Sperling, 2006, 2007), i.e., the RE’s gain-control and
gain-enhancement are gain-controlled by the left eye.
Without gain-control of gain-control, the single-layer
gain-control makes the binocular view much weaker
than the monocular view under normal viewing
conditions (high contrast), contradicting our daily
experience (Ding & Sperling, 2006). Without gain-
control of gain-enhancement, the single-layer gain-
enhancement is very limited in improving model
performance (Ding et al., 2013a, b; Ding & Levi, 2016).
The product of the total weighted contrast energy and
luminance energy (TCE3TLE) is used for gain-control
and gain-control of gain-control. However, based on
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modeling statistics (see Table 3 in the Modeling
section), only the TCE is used for gain-enhancement
and gain-control of gain-enhancement. Figure 2A
shows half of the full model for the left eye, the other
half for the right eye has a symmetric structure. For
first-order perception, the binocular perceived profile is
assumed to be the linear summation of two monocular
output profiles, i.e., Î x; yð Þ ¼ ÎL x; yð Þ þ ÎRðx; yÞ. For
second-order perception, rectification should be added
in the signal path before binocular combination site to
avoid the possible cancelation of outputs when two
eyes carriers are anticorrelated, i.e.,
Î x; yð Þ ¼ ÎL x; yð Þ

�� ��þ ÎR x; yð Þ
�� ��. Please note that the

rectification could be placed before the gain-control
without changing the prediction of second-order
binocular combination.

Different from our model that operates in 2D space
along the whole signal path, the models proposed in
Zhou et al. (2014) and Georgeson and Schofield (2016)
assumed a FRF (filter-rectify-filter) structure for each
eye to extract the second-order signal (a vector) from a
2D stimulus representation, and then, the two eyes’
second-order signals were contrast-weighted and
summed (vector summation) for binocular output.

Figure 2B shows how the total contrast energy
(TCE) and total luminance energy (TLE) is calculated.
For TCE, a 2D contrast profile is first obtained from
the compressed luminance profile by filtering it with a
LoG filter, rectifying and then normalizing with the
mean luminance. For each spatial-frequency channel,
the local contrast at each point in space is raised to the
power of gamma, and then the contrast energy for this
channel is calculated as a weighted sum over the two-
dimensional space (contrast space weight function or
CSWF). The TCE is a weighted sum of the contrast
energy across all spatial-frequency channels (spatial-
frequency modulation transfer function or FMTF).
For TLE, the luminance value at each point in space of
the compressed 2D luminance profile is raised to the
power of eta, and then the TLE is calculated as a
weighted sum over the two dimensional space (lumi-
nance space weight function or LSWF). Based on
modeling statistics (see Table 3 in Modeling section),
the TCE is used in both gain-control and gain-
enhancement paths, whereas the TLE is only used in
the gain-control path in the DSKL model.

Figure 2. (A) Full model. A 2D luminance profile first goes

through a luminance compressor (LOG: luminance logarithmic

function), and then, after filtering through multiple LoG

(Laplacian of Gaussian) filters, in each channel, one eye’s (e.g.,

LE) signal receives contrast-and-luminance gain-control (CLG,

blue path) and gain-enhancement (CLG, red path) from the

other eye (e.g., RE). The gain-control depends on the product of

the total contrast energy (TCE) and total luminance energy

(TLE), which are both weighted sums over the space and spatial-

frequency domains. The gain-enhancement only depends on the

TCE. The RE’s gain-control (blue) and gain-enhancement (red)

themselves are gain-controlled by the LE with gain-control

efficiency a and b respectively if we assume the gain-control

efficiency ¼ 1 in the LE’s signal path (black). Only half of the

DSKL model for LE’s output is shown, and the other half for RE’s

output is symmetric to the LE’s half. The first-order binocularly

combined profile is the linear summation of the two monocular

output profiles, and the second-order binocularly combined

profile is the linear summation of those after rectification in

each eye before binocular combination. (B) Calculation of TCE

and TLE. For TCE (total contrast energy), a 2D compressive

luminance profile is first filtered by LoG (Laplacian of Gaussian)

filters, rectified, and then normalized by the mean luminance to

give a contrast profile. For each spatial-frequency channel, the

local contrast at each point in space is raised to the power of

gamma, and then the contrast energy for this channel is

calculated as a weighted sum over the two dimensional space

(CSWF: contrast space weight function). The TCE is a weighted

sum over spatial-frequency channels (FMTF: spatial-frequency

�

 
modulation transfer function). For TLE (total luminance energy),

the luminance value at each point in space of the compressed

2D luminance profile is raised to the power of eta, and then the

TLE is calculated as a weighted sum over the two dimensional

space (LSWF: luminance space weight function). The product of

TCE and TLE is calculated for the gain-control path, whereas the

gain-enhancement path only needs TCE.
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Luminance compressor

To remain sensitive over a large range of input
luminances, the visual system has developed a mecha-
nism to compress the input luminance for brightness
perception. We assume a local luminance compressor,
applied to each pixel, which is supported by the
experimental results of He and MacLeod (1998). They
found that the light adaptation process had very high
spatial resolution (.100 cpd), and suggested that it
might be a strictly local luminance nonlinearity, one
that either resides within individual photoreceptors or
operates on signals from individual receptors. Here, we
tested three luminance compressors, (1) the Stevens’
power law for brightness perception, (2) a luminance
gain-control, and (3) a luminance logarithmic function.
Let Iðx; yÞ be a luminance profile and I 0ðx; yÞ be the
output of the compressor. The Stevens’ power law is
given by

I 0ðx; yÞ ¼ Ipðx; yÞ: ð2Þ
The luminance gain control is given by,

I 0ðx; yÞ ¼ Ipðx; yÞ
Zq þ Iqðx; yÞ ; ð3Þ

where Z is the gain-control threshold, and p and q are
power parameters. When I� Z, the luminance gain
control can be simplified to be the Stevens’ power law
for brightness perception. We also tested a luminance
logarithmic function, given by,

I 0ðx; yÞ ¼ log 1þ Ipðx; yÞ
Zp

� �
; ð4Þ

where Z is the threshold. When I ¼ 0, we have I 0 ¼ 0.

Total contrast energy (TCE) and total luminance
energy (TLE)

Let I00 be the mean luminance of a profile after
compressing, given by,

I 00 ¼
R
Î 0 x; yð ÞwLum x; yð Þ dx dyR

wLum x; yð Þ dx dy : ð5Þ

where wLum x; yð Þ is a luminance space weighting
function (LSWF) that should give more weight in the
fovea for the calculation of mean luminance. The
contrast at space point (x, y) is defined as its absolute
Laplacian value normalized by the mean luminance, i.e.,

C x; yð Þ ¼ 1

I 00
DI 0 x; yð Þj j ¼ 1

I 00

]2I 0 x; yð Þ
]x2

þ ]2I 0 x; yð Þ
]y2

���� ����:
ð6Þ

However, applying the Laplacian to a real image often

produces high spatial frequency noise and needs to be
smoothed by a Gaussian filter. Because both Gaussian
and Laplacian are linear operators, people often
exchange their order in the processing and use the LoG
filter to estimate the Laplacian (Marr & Hildreth, 1980).
For simplicity, it is common to use a DoG (Difference
of Gaussian) filter to estimate the Laplacian. The visual
system extracts image contrast in different scales
(channels). A LoG filter in the ith channel is given by,

LoGiðx; yÞ ¼ �
1

pr4
i

1� x2 þ y2

2r2
i

� �
e
�x2þy2

2r2
i : ð7Þ

The contrast in the ith channel is given by the
convolution of LoGi and I 0, i.e.,

Ci x; yð Þ ¼ 1

I 00
LoGi � I 0ð Þ x; yð Þ

The contrast energy in the ith channel is the weighted
sum over the space, given by

EiðIÞ ¼ bi

Z
C c

i x; yð ÞwC x; yð Þ dx dy; ð8Þ

where wC x; yð Þ is the contrast space weight functions
(CSWF), bi is a constant given by spatial frequency
modulation transfer function (FMTF) (Ding &
Sperling, 2006, 2007). The TCE is the weighted sum
across all channels (Ding & Sperling, 2006, 2007),
given by

E Ið Þ ¼ R bi

Z
C c

i x; yð ÞwC x; yð Þ dx dy: ð80Þ

The total luminance energy (TLE) is also the weighted
sum over space, given by,

LðIÞ ¼ k

Z
I 0

g
x; yð ÞwLum x; yð Þ dx dy; ð9Þ

where k is a constant. Figure 2B demonstrates how to
calculate TCE and TLE.

In this study, we did not have enough data to test the
details of the LoG filter, FMTF, and space weight
functions, LSWF and CSWF. Instead, for the LoG
filter, we estimated the contrast of an image with sharp
edges only at one scale with r ¼ 0:0458, which reaches a
peak at 10 cpd in the spatial frequency domain. With
only one channel, the constant bi given by FMTF can
be selected to be a suitable value to simplify modeling
(see the following). For the space weighting functions,
we assumed that the weight reflects the density of
photoreceptors in the retina, which reaches a peak in a
small area (;0.032 deg2; Curcio, Sloan, Kalina, &
Hendrickson, 1990) in the fovea and falls steeply with
increasing eccentricity (Curcio et al., 1990; Curcio,
Sloan, Packer, Hendrickson, & Kalina, 1987; Perry &
Cowey, 1985; Williams, 1988). It is given by
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wC x; yð Þ ¼ wLum x; yð Þ ¼ 1

1þ 1
R2
0

x2 þ y2ð Þ
: ð10Þ

In the following, we show how to calculate the mean
luminance, TCE and TLE, of a luminance disc. Let
Rdisc be radius of the disc, R0 be the radius of a small
area (;0.03282, i.e., R0 ’ 0.18) where the weighting
function reaches its peak, Rmax be the radius of the
maximum area that contributes for TCE and TLE, and
IT and IB being the luminance of the disc (target) and its
background respectively. From Equation 5, the mean
luminance is given by,

I 00 ¼
log 1þ Rdisc

R0

� �2� �
log 1þ Rmax

R0

� �2� � I 0T � I 0B
� �

þ I 0B:

For mathematical convenience, we assumed that,

log 1þ Rdisc

R0

� �2
 !

¼ 1

2
log 1þ Rmax

R0

� �2
 !

;

ð11Þ
which makes the target and background contribution
to the mean luminance equal, i.e.,

I 00 ¼
I 0T þ I 0B

2
: ð12Þ

Similarly, for Condition (11), selecting a suitable value
of k, the TLE in Equation 9 is given by,

LðIÞ ¼ I 0T
g þ I 0B

g

2
: ð13Þ

Also, for Condition (11), selecting a suitable value of bi,
the TCE in Equation 8 is given by,

E Ið Þ ¼ jI0T � I0Bj
I0T þ I0B

� �c

¼ mc; ð14Þ

where m is the edge contrast of a disc, given by

m ¼ jI
0
T � I 0Bj
I 0T þ I 0B

: ð15Þ

Please note that the quantity m given by Equation 15 is
not simply the edge contrast in the screen image, but
the one following luminance compression, and is
therefore model-dependent to some extent.

Because the data were collected using discs with fixed
size, R0 and Rmax were difficult to determine. Instead,
we selected their values (R0¼ 0.18 and Rmax¼ 22.68) to
make Equation 11 valid for mathematical simplicity, so
we can use Equations 13 and 14 to calculate TCE and
TLE in the modeling. Without the assumption of

Condition (11), the target and background luminances
would have different contributions to the mean
luminance, and TCE and TLE would require more
complicated formulae, making model fitting more
difficult. However, model simulation (not shown)
shows that the model behaves in a similar fashion
without the assumption of Condition (11), although
some specific details might differ. The selection of a
LoG filter was somewhat arbitrary. To extract the local
contrast of an image with a sharp edge, we used a LoG
filter with a relatively high peak spatial frequency (¼10
cpd). For mathematical simplicity, we only extracted
the local contrast at one scale. Model simulation (see
the section of Model simulation) shows that extracting
local contrast at a different scale has little effect on the
model behavior, and the model behaves similarly when
extracting local contrast at one or more scales (not
shown).

We also assumed a flat contrast sensitivity function
(CSF) for simplicity, so we did not have to split signals
into multiple channels, process them separately, and
then combine them for perception, but just combined
the two eyes input profiles in the manner of Equation1
(see Equations 16–23 as follows). Installing a non-flat
CSF has little effect on the model behavior when
stimuli are simple (e.g., luminance discs with fixed size),
but it much improves the model performance for
complex stimuli (e.g., luminance discs with asymmetric
contour information, see the Model simulation sec-
tion).

Binocular combination models

In a previous study (Ding et al., 2013b), we proposed
five nested models to predict both binocular phase and
contrast combination. However, these models were
developed for experiments when the mean luminance
remained constant, and no model parameters reflected
a luminance effect. However, the eye with reduced
mean luminance (e.g., placing a neutral density filter
before it) exerts less gain-control to the other eye (Ding
& Levi, 2014). In the following, we modified these five
nested models by including a luminance component.

Model 1: Contrast-and-luminance-weighted
summation model (simplified Ding–Sperling
model)

The Ding–Sperling model can be simplified to be a
contrast-and-luminance-weighted summation model
when the gain-control threshold ¼ 0 or TCExTLE �
threshold. After binocular combination, the binocular
output profile is given by,
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Î x; yð Þ’ EL ILð ÞLL ILð Þ
EL ILð ÞLL ILð Þ þ ER IRð ÞLR IRð Þ

I 0Lðx; yÞ

þ ER IRð ÞLR IRð Þ
EL ILð ÞLL ILð Þ þ ER IRð ÞLR IRð Þ

I 0Rðx; yÞ: ð16Þ

where I0L x; yð Þ and I0Rðx; yÞ are input luminance profiles
after luminance compressing.

For a luminance disc, as noted already, at suitable
values of R0 (’ 0.18) and Rmax (’ 22.68), after being
normalized with the gain-control threshold gc, its image
contrast energy is given by,

EL ¼
mL

gc

� �c

and ER ¼
mR

gc

� �c

; ð17Þ

where mL and mR are the disc edge contrast in the two
eyes given by Equation 15. Similarly, the image
luminance energy of a luminance disc is given by

LL ¼
I 0LT

g þ I 0LB
g

2
and LR ¼

I 0RT
g þ I 0RB

g

2
: ð18Þ

Model 2: Ding–Sperling model with symmetric
double-layer interocular gain-controls

The gain-control and the gain-control of gain-
control have the same gain-control efficiency. After
binocular combination, the binocular output profile is
given by,

Î x; yð Þ ¼ 1

1þ ER IRð ÞLR IRð Þ
1þEL ILð ÞLL ILð Þ

I 0Lðx; yÞ

þ 1

1þ EL ILð ÞLL ILð Þ
1þER IRð ÞLR IRð Þ

I 0Rðx; yÞ; ð19Þ

Model 3: Ding–Sperling model with asymmetric
double-layer interocular gain-controls

The gain-control and the gain-control of gain-
control have different gain-control efficiency. After
binocular combination, the binocular output profile is
given by,

Î x; yð Þ ¼ 1

1þ ER IRð ÞLR IRð Þ
1þacEL ILð ÞLL ILð Þ

I 0Lðx; yÞ

þ 1

1þ EL ILð ÞLL ILð Þ
1þacER IRð ÞLR IRð ÞÞ

I 0Rðx; yÞ; ð20Þ

where a is the gain-control efficiency, which is also
raised to the power of c.

Model 4: Adding interocular gain-enhancement
to Model 3

After binocular combination, the binocular output
profile is given by,

Î x; yð Þ ¼ 1þ E�R IRð Þ
1þ ER IRð ÞLR IRð Þ

1þacEL ILð ÞLL ILð Þ
I 0Lðx; yÞ

þ 1þ E�L ILð Þ
1þ EL ILð ÞLL ILð Þ

1þacER IRð ÞLR IRð Þ
I 0Rðx; yÞ: ð21Þ

The image contrast energy for gain enhancement is
given by

E�L ¼
mL

ge

� �c

and E�R ¼
mR

ge

� �c

; ð22Þ

where ge is the contrast gain-enhancement threshold.

Model 5 (the full model): Adding interocular
gain-control of gain-enhancement to Model 4

After binocular combination, the binocular output
profile is given by,

Î x; yð Þ ¼
1þ E�R IRð Þ

1þbcEL ILð Þ

1þ ER IRð ÞLR IRð Þ
1þacEL ILð ÞLL ILð Þ

I 0Lðx; yÞ

þ
1þ E�L ILð Þ

1þbcER IRð Þ

1þ EL ILð ÞLL ILð Þ
1þacER IRð ÞLR IRð Þ

I 0Rðx; yÞ; ð23Þ

where b is the gain-control efficiency, which is also
raised to the power of c. We note that the gain-
enhancement and the gain-control of gain-enhance-
ment only depend on the contrast energy. In the
Modeling section, we test different model configura-
tions with or without the luminance energy in gain-
control and or gain-enhancement.

Results

Experiment 1: Binocular combination of
luminance discs

For each session, the background luminance was
identical in the two eyes and remained unchanged
during the entire session, whereas the luminance of a
test disc, increased or decreased from the background,
differed in the two eyes, and varied from trial to trial.
The background luminance was varied between ses-
sions.
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Experiment 1a: Equal-luminance-increment
contour

At each interocular luminance ratio of a test disc, the
luminance increment from the background was percep-
tually matched in brightness to that of the standard disc
that was presented identically to the two eyes. Figure 3
shows equal-luminance-increment contours averaged
across the four observers; each panel represents the
contour for one pair of standard luminance increment
(indicated at the top) and background luminance
(indicated on the right). In the first row (panels at 0.2 cd/
m2 background luminance—the lowest luminance level
of the display), when the standard luminance increment
increases from 1 (the leftmost panel) to 16 (the most
right panel) cd/m2, Fechner’s paradox becomes increas-
ingly evident (i.e., the appearance of unequal luminance
in the two eyes seems dimmer than the brighter
luminance viewed monocularly). However, when the
background luminance increases (from top to bottom),
Fechner’s paradox becomes less evident, and the winner-
take-all phenomenon becomes more apparent when the
background luminance was 16.2 cd/m2 (bottom row).
Fechner’s paradox depends on both background and
target luminance: It is most evident at the largest
luminance increment from the black background (top-
right panel). Over all, the shape of contours changes
systematically depending on both background lumi-
nance and target luminance increment. More interest-
ingly, the contour shape is very similar across all the
panels within any given left-oblique diagonal, and
changes progressively as you move in the right-oblique
direction. This surely means that the main driver of
contour shape (for increments) is the standard disc
contrast (ratio of standard increment to background
level) — very high at top right, and low at bottom left
(thanks to Mark Georgeson for this observation and
comment). After adding a luminance compressor and
including luminance energy, the DSKL model was able
to describe all these contours with different shapes as
indicated by the fitting curves.

Experiment 1b: Equal-luminance-decrement
contour

When the test luminance decreased from the back-
ground (e.g., a dark disc), its darkness was matched to
the standard one. Figure 4 shows equal-luminance-
decrement contours averaged across the four observers;
each panel represents the contour for one pair of
standard luminance decrement (indicated at the top)
and background luminance (indicated on the right).
Consistent with previous studies (Anstis & Ho, 1998;
Baker et al., 2012), Fechner’s paradox was not observed
in equal-luminance-decrement contours. Compared

with increment contours (Figure 3), the winner-take-all
behavior is more evident in decrement contours, e.g., at
16.2 cd/m2 background luminance, the winner-take-all
behavior is more evident in the 8 cd/m2 luminance
decrement contour than the 8 cd/m2 increment contour,
which was correctly predicted by the model.

Experiment 2: Binocular combination of
luminance discs with asymmetric contour
information

To test the model with more complex stimuli,
following Levelt (1965), we added asymmetric contours
to the two eyes’ luminance discs for binocular
luminance summation. Because the formula of TCE
and TLE were more complicated for a disc with extra
contour information, it would be difficult, if not
impossible, to fit the model directly to the data. Instead,
we did model simulations using parameters already
obtained in Experiment 1 to see how well the model can
predict the data. Here, we tested three LoG filters (peak
spatial frequency at 5, 10, and 20 cpd), three CSWFs
(LSWF¼CSWF was assumed), and two CSFs (flat and
nonflat) in the simulation. Except for the one used in
Experiment 1 (Equation 10), the other two CSWFs
have different dropping rates in space weight when
going away from the fovea, one slower and one more
rapid than Equation 10, given by,

wC x; yð Þ ¼ wLum x; yð Þ ¼ 1

1þ 1
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð24Þ

and

wC x; yð Þ ¼ wLum x; yð Þ ¼ 1

1þ 1
R4
0

x2 þ y2ð Þ2
; ð25Þ

respectively.
In the simulation of Experiment 1 (binocular

combination of two luminance discs without concentric
circles; see examples in Figure 5A), we found that the
predictions with different LoG filters or CSFs are
almost identical (The dashed magenta, green, and black
curves are overlapped with the thick black curve; and
the dashed red curve is overlapped with the solid red
curve in Figure 5A), and the predictions with different
CSWFs (thick black curve versus solid blue and red
curves) are also very similar.

Experiment 2a: The eye with more monocular
contours dominates binocular combination

The model predicts that the eye with larger TCE
dominates the binocular combination. To test this
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prediction, we added a black concentric circle to only
one eye when performing the binocular luminance
summation task. Consistent with Levelt (1965), we
found that the eye with a circle dominated the
binocular combination (Figure 5B), which confirmed

the model predictions (smooth curves in Figure 5B)
because the eye with a circle has larger TCE. Unlike the
simulation of Experiment 1, adding a concentric circle
to only one eye separated model predictions with
different CSWFs or different CSFs, while the predic-

Figure 3. Equal-luminance-increment contour. The test luminance increment (normalized by the standard luminance increment) from

the background (cd/m2, as indicated in the right numbers) was matched to that of the standard luminance increment (cd/m2, as

indicated in the top numbers). For example, for the panel in the first column and second row, the background luminance is 2.2 cd/m2

and the standard luminance increment is 1 cd/m2 (e.g., the disc standard luminance is 3.2 cd/m2). The black curves are fits of the full

model shown in Figure 2. The red dashed lines show the predictions of the winner-take-all model, and the blue dashed lines shows

the predictions of the linear summation model.
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tions with different LoG filters remain similar. Instal-
ling a nonflat CSF provides better model predictions
(dashed black and red curves) than flat CSF.

Experiment 2b: The eye weight in binocular
combination depends on distance from the
contour

The model also predicts that the eye with a near
contour has a larger weight in the combination than
with a distant contour because the space weight
(CSWF) drops off sharply when away from the target.
To address this prediction, we added two circles in the
two eyes at two different locations of a luminance disc,
one in the top half, and the other in the bottom half of
the disc. The target was always the luminance inside
the top circle. As predicted from the model (smooth
curves in Figure 5C), the data (circle markers in

Figure 5C) shows that the eye with top circle
dominated the combination, consistent with Levelt
(1965). Again, installing a nonflat CSF provides better
model predictions (dashed black and red curves) than
flat CSF, whereas models with different LoG filters
give similar predictions. The CSWF given by Equation
25 (the space weight drops most sharply when away
from the target) combined with a nonflat CSF has the
best performance in model prediction (dashed red
curve).

Experiment 2c: The dominant eye in binocular
combination depends on monocular contour
size

When the disc size decreases, its edge moves toward
the fovea and therefore the contribution from its local
edge to the TCE should increase (because of Equation

Figure 4. Equal-luminance-decrement contours. The test luminance decrement from the background (cd/m2, as indicated in the right

numbers) was matched to that of the standard luminance decrement (cd/m2, as indicated in the top numbers). For example, for the

panel in the first column and second row, the background luminance is 8.2 cd/m2 and the standard luminance decrement is 1 cd/m2

(e.g., the disc standard luminance is 7.2 cd/m2). The black curves are fits of the full model shown in Figure 2. The red dashed lines

show the predictions of the winner-take-all model, and the blue dashed lines shows the predictions of the linear summation model.
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Figure 5. Binocular luminance summation of luminance discs with asymmetric contour information. (A) A sample from Experiment 1

of equal-luminance increment contour when the two eyes view two discs without concentric circles, luminance increment (8 cd/m2)

from a dark background (0.2 cd/m2). The thick black curve indicates the model prediction using the same LoG filter, contrast space

weight function (CSWF), and flat CSF as in Experiment 1. Dashed black curve (overlapped with the thick black curve) indicates the

prediction using the same LoG filter and CSWF as in Experiment 1, but using non-flat CSF in the model. Dashed magenta and green

curves (also overlapped with the thick black curve) indicate the model predictions using a smaller or a larger LoG filter than that in

Experiment 1, while using the same CSWF and flat CSF. Solid blue and red curves indicates the prediction using the same LoG filter

and flat CSF but a different CSWF with a slower (blue) or more rapid (red) dropping rate in space weight when going away from the

fovea. The dashed red curve (overlapped with the solid red curve) indicates the prediction using a rapid-dropping CSWF and a non-flat

CSF while the LoG filter is the same as in Experiment 1. (B) Equal-luminance increment contour when the two eyes view two discs

with a concentric circle only in one eye (e.g., LE) (Experiment 2a). The codes for model prediction curves are the same as in (A )(the

dashed magenta curve is overlapped with the thick black curve). (C) Equal-luminance increment contour when the two eyes view two

discs with circles at different locations of the disc in the two eyes. One eye’s circle (e.g., LE’s) is in the upper and the other eye’s circle

(e.g., RE’s) is in the lower half of the disc, and the luminance inside the upper circle is the target luminance on which the brightness

match was performed (Experiment 2b). The codes for model prediction curves are the same as in (A) (the dashed magenta and green

curves are overlapped with the thick black curve). (D) The disc size effect on binocular luminance summation. One eye (e.g., RE) views

the luminance, fixed at 72 cd/m2, of a large square of 148 x 148 on the dark background (0.2 cd/m2), and the other eye (e.g., LE) views

a central disc of variable size (18, 38, 58, 78, 98, 118, 138 in diameters), with luminance fixed at 12 cd/m2, plus a surrounding square of

148 3 148, with luminance fixed at 3.7 cd/m2, on the dark background (0.2 cd/m2). The luminance of the reference (same incremental

luminance in both eyes) was adjusted to match the brightness of the test disc region. The binocularly matched luminance of the

central disc was measured and plotted as a function of the disc diameter. The codes for model prediction curves are the same as in

(A) (the dashed magenta and green curves are overlapped with the thick black curve).

Journal of Vision (2017) 17(13):4, 1–32 Ding & Levi 14



10), and therefore its weight in binocular summation
should increase. To address this model prediction,
following Levelt (1965), we assessed binocularly
perceived luminance by a matching method when one
eye (e.g., RE) views a large 148 3148 luminance square
(72 cd/m2) and the other eye (e.g., LE) views a
luminance disc (12 cd/m2) with its size varying from
18–138 in diameter. The luminance of the reference
(same incremental luminance in both eyes) was
adjusted to match the brightness of the test disc
region. Figure 5D shows the matched luminance as a
function of disc size. The short black bars indicate the
two eyes luminance levels, and the horizontal dashed
black line indicates their average (¼42 cd/m2) at which
the two eyes have equal weight in the binocular
summation. If the matched luminance is below the
average line, the LE has more weight in the
summation; if above the average line, the RE has more
weight in the summation. All experimental data were
below the average line; the disc looks dimmed in
binocular view, even though the other eye is viewing a
very bright large square. The smaller the disc, the
more dimmed it appears in binocular view, consistent
with Levelt (1965) and confirming the model predic-
tion. We tested two stimulus durations. When
binocularly viewing with a long duration (1000 ms),
the LE’s disc luminance has more weight in the
binocular summation than at a short duration (200
ms). Again, installing a nonflat CSF provides better
model predictions (dashed black and red curves) than
flat CSF, whereas models with different LoG filters
give similar predictions. The model prediction is much
improved by increasing the dropping rate of the space
weight in CSWF when going away from the fovea.

Experiment 3: Binocular combination of second-
order stimuli

To test whether the model can also predict second-
order binocular combination by simply adding a
rectification in the signal path of each eye, we
conducted four experiments to evaluate binocular
combination of contrast-modulation (CM) gratings
when the carrier contrast (CC) was constant or varied.

Experiment 3a: Binocular phase combination of
CM gratings with constant carrier contrast

Figure 6A shows the results of binocular CM phase
combination when the CC was fixed at 0.2 and the CM
phases in the two eyes were -458 and 458, respectively.
When the CM depth varied in the two eyes, no matter
whether the two eyes carriers were correlated, uncor-
related or anticorrelated, the perceived CM phase

(colored markers in Figure 6A) followed the prediction
of linear summation (overlapped with solid colored
curves), consistent with (Zhou et al., 2014). All of our
five nested models correctly predict the results (solid
colored curves) because they all predict equal weights
of the two eyes in binocular combination when the CC
was identical in the two eyes.

Experiment 3b: Binocular phase combination of
CM gratings with varied carrier contrast

To test the models when the two eyes have unequal
weights, we ran the experiment of binocular CM phase
combination when the interocular CC ratio varied, but
the CM depth was identical in the two eyes (¼0.7;
Figure 6B). The results (colored markers) were similar
to those of first-order stimuli (see Figure 8B), deviating
from the prediction of linear summation (black dashed
curve), no matter whether the two eyes’ carriers are
correlated, uncorrelated, or anticorrelated, which were
correctly predicted by the full model (Figure 2A;
colored curved).

Experiment 3c: Binocular CM depth
combination of CM gratings with constant
carrier contrast

To further test our models, we measured the CM
depth by matching a monocular reference CM depth to
the test one. When the CC was fixed (¼0.2) in the two
eyes, and the CM depth varied in the RE and was fixed
(¼0.7) in the LE (Figure 6C), the monocular reference
CM depth (always in the LE; CC¼ 0.2 and CM varied)
was matched to the test pattern. The matched CM
depth also followed linear summation, consistent with
the previous study (Zhou et al., 2014).

Experiment 3d: Binocular CM depth
combination of CM gratings with varied carrier
contrast

In this experiment, the CC varied (0–0.2) in the RE
and fixed (¼0.2) in the LE, and the CM depth was
identical in the two eyes (¼0.7). Similar to contrast
constancy in binocular contrast combination of first-
order stimuli, the binocular matched CM depth also
remains constant (’0.7) even when the CC varied in
one eye (Figure 6D). The monocular reference CM
grating (CC ¼ 0.2 and CM varied) was always in the
LE.
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Modeling

F test for comparison of nested models

Let Np be the number of model parameters and Ndata

be the number of observed data points. We have the
number of degrees of freedom m ¼ Ndata �Np, and the
reduced chi-square is given by v2m ¼ v2=m. If Model a is
nested within Model b, the F test that tests whether
Model b significantly improves data fitting is given by,

Fa;b ¼
v2 að Þ�v2 bð Þ
mðaÞ�mðbÞ

v2 bð Þ
mðbÞ

; ð26Þ

which compares the variance between models a and b
with the variance inside model b and has F distribution
with [m að Þ � m bð Þ, mðbÞ] degree of freedom. When the F
value is large enough, Model a can be rejected at a
small false-rejection probability p(F).

The AIC for comparison of different models

We used the Akaike information criterion (AIC), a
measure of the relative goodness of fit of a statistical
model developed by Akaike (1974), to compare
different models. Let Np be the number of model
parameters and LMax be the maximized value of the
likelihood function for the estimated model, AIC is

Figure 6. Binocular combination of second-order sinewave gratings either when interocular contrast modulation (CM) depth ratio

varied (base CM depth¼0.7) at fixed carrier contrast (CC¼ 0.2) or when interocular CC ratio varied (base CC¼0.2) at fixed CM depth

(¼0 .7) in the two eyes. Smooth solid curves are predictions of the full model (Figure 2A) with parameters in Table 4. (A) Binocular CM

phase combination when interocular CM depth ratio varied at fixed CC. The black dashed curve indicates the prediction of linear

summation (overlapped with solid colored curves). (B) Binocular phase combination when interocular CC ratio varied at fixed CM

depth. The black dashed curve indicates the prediction of linear summation. (C) Binocular CM depth combination when interocular

CM depth ratio varied at fixed CC. The colored dashed curves indicate the predictions of the first nested model (contrast-weighted

summation model). (D) Binocular CM depth combination when interocular CC ratio varied at fixed CM depth. The colored dashed

curves indicate the predictions of the first nested model (contrast-weighted summation model). The black dashed horizontal line

indicates CM depth constancy in binocular combination of second order stimuli even when the CC varied in one eye.
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defined as AIC ¼ 2Np � 2 lnLMax. Assuming that the
errors are normally distributed and independent, after
ignoring the constant term, AIC is given by

AIC ¼ v2 þ 2Np: ð27Þ
To give a greater penalty for additional parameters,
Burnham and Anderson (2002) recommended the AIC
with a correction for finite sample sizes (AICc), which is
given by,

AICc ¼ AICþ
2Np Np þ 1

� �
Ndata �Np � 1

; ð28Þ

where Ndata is the number of observed data points.

Test five nested binocular combination models

With compression of logarithmic luminance function
and including both TCE and TLE in gain-control, we
tested five nested binocular combination models
(Model 1: Equation 16; Model 2: Equation 19; Model
3: Equation 20; Model 4: Equation 21; DSKL:
Equation 23).

Table 1 shows chi square values for model fitting and
statistical comparisons of Models 1–5, in which a
previous model is nested within its successor. Without
gain-control of gain-enhancement, i.e., b ¼ 0, the
DSKL model is simplified to be Model 4, and without
gain-enhancement, i.e., the gain-enhancement thresh-
old ge ¼ ‘, Model 4 is further simplified to be Model 3
(the DS model with asymmetric double-layer interoc-
ular gain-controls). When the double gain-controls are
symmetric, i.e., a ¼ 1, Model 3 is simplified to be
Model 2 (the DS model with symmetric double-layer
interocular gain-controls), and when the gain-control
threshold gc ¼ 0 or TCExTLE� 1, Model 2 is further
simplified to be Model 1 (contrast-and-luminance-
weighted summation model). The comparison of two
neighboring models was made through an F test with
the F value given in the row of the second and
subsequent models (F test and its p value are only
shown for the average data). Except for the step
modifying Model 3 to Model 4, each step of model
modification achieved significant improvement in data

fitting; the previous model could be rejected with a very
small (,0.001) probability of false rejection. However,
without gain control of the gain enhancement (Model
5: DSKL model), the gain enhancement itself in Model
4 failed to further improve the data fitting for all
observers.

Test of luminance compressors

We tested three luminance compressors by inserting
each of them before the DSKL model: (1) Stevens’ law;
(2) monocular luminance gain control; (3) luminance
logarithmic function. When luminance gain-control
threshold¼ 0 or when luminance � threshold,
monocular luminance gain-control is simplified to be
Stevens’ law. Table 2a compares the three nested
models: (1) the model without a luminance compressor
(or with a linear luminance compressor); (2) the model
with Stevens’ luminance compressor; and (3) the model
with monocular luminance gain-control (LG). Table 2b
compares two nested models: (1) the model without a
luminance compressor (or with a linear luminance
compressor); and (2) the model with a luminance
logarithmic function (LOG). The F tests show that
including a luminance compressor significantly im-
proves model fitting. Upgrading the compressor from
Steven’s law to luminance gain-control further im-
proves model fitting significantly. The models with LG
and LOG compressors have similar fitting perfor-
mance. Their reduced chi-squares and AICc are very
close, in both average and individual data.

Test of luminance energy

Our previous studies (Ding & Levi, 2014) showed
that the mean luminance influenced interocular sup-
pression. Reducing the mean luminance in one eye
reduced its suppression of the other eye. Indeed,
including the total luminance energy (TLE) in the
interocular gain-control significantly improved the
fitting performance of the DSKLþLOG model (Table
3: noTLE vs. withTLE-in-GC). However, including the
TLE in the gain-enhancement path did not improve the

Np m

JS PZ KK DM Average

v2 v2=m v2 v2=m v2 v2=m v2 v2=m v2 v2=m F test p(F) AICc

Mod1 4 370 1411.1 3.82 776.1 2.10 1814.9 4.92 1272.0 3.45 2600.2 7.03 2608.3

Mod2 5 369 878.0 2.39 697.7 1.90 1378.9 3.75 1227.7 3.34 1978.5 5.36 116 ,0.001 1988.7

Mod3 6 368 477.4 1.30 662.2 1.80 725.1 1.98 477.5 1.30 664.0 1.80 729 ,0.001 676.2

Mod4 7 367 477.2 1.30 662.2 1.81 713.0 1.94 476.3 1.30 664.0 1.81 0 1 678.3

DSKL 8 366 413.6 1.13 658.7 1.80 677.0 1.85 397.2 1.09 575.1 1.57 57 ,0.001 591.5

Table 1. Fitting statistics of five nested binocular combination models. Np: the number of parameters; m: degrees of freedom.
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fitting performance (noTLE vs. withTLE-in-GE), and
including the TLE in both the interocular gain-control
and gain-enhancement (withTLE-in-GCGE) made the
fitting performance worse than that of only including
the TLE in the gain-control path (withTLE-in-GC).
Although we do not have direct evidence for how the
luminance affects interocular enhancement, the fitting
statistics in Table 3 suggests that the TLE might have
no little or effect on interocular enhancement.

Model parameters

Table 4 shows the parameters of the DS (Model 3)
and DSKL models combining with a suitable lumi-
nance compressor, either a luminance gain-control
(LG) or a logarithmic function (LOG).

Model simulation

The DSKL model was originally developed for the
combination of binocular signals within a relatively
narrow spatial-frequency band on a fixed luminance
background, with an influence of stimuli (mask) in
other spatial frequency bands on this combination
(Ding et al., 2013b; Ding & Sperling, 2006, 2007). The
gain-control was dependent on both the signal and the
mask. The total contrast energy (TCE), summed over

all spatial-frequency channels, was used in the gain-
control paths. In the current study, although the model
was proposed for a more general case, it was only tested
partially. In Experiment 1, partial model parameters
(Table 4) were estimated with perceived luminance of a
dichoptic luminance disc, but others were just selected
to be reasonable, because we did not have sufficient
data to fit them. To further test the model, we ran
Experiments 2 and 3 with more complex stimuli and
used the model obtained from Experiment 1, with a
different combination of LoG filter, space-weight
function, and CSF, to predict their results. We also
used the model to predict the results of our previous
studies. Theoretically, with model parameters (Table 4)
from fitting and a selected space-weight function (e.g.,
Equation 10 with R0 ¼ 0.18 and Rmax ¼ 22.68) and
Laplacian of Gaussian (LoG) filter (e.g., Equation 7
with ri ¼ 0:0458), we can use the model to predict
binocular combination of any two images. However,
we confined our simulations to two similar inputs to
avoid binocular rivalry, which has a different mecha-
nism that is out of scope of our model predictions.

Let ILðx; yÞ and IRðx; yÞ be two inputs to the two
eyes, the output, Î x; yð Þ, of the model (Figure 2A) is
given by Equation 23. A MATLAB program extracted
the image features (e.g., phase, luminance, contrast,
and contrast modulation) from both input and output
profiles. First, we need to test if the simulation can
predict the data of Experiment 1. After selecting a
suitable value of bi, the TCE defined in Equation 8 can

Np m

JS PZ KK DM Average

v2 v2=m v2 v2=m v2 v2=m v2 v2=m v2 v2=m F test p(F) AICc

– 6 368 602.2 1.64 787.2 2.14 1277.1 3.47 523.5 1.42 1183.3 3.22 1195.5

Steven 7 367 560.1 1.53 756.3 2.06 1147.0 3.13 500.1 1.36 1048.4 2.86 47 ,0.001 1062.7

LG 9 365 410.6 1.12 656.0 1.80 683.3 1.87 390.1 1.07 563.6 1.54 157 ,0.001 582.1

Table 2a. Fitting statistics of models with or without luminance compressors. Np: the number of parameters; m: degrees of freedom.

Np m

JS PZ KK DM Average

v2 v2=m v2 v2=m v2 v2=m v2 v2=m v2 v2=m F test p(F) AICc

– 6 368 602.2 1.64 787.2 2.14 1277.1 3.47 523.5 1.42 1183.3 3.22 1195.5

LOG 8 366 413.6 1.13 658.7 1.80 677.0 1.85 397.2 1.09 575.1 1.57 193 ,0.001 591.5

Table 2b. Fitting statistics of models with or without luminance compressors. Np: the number of parameters; m: degrees of freedom.

Np m

JS PZ KK DM Average

v2 v2=m v2 v2=m v2 v2=m v2 v2=m v2 v2=m F test p(F) AICc

noTLE 7 367 482.2 1.31 727.1 1.98 1068.8 2.91 450.7 1.23 871.8 2.38 886.1

withTLE in GC 8 366 413.6 1.13 658.7 1.80 677.0 1.85 397.2 1.09 575.1 1.57 188.8 ,0.001 591.5

withTLE in GE 8 366 482.2 1.32 727.1 1.99 1068.8 2.92 450.7 1.23 871.8 2.38 – – 886.1

withTLE in GCGE 8 366 434.1 1.19 661.1 1.81 687.6 1.88 399.8 1.09 612.3 1.67 – – 628.7

Table 3. Fitting statistics of models with or without including luminance energy. Np: the number of parameters; m: degrees of freedom.
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be calculated from the edge contrast (Equation 14).
Similarly, after selecting a suitable value of k, the total
luminance energy (TLE) defined in Equation 9 is equal
to the average luminance energy of the disc defined in
Equation 13. With these suitable values of bi and k , the
simulation provides accurate predictions of the data in
Figures 3 and 4, as shown by the solid black curves in
each panel.

Binocular luminance summation of luminance
discs with asymmetric contour information

In Experiment 1, for mathematical simplicity, we
assumed a flat CSF for the modeling. Here, we installed
a non-flat CSF for model simulation. Because of
suprathreshold stimuli used in this study, we used the
CSF obtained from a judging task (Mannos &
Sakrison, 1974), given by,

CSF ¼ 2:6 0:0192þ 0:114fsð Þ exp � 0:114fsð Þ1:1
� �

;

ð29Þ
which has a peak of value 1.0 at fs¼ 8.0 cpd and a zero-
frequency intercept of 0.05. Figure 7A shows its
response to a luminance disc with or without a
concentric circle. At each black-white border, a sharp
increase-and-then-decrease can be observed. In the
simulation, the binocular luminance output is defined
as the mean luminance of the central area, 0.38 away
from a border (e.g., between two vertical dashed lines in
Figure 7A), where the luminance response is almost
flat. When luminance discs in the two eyes have no
concentric circle (Experiment 1), there is little difference
in model predictions between flat and nonflat CSFs (see
sample predictions in Figure 5A). However, when
viewing two asymmetric stimuli (Experiment 2: Figure
5B–D), although the model with a flat CSF correctly
predicts the direction of the asymmetry, the prediction
shows less asymmetry than the data. Installing the
nonflat CSF further increases the asymmetry in
prediction when viewing asymmetric stimuli, which
much improves the model performance.

We tested three LoG filters, whose peak spatial
frequencies occur at 20 cpd (small), 10 cpd (middle),
and 5 cpd (large), respectively, in the simulation to
extract local contrast. Figure 7B shows their local
contrast outputs for a luminance disc with a concentric
circle. After selecting suitable constant bi in Equation 8
to make the TCE to be equal to the edge contrast for
each LoG filter, the models with different LoG filters
are very similar in predictions of the results of
Experiments 1 and 2.

We also tested three space weight functions, given by
Equations 10, 24, and 25, which have different
dropping rates in weight when going away from theM
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fovea. When the stimulus is shifted from the fovea, we
assumed that the space weight is proportional to 1/r
(slow CSWF given by Equation 24), 1/r2 (middle
CSWF given by Equation 10), or 1/r4 (fast CSWF given
by Equation 25). When a luminance disc increases in
size, its edge length increases (proportional to its radius
r), which would fully compensate the contrast weight
decrease for the slow CSWF. Therefore the model with
the slow CSWF would predict equal weighting of the
two eyes in luminance summation for discs with
different sizes (blue curve in Figure 7C). In contrast,
the model with the middle or fast CSWF predicts lower
weight for the eye with a larger size disc, because the
increasing edge length is not sufficient to compensate

the decrease in weight (Figure 7C). Following Levelt
(1965), we assumed that the binocularly perceived
luminance is a linear weighted sum of the two eyes’
luminances, i.e., B¼ wLLþ wRR with wLþ wR ¼ 1,
which is valid for most middle part of equal-luminance
increment contour in Figures 5A–C. From data of
Experiment 2c (Figure 5D), we calculated the LE’s
weight when viewing different size of discs and
replotted them in Figure 7C. The LE with a small disc
dominates binocular summation when the RE views a
large luminance square, and the LE’s weight decreases
when the disc size increases, thus rejecting the slow
CSWF. The middle CSWF was assumed based on the
fact that the cone density is proportional to 1/r2

Figure 7. Model simulations of binocular luminance summation of luminance discs with asymmetric contour information. (A)

Luminance response of a nonflat CSF following luminance compression for a luminance disc (8 cd/m2 luminance increment from dark

background) with (blue) or without (red) a concentric circle. (B) Local contrast output of three LoG filters following luminance

compression for a luminance disc (8 cd/m2 luminance increment from dark background) with a concentric circle. (C) The disc size

effect on binocular luminance summation: LE weight in luminance summation as a function of disc size (replotted from Figure 5D).

The RE views the luminance, fixed at 72 cd/m2, of a square of 148 3 148 on the dark background (0.2 cd/m2), and the LE views a

central disc of variable size (18, 38, 58, 78, 98, 118, 138 in diameters), with luminance fixed at 12 cd/m2, plus a surrounding square of 148

3 148, with luminance fixed at 3.7 cd/m2, on the dark background (0.2 cd/m2). The sum of the two eyes’ weights equal one. The star

markers show the results from Levelt (1965). Both simulation and data show that the LE has more weight in the luminance

summation, and that the LE’s weight decreases when the disc size increases.
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(Curcio et al., 1987; Curcio et al., 1990; Perry & Cowey,
1985; Williams, 1988). However, its dropping rate is
still not sufficient to explain the eye asymmetry in
Figure 7C. After installing the fast CSWF, the model
performance was much improved. Apparently, beyond
the retina, the central visual system also contributes to
the fovea-periphery asymmetry, e.g., the fovea receives
more attention than the periphery (Levi, Klein, &
Aitsebaomo, 1985).

To compare with previous studies, we also replotted
the results of Experiment 4 from Levelt (1965; stars in
Figure 7C), which are more asymmetric than our
results of short stimulus duration (200 ms; circles in
Figure 7C), but comparable with those of long stimulus
duration (1000 ms; squares in Figure 7C), most likely
because he used an adjustment task that has a long
stimulus duration.

Binocular combination of luminance modulated
(first-order) gratings

In the following, we simulated our previous binoc-
ular phase and contrast combination experiments
(Ding & Levi, 2016). The input first-order gratings

(Figure 8A) are given by,

IL x; yð Þ ¼ I0 1þmL sin 2pfsyþ hLð Þhcir x; yð Þð Þ
and

IR x; yð Þ ¼ I0 1þmR sin 2pfsyþ hRð Þhcir x; yð Þð Þ;
ð30Þ

where hcir x; yð Þ is a circular (radius¼ 1.58) space
window function (1 inside and 0 outside the circle) with
a blurred edge (Gaussian envelope: sigma¼ 0.18).

As shown in Figure 8A, the two input images are
first compressed by a luminance compressor (logarith-
mic luminance function), and then go through the
DSKL model to be combined. The nonlinear lumi-
nance compression distorts the input luminance profile,
resulting in the black-white asymmetry—the amplitude
in the black direction is larger than in white direction
(see 1-D sine waves in Figure 8A), consistent with
previous studies (He & MacLeod, 1998; Lu & Sperling,
2012).

For simulation of binocular phase combination,
hL ¼ �458, and hR ¼ 458, at one base contrast
(¼max[mL, mR]) and contrast ratio mR/mL, the binoc-
ular output grating Î x; yð Þ was first calculated from

Figure 8. Model simulation: Binocular combination of first-order sinewave gratings. The best-fit model parameters of Figures 3 and 4

(Table 4) were used in the simulation. (A) Two input sinewave gratings, their compressed images by a luminance compressor

(logarithmic luminance function), and the binocular output of the DSKL model. The one-dimensional sine waves are also shown for

the LE input, its compressed image and the binocular output. (B) Simulation of binocular phase combination. The two eye’s input

phases are�458 and 458, respectively as indicated by arrows on the sides, and the base contrast is 0.48 (red), 0.24 (blue), or 0.12

(green). The dashed black curve represents the prediction of the linear summation model. (C) Simulation of binocular contrast

combination: equal contrast contours. The two eye input phases are identical and the reference contrast is 0.48 (red), 0.24 (blue),

0.12 (green), or 0.06 (black). Experimental data from Ding and Levi (2016) are indicated as colored markers.
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Equation 23, and then, after Fourier transformation,
its phase (the perceived phase) was estimated as the
phase at spatial frequency fs (the peak frequency in the
spatial frequency domain). Figure 8B shows that the
predicted perceived phase as a function of contrast
ratio at one base contrast (colored curves) were a good
fit to the data (colored markers) of Ding and Levi
(2016). To simulate binocular contrast combination,
the two eyes have identical input phase, i.e., hL ¼ hR.
Figure 8C shows equal contrast contours when the
interocular contrast ratio varies at one base contrast.
The model output contrast is estimated by (max�min)
/ (maxþmin) of the output image Î x; yð Þ. As shown in
Figure 8C, the model gives good predictions of the
binocular contrast combination data of Ding and Levi
(2016).

Binocular combination of contrast modulated
(second-order) gratings

Similarly, we can simulate the binocular combina-
tion of second-order contrast-modulated (CM) grat-
ings. The input CM gratings are given by,

IL x; yð Þ ¼ I0 1þ 1þ CML sin 2pfsyþ hLð Þhcir x; yð Þð Þð
3NL x; yð Þhsq x; yð ÞÞ

and

IR x; yð Þ ¼ I0 1þ 1þ CMR sin 2pfsyþ hRð Þhcir x; yð Þð Þð
3NR x; yð Þhsq x; yð ÞÞ; ð31Þ

where hL ¼ �458 and hR ¼ 458, CML and CMR are
contrast modulation depth, NL x; yð Þ and NR x; yð Þ are

the carriers (binary noise), hcir x; yð Þ is a circular space
window, the same with the one in Equation 30, and
hsq x; yð Þ is a square window (4.58 3 4.58) with sharp
edges.

When the carriers in the two eyes are positively
correlated or uncorrelated, linear summation of the two
eyes’ CM gratings with different phases has the same
spatial frequency fs of CM as the monocular inputs and
the combined phase of CM gratings can be measured at
fs. However, when the two eyes have CM gratings of
different phases with anticorrelated carriers, their linear
combination doubles the spatial frequency ð2fsÞ(Figure
9A) because the background contrast is canceled in the
combination. This is not consistent with experimental
observations (Zhou et al., 2014)—the binocular com-
bined CM grating has the same spatial frequency of
CM as the monocular inputs, no matter whether the
carriers in the two eyes are correlated, uncorrelated, or
anticorrelated. Therefore, in the binocular combination
model of second-order (CM) stimuli, we added a
rectification in the signal path of each eye before the
binocular combination site (Figure 2A) to avoid the
cancelation when the two eyes’ carriers are anti-
correlated. However, in the standard FRF (filter-
rectify-filter) structure for second-order stimuli, the
second filter can be either before or after the binocular
combination (our simulation cannot tell the difference).

The binocular combination model of second-order
stimuli is almost the same as that of first-order stimuli
except the final output is given by

Î x; yð Þ ¼ ÎL x; yð Þ
�� ��þ ÎR x; yð Þ

�� ��:
In the simulation, we first Fourier transformed the

Figure 9. (A). Linear summation of two eyes’ CM gratings with 908 out of phase when their carriers are anti-correlated. (B). Total

contrast energy (TCE) normalized with the gain-control threshold when the contrast modulation (CM) depth is varied but the carrier

contrast (CC) is fixed at 0.2 (blue) or when the CM depth is fixed at 0.7 but the CC is varied (red). The gain-control threshold is also

indicated (black dashed line).
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binocular output Î x; yð Þ and then measured the phase
and the amplitude (the binocular CM depth) at the
spatial frequency fs (the peak frequency in the spatial
frequency domain), which is equivalent to recovering
the CM sinewave using the second filter of the FRF
model after the binocular combination site. In the same
way, two monocular CM depths were measured, and
the higher one was used to normalize the binocular CM
depth.

By simulation, we found that the TCE is indepen-
dent of the contrast modulation (CM) depth, but
dependent on the carrier contrast (CC; Figure 9B).
When CC¼ 0.2, the TCE is about 90 times higher than
the gain-control threshold at all CM depths (blue curve
in Figure 9B). When the CC is identical in the two eyes,
their weights in binocular combination are equal even
though the interocular CM depth ratio varied, resulting
in linear binocular phase summation, no matter
whether the carrier is correlated, noncorrelated, or anti-
correlated (color curves in Figure 6A). Consistent with
(Zhou et al., 2014), the results (colored markers in
Figure 6A) of our Experiment 3a when the CC was
fixed at 0.2 but the interocular CM ratio varied, bore
out this prediction.

The aforementioned simulation suggests that the
interocular interaction is not based on local contrast,
which varies in a sinusoidal fashion for a CM grating,
but depends on the total contrast energy (TCE)
summed over space, which remains constant even when
the local contrast varies. This results in equal weighting
of the two eyes in the binocular combination of CM
gratings when their CCs are equal. However, it is
unclear whether the TCE is summed over the whole or
just a part of a retina. Further work is needed to answer
this question, and to reveal more detail of the space
weighting function for TCE and TLE.

When TCE � threshold and is equal in the two
eyes, all five nested models (see Model section) have
the property that the two eyes have equal weight in the
binocular combination. With this property, all five
models predict ‘‘linear’’ summation of CM gratings
with identical CC in the two eyes (Georgeson &
Schofield, 2016; Zhou et al., 2014), although the
models themselves are nonlinear in general. In other
words, the data in Figure 6A cannot distinguish
among models—any model with a symmetric structure
in the two eyes, can predict them. They cannot even
test any model parameters, which could be any value
without affecting the model prediction of linear
summation in Figure 6A.

Therefore, we ran Experiment 3b (Figure 6B) to vary
the CC in the two eyes to test whether a binocular
model, originally proposed for first-order stimuli, also
works for second-order stimuli. Again, all five nested
models gave similar predictions (solid colored curves in
Figure 6B), consistent with our previous study on first

order stimuli (Ding et al., 2013b), in which we also
found that the phase data alone were not enough to tell
the difference among our five nested models—the
amplitude information was needed to test the models.

Although all five nested models gave the two eyes
equal weights in the binocular combination of CM
gratings with identical CC, the weights given by
different models might be different. For example, the
weight given by the first nested model (contrast
weighted summation model) was 0.5, while the weight
given by the full model (the DSKL model) was around
0.56, no matter whether the two eyes’ carriers were
correlated, uncorrelated, or anticorrelated. The slightly
higher weight (;0.56) predicted by the DSKL model is
due to the interocular enhancement, which is included
in the DSKL model but absent in the contrast-weighted
model. However, in this study, we did not have
sufficient data to test this small difference between the
two models’ predictions (see Figure 6C).

The contrast-weighted summation model proposed
by Zhou et al. (2014) is similar to our first nested model
in predictions of the results of Experiments 3a–3d.
Georgeson and Schofield (2016) elaborated the Zhou
model by adding two monocular channels in parallel to
the binocular one. The final output was assumed to be
the maximum of the three channels. Its monocular
channels play a key role in preventing cancellation at
the antiphase disparity (1808), providing more reason-
able predictions of CM detection data when the CM
gratings were 1808 out of phase in the two eyes
(Georgeson & Schofield, 2016). However, when CM
phase disparity is 08–908, its binocular channel always
wins in the maximum operation, making the elaborated
model identical to Zhou et al.’s model. Therefore both
Zhou et al.’s model and its elaboration are similar to
our first nested model in predictions of the results of
Experiments 3a–3d.

Rebalancing binocular vision in amblyopia

The motivation for including the luminance energy
in the model comes from our previous study on
rebalancing binocular vision in amblyopia (Ding &
Levi, 2014). Individuals with amblyopia suffer imbal-
anced binocular vision. When they open both eyes, the
dominant eye (DE) strongly suppresses the non-
dominance eye (NDE), rendering it almost blind. To
reduce the DE’s suppression, we placed a neutral
density (ND) filter in front of the DE to reduce its
mean luminance, and we successfully rebalanced their
binocular vision with their two eyes having equal
contribution to binocular combination using the
appropriate ND filter. Here, we run model simulations
to see how the model works for binocular rebalancing
in amblyopia.
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To simulate amblyopic binocular combination, we
used our previous model and its parameters (Ding et
al., 2013a; without luminance compressors) but using
the product of total contrast energy and total
luminance energy (TCE 3 TLE) for calculating
interocular gain-control. Figure 10 shows the simula-
tion of binocular phase combination for amblyopic
observer GD with a ND filter in front of her DE (Ding
& Levi, 2014). The two eyes were presented with two
luminance gratings that differed in phase and contrast.
The mean luminance in the NDE was always 26.2 cd/
m2 (without an ND filter), but the mean luminance in
the DE was varied by placing a ND filter before it. The
TCE was proportional to the stimulus contrast, i.e.,
TCE ;Cc, and the TLE was proportional to the mean
luminance, i.e., TLE ; Lumg (g value comes from
Table 4). We normalized the TLE so that TLE¼1 with
no ND filter (i.e., Lum ¼ 26.2 cd/m2), because the
previous model was proposed for experiments per-
formed without varying the mean luminance and with
the assumption of TLE ¼ 1. Figure 10A shows the
model prediction at base contrast¼ 24% when an ND
filter is placed before the DE. Without an ND filter
before the DE (ND ¼ 0: red curve in Figure 10A),
binocular vision is very asymmetric. When both eyes
have equal contrast (contrast ratio¼ 1, dashed vertical
line), the perceived phase is almost the same as that of
the DE, reflecting the fact that the NDE makes very
little contribution to the percept. Placing ND filters,
from 0.0–2.0 log units, before the DE, results in the
perceived phase curve systematically shifting up and to
the left (from red to blue curves) towards the balance
point (perceived phase¼ 0 when the contrast ratio¼ 1).
When a 1.5 ND filter was placed before the DE and the
base contrast varied from 96% to 6% (Figure 10B), the
perceived phase curve also systematically shifted,
demonstrating that the binocular balance in amblyopia
also depends on the base contrast. These predictions

are consistent with our previous findings (Ding & Levi,
2014).

Discussion

Binocular combination is a complex process. Simple
models (like binocular averaging, power summation or
vector summation) might succeed for one task, but they
often fail to explain others. Our goal was to develop a
unified model that can explain all (or at least many)
binocular phenomena—the current 2D model repre-
sents a first step towards building such a model.
Although only some of its parameters were determined
by luminance summation data, our simulations show
that the model with the same parameters can also
explain binocular phase and contrast combination of
first-order gratings, binocular CM phase and depth
combination of second-order CM gratings, and binoc-
ular luminance summation with asymmetric contour
information in the two eyes. Installing a luminance
compressor enables the model to operate over a large
range of luminance input, and its properties at high
luminance levels are consistent with Stevens’ power law
for brightness perception (see the following). Including
luminance energy in the model represents an important
development from our previous models, significantly
improving the model fits to our current luminance data,
and also providing a reasonable account for rebalanc-
ing binocular vision in amblyopia by reducing the
luminance input in the DE (using an ND filter).
Although interocular enhancement could not be
observed directly in this study because of strong
interocular suppression, including it in the model
significantly improved its performance in interpreting
binocular luminance combination data, and is consis-
tent with our previous study for binocular phase and
contrast combination (Ding et al., 2013b).

Figure 10. Simulation of rebalancing binocular vision in amblyopia (Observer: GD; Ding & Levi, 2014). The two eyes were presented

with two luminance gratings that differ in phase (DE¼�458 and NDE¼ 458 as indicated on the two sides of the plot) and contrast.

The mean luminance in the NDE was always 26.2 cd/m2 (without ND filter), but the mean luminance in the DE varied by placing an ND

filter before it.
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Comparison with other models

We tested five nested binocular combination models
and found that when combined with a luminance
compressor and including luminance energy in inter-
ocular gain-control, both the Ding–Sperling (Model 3)
and the DSKL (Model 5) models provide accurate
predictions of binocular luminance summation of both
luminance increments and decrements over a large
range of luminance input. Do other binocular combi-
nation models give similar results if they are combined
with a luminance compressor? To answer this question,
we need to install a binocular contrast combination
model to explain luminance data because most models
were developed for contrast tasks. For this purpose, we
assumed that the luminance increment/decrement of a
target from its background is perceived through
luminance contrast perception. Figure 11 shows a
binocular contrast combination model combined with a
luminance compressor (LOG). The binocular contrast
combination model can be either the power summation
model (Legge, 1984), the normalization model (Moradi
& Heeger, 2009), the first stage of the two-stage model
(Meese et al., 2006), or the first stage of two-stageþ
Maximum operator model (Georgeson et al., 2016).

Power summation model

Legge (1984) proposed a square summation model to
explain binocular contrast summation, which was later
extended to the power summation model:

bm ¼ mc
L þmc

Rð Þ1=c; ð32Þ
where mL and mR, the edge contract of the two eyes’
discs, are given by Equation 15.

Contrast normalization model

Moradi and Heeger (2009) proposed the contrast
normalization model to explain their fMRI data in
binocular combination. The contrast is first extracted
from both eyes and pooled together, and then the
pooled contrast exerts gain control to the two eyes
separately before binocular combination. The binocu-
larly-combined contrast is given by:

bm ¼ mc
L

Sc þmc
L þmc

R

þ mc
R

Sc þmc
L þmc

R

: ð33Þ

The two-stage model

The two-stage model was originally proposed to
account for monocular, dichoptic, half binocular, and

binocular contrast discrimination (Meese et al., 2006),
and was later used to account for the perceived contrast
of a cyclopean sinewave (Baker et al., 2007). Its first
stage is for binocular contrast combination and its
second stage, located after binocular combination site,
is for contrast discrimination. The output of the first
stage of the two-stage model is given by,

bm ¼ 1

SþmL þmR
mc

L þ
1

SþmL þmR
mc

R; ð34Þ

Two-stage þMax model (GWMB model)

Recently, the two-stage model has been expanded to
account for a total of 11 different types of dipper
function with various combinations of pedestal, incre-
ments and decrements for targets (Georgeson et al.,
2016). In order to explain half binocular contrast
discrimination with decrements for targets, they ex-
tended the model by including two independent
monocular channels. The final perceived contrast is
assumed to be the maximum contrast of the three
channels (one binocular and two monocular channels).
The contrast in the binocular channel bmB is also given
by Equation 34, and the contrast in two monocular
channels is given by,

Figure 11. A binocular contrast combination model is modified

to predict binocular luminance summation. The luminance

inputs of target and background first go through a luminance

compressor (LOG) (Equation 4), and then two eyes’ luminance

contrasts (edge contrast: Equation 15) are extracted and

binocularly combined. The binocular contrast combination

model can be either the power summation model (Legge,

1984), the normalization model (Moradi & Heeger, 2009), the

first stage of the two-stage model (Meese et al., 2006) or the

first stage of the two-stage þMaximum operator model

(Georgeson et al., 2016).
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bmL ¼
1

SþmL
mc

L; bmR ¼
1

SþmR
mc

R: ð35Þ

The final perceived contrast is given bybm ¼ max½ bmL; bmR; bmB�; ð36Þ
Without adding any new parameters, the modified
model (Equations 34–36) had better performance in
predicting 11 different types of dipper function than the
original one of Equation 34 (Georgeson et al., 2016).
Unlike the independent monocular channels (no effect
from the other eye) assumed in Equations 34–36, a
monocular channel in the binocular combination model
proposed by Georgeson and Schofield (2016) for second-
order stimuli receives suppression from the other eye.

Table 5 shows the fitting statistics for model
comparison when fitting the results of Experiment 1.
Figure 12 only demonstrates the fits of these models for
luminance increment contours on a dark background
(0.2 cd/m2). Interestingly, the first stage of the two-
stage model also predicts both Fechner’s paradox and
the winner-take-all features after combining it with a
LOG luminance compressor, providing good predic-
tions for all the luminance data of Experiment 1.
However, the first stage of the two-stageþMax model
(the GWMB model) performed poorly; it failed to
predict Fechner’s paradox in the luminance increment
contour (Figure 12) because the Max operator in
Equation 36 kills the paradox. The power summation
(Legge model) and the contrast normalization models
also failed to predict Fechner’s paradox. The prediction
from the contrast normalization model was almost
identical to that of the Legge model, and therefore is
not shown in Figure 12.

Luminance compressors

Figure 13 shows the outputs of luminance compressors
in a combined model with the DS or DSKL models
(parameters fromTable 4).WhenLum. 5 cd/m2, in both
DS and DSKL combined models, the compressors’
output have slopes around 0.33–0.5, consistent with the

exponents in Steven’s power law for a 5-degree target and
a point source respectively basedonbrightness perception
experiments (Stevens, 1960). Both luminance compres-
sors LG and LOG have similar features: The luminance
output increases rapidly initially when the input increases
from dark, and then becomes compressed at a high
luminance level. Combined with interocular gain control,
this behavior provides a unified explanation of both
Fechner’s paradox and the winner-take-all phenomenon.

(1) When one eye’s (e.g., LE’s) luminance increases
from a dark background, both the compressed
luminance (the compressor’s output) and the edge
contrast (Equation 15) increases rapidly (increasing
slope . 1), and therefore its suppression of the other
eye (e.g., RE) increases rapidly (the RE’s output
decreases more rapidly than the LE’s increase),
resulting in Fechner’s paradox.

(2) When one eye’s (e.g., LE’s) luminance increases
from a light background, the output-increasing slope is
flat (0.33–0.5). Its suppression of the other eye can be
canceled by its own increase in the binocular combi-
nation, resulting in the winner-take-all phenomenon.
With the same amplitude of input change, the
decrement has more contrast energy than the increment
because of luminance compression, i.e., the black-white
asymmetry (Lu & Sperling, 2012; MacLeod, 1972). The
model correctly predicts that the winner-take-all
phenomenon will be more evident in the equal-
luminance decrement contour than in the equal-
luminance increment contour (Figures 3 and 4).

He and MacLeod (1998) applied contrast-modula-
tion flicker to study the dynamics and spatial resolution
of the light adaptation process. Because of the black-
white asymmetry, their observers saw brightness
changes (contrast-modulation flicker) when the con-
trast of a high frequency grating was modulated
periodically between zero and a peak value, even
though its spatial and temporal average luminance was
kept constant. They found that the light adaptation

Np m

JS PZ KK DM Average

v2 v2=m v2 v2=m v2 v2=m v2 v2=m v2 v2=m AICc

Legge 3 371 908.6 2.45 2129.8 5.74 1501.3 4.05 786.6 2.12 2042.0 5.50 2048.1

Norm 4 370 908.6 2.46 2129.8 5.76 1501.3 4.06 786.6 2.13 2042.0 5.52 2050.2

Two-stage 4 370 591.7 1.60 698.1 1.89 1069.5 2.89 583.8 1.58 938.1 2.54 946.2

GWMB 4 370 698.9 1.89 1879.6 5.08 1119.7 3.03 666.6 1.80 1472.0 3.98 1480.1

DS 6 368 477.4 1.30 662.2 1.80 725.1 1.98 477.5 1.30 664.0 1.80 676.2

DSKL 8 366 413.6 1.13 658.7 1.80 677.0 1.85 397.2 1.09 575.1 1.57 591.5

Table 5. Model comparison (combining with a LOG compressor). Np: the number of parameters; m: degrees of freedom; DS model:
Equation 20 (Model 3); DSKL model: Equation 23 (Model 5); Two-stage model: Equation 31; Two-stageþMax model (GWMB model):
Equations 31-33; Legge Model (power summation model): Equation 29; contrast normalization model: Equation 30.
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acted very rapidly (, 20 ms) with very high spatial
resolution (. 100 cpd), at which the grating itself was
too fine to be visually resolved as a pattern. They
argued that the light adaptation occurs very early and
very locally, either residing within individual photore-
ceptors or operating on signals from individual
receptors.

The site of interocular interaction

The lateral geniculate nucleus (LGN) is the first
location at which interocular interactions occur in the
retino-geniculo-cortical pathways. Although each lam-
ina of the LGN receives direct retinal afferents from
only one eye (the dominant eye), stimuli in the other

Figure 12. Prediction of equal luminance increment contours at dark background of five binocular combination models combining

with a luminance compressor (LOG). For the two-stage and the GWMB models, only the first stage was tested. The contrast

normalization model gave the identical prediction to the Legge model (power summation model).
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eye (the nondominant eye) also inhibit (nondominant
inhibition) or facilitate (nondominant facilitation) its
dominant response to the dominant-eye stimuli.

Nondominant eye inhibition has been well docu-
mented in both cat and monkey LGN (Guido, Tumosa,
& Spear, 1989; Moore, Spear, Kim, & Xue, 1992; Pape
& Eysel, 1986; Rodieck & Dreher, 1979; Sanderson,
Bishop, & Darian-Smith, 1971; Schroeder, Tenke,
Arezzo, & Vaughan, 1990; Sengpiel, Blakemore, &
Harrad, 1995; Singer, 1970; Tong, Guido, Tumosa,
Spear, & Heidenreich, 1992; Wang, Dreher, & Burke,
1994; Xue, Ramoa, Carney, & Freeman, 1987).
Sengpiel et al. (1995) reported that the mean dominant
response in cat LGN was inhibited by up to 44% during
stimulation through the nondominant eye with gratings
of any orientation; This nondominant inhibition was
essentially independent of the orientation and direction
of drift of the gratings shown to the nondominant eye.
Even an iso-oriented grating presented to the non-
dominant eye exerted inhibition on the dominant eye’s
response, which was essentially independent of inter-
ocular phase differences (Sengpiel et al., 1995), in
contrast to the phase-selective (e.g., disparity selective)
interaction seen in many binocularly driven cells in
visual cortex (Ohzawa & Freeman, 1986; Ohzawa,
Sclar, & Freeman, 1985). This nondominant inhibition
in the LGN may provide the physiological substrate for
the interocular gain-control in binocular combination,
because (1) cells in the LGN generally receive
excitatory input from only one eye, but their dominant
responses are influenced by the other eye; (2) the
interocular gain-control is also essentially independent

of the orientation and direction of drift of the gratings
(Ding & Sperling, 2006, 2007); and (3) the interocular
gain-control is also essentially independent of inter-
ocular phase differences of iso-oriented gratings (Ding
& Sperling, 2006, 2007).

More interestingly, the literature on the cat dLGN
(dorsal LGN) also supports our assumption of the
gain-control of gain-control (e.g., the RE’s gain-control
to the LE itself is gain-controlled by the LE, blue path
in Figure 2A), which was initially introduced to the
model to avoid excessive interocular-suppression in
binocular combination (Ding & Sperling, 2006, 2007).
Pape and Eysel (1986) found that afferent activity from
the dominant eye reduced inhibition from the non-
dominant eye in the cat dLGN. They demonstrated this
by a localized destruction of the receptive field area in
the dominant eye that greatly increased the nondom-
inant eye inhibition. Wang et al. (1994) also demon-
strated the strong dependence of nondominant
inhibition on the maintained discharge rate of the cat
dLGN cell by quantifying the nondominant inhibition
as the ratio of the inhibition dip to the maintained
discharge rate (the ‘‘dip ratio’’). They found that, at low
maintained discharge rates, the dip ratio approached
unity; as the maintained discharge rate increased, the
dip ratio decreased.

The origin of the nondominant inhibition of the
LGN cells remains uncertain. It could conceivably be
due to direct inhibitory interaction between right-eye
and left-eye laminae of the LGN, via inhibitory
interneurons (Guillery, 1966), which is supported by
the fact that the visual cortex removal does not reduce
nondominant influences on LGN cells (Pape & Eysel,
1986; Sanderson et al., 1971; Singer, 1970; Tumosa,
McCall, Guido, & Spear, 1989). However, Ding and
Sperling (2006, 2007) found that, although essentially
orientation independent, the interocular gain control
was somewhat more effective for vertical and horizon-
tal gratings than diagonal ones, which suggests that
some of the gain control is likely of cortical origin, i.e.,
arises beyond the LGN, because the LGN cells are
essentially indifferent to orientation.

Unlike nondominant eye inhibition, nondominant
eye facilitation in the LGN is less well documented.
Schroeder et al. (1990) found nondominant eye
facilitation in monkey LGN using flash-evoked multi-
unit activity (MUA) record. They reported that the
amplitude of the binocular response is more than twice
that of the monocular dominant response, and is not
simply the sum of the monocular dominant and
nondominant responses. This nondominant facilitation
might provide the physiological substance for the
interocular gain-enhancement in binocular combina-
tion. Although the model assumes gain-control of gain-
enhancement (e.g., the RE-to-LE’s gain-enhancement
itself receives the gain-control form the LE; red path in

Figure 13. Simulation of luminance compressors. The model

parameters were given in Table 4. The Stevens’ power law,

based on brightness perception experiments (Stevens, 1960),

was also shown for a 58 target (power¼ 0.33) or a point source

(power ¼ 0.5) in the dark.
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Figure 2A), it is still unclear whether the afferent
activity from the dominant eye reduces the nondomi-
nant eye facilitation in the LGN.

Similar to retinal ganglion cells, LGN cells have
circular RFs when stimulated through the dominant
eye, typically with an antagonistic center-surround
organization. However, through the nondominant eye,
the LGN cells have no center-surround receptive-field
structure and receive similar nondominant eye influ-
ence from spots or bars of either light or dark (Guido et
al., 1989; Rodieck & Dreher, 1979; Sanderson et al.,
1971; Singer, 1970). Thus, the nondominant eye
influence in the LGN cells may be nonspecific for input
images. This is consistent with our findings that the
interocular interaction depends on the total contrast
energy (TCE), which is a weighted sum over space and
spatial-frequency domains, no matter whether it is a
signal or noise. However, the magnitude of nondom-
inant inhibition depended on the spatial frequency of
the gratings presented to the nondominant eye (Moore
et al., 1992), with its maximum being at a spatial
frequency close to the one eliciting the strongest
excitation in the dominant eye. Although we also found
that the interocular gain-control was spatial-frequency
dependent (Ding & Sperling, 2006, 2007), and included
a spatial-frequency modulation transfer function
(FMTF) into the model (Figure 2B), it is still unclear
whether the maximum frequency of FMTF is related to
the signal frequency.

Future work

Although the current model is quite complicated,
there is still a long way to go in order to build a unified
model. Further work is needed to answer the following
questions: (1) What are the details of the space
weighting functions for calculation of TCE and TLE?
Are they different or the same for TCE and TLE? Does
the weighted summation take place over the entire
retina or just in a localized retinal area? (2) What are
the details of the LoG filter for extracting local
contrast? How many different LoG filters are required
to extract local contrast at different scales? (3) What are
the details of the FMTF (spatial-frequency modulation
transfer function) for interocular gain-control? Does it
depend on the signal frequency? (4) Is it possible to
design an experiment to reveal the interocular en-
hancement in normal vision? Why does the brain need
interocular enhancement? (5) How does binocular
disparity affect interocular interactions? (6) How does
interocular correlation affect interocular interactions?
(7) Does binocular combination need a motor/sensory
fusion mechanism?

The current model is two-dimensional and static,
which might be a specific case of a dynamic 3D model

that reaches a steady state at a constant binocular
disparity. Although it is still unclear how to include
depth cues and dynamic terms into the model to give
vivid 3D predictions from two 2D inputs, the current
model might be able to serve as an initial step for future
development of a more general model.

Keywords: interocular gain-control, interocular gain-
enhancement, luminance compressor, luminance energy,
contrast modulation

Acknowledgments

This work was supported by National Eye Institute
grant R01EY020976 from the National Eye Institute.
Publication made possible in part by support from the
Berkeley Research Impact Initiative (BRII) sponsored
by the UC Berkeley Library.

Commercial relationships: none.
Corresponding author: Jian Ding.
Email: jian.ding@berkeley.edu.
Address: School of Optometry and the Helen Wills
Neuroscience Institute, University of California,
Berkeley, Berkeley, CA, USA.

References

Akaike, H. (1974). A new look at the statistical model
identification. IEEE Transactions on Automatic
Control, 19(6), 716–723.

Anderson, P. A., & Movshon, J. A. (1989). Binocular
combination of contrast signals. Vision Research,
29(9), 1115–1132.

Anstis, S., & Ho, A. (1998). Nonlinear combination of
luminance excursions during flicker, simultaneous
contrast, afterimages and binocular fusion. Vision
Research, 38(4), 523–539.

Baker, D. H., Meese, T. S., & Georgeson, M. A. (2007).
Binocular interaction: Contrast matching and
contrast discrimination are predicted by the same
model. Spatial Vision, 20(5), 397–413.

Baker, D. H., Wallis, S. A., Georgeson, M. A., &
Meese, T. S. (2012). Nonlinearities in the binocular
combination of luminance and contrast. Vision
Research, 56(0), 1–9.

Banton, T., & Levi, D. M. (1991). Binocular summa-
tion in vernier acuity. Journal of the Optical Society
of America A, 8(4), 673–680.

Bearse, M. A., Jr., & Freeman, R. D. (1994). Binocular
summation in orientation discrimination depends

Journal of Vision (2017) 17(13):4, 1–32 Ding & Levi 29

mailto:jian.ding@berkeley.edu


on stimulus contrast and duration. Vision Research,
34(1), 19–29.

Blake, R., & Wilson, H. (2011). Binocular vision.
Vision Research, 51(7), 754–770.

Brainard, D. H. (1997). The psychophysics toolbox.
Spatial Vision, 10(4), 433–436.

Burnham, K. P., & Anderson, D. (2002). Model
selection and multi-model inference: A pratical
informatio-theoric approch. New York: Springer-
Verlag.

Campbell, F. W., & Green, D. G. (1965). Monocular
versus Binocular Visual Acuity. Nature, 208(5006),
191–192.

Cogan, A. I. (1987). Human binocular interaction:
Towards a neural model. Vision Research, 27(12),
2125–2139.

Cohn, T. E., & Lasley, D. J. (1976). Binocular vision:
two possible central interactions between signals
from two eyes. Science, 192(4239), 561–563.

Curcio, C. A., Sloan, K. R., Kalina, R. E., &
Hendrickson, A. E. (1990). Human photoreceptor
topography. Journal of Comparative Neurology,
292(4), 497–523.

Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson,
A. E., & Kalina, R. E. (1987). Distribution of cones
in human and monkey retina: Individual variability
and radial asymmetry. Science, 236(4801), 579–582.

de Weert, C. M., & Levelt, W. J. M. (1974). Binocular
brightness combinations: Additive and nonadditive
aspects. Perception & Psychophysics, 15(3), 551–
562.

Ding, J., Klein, S. A., & Levi, D. M. (2013a). Binocular
combination in abnormal binocular vision. Journal
of Vision, 13(2):14, 1–31, doi:10.1167/13.2.14.
[PubMed] [Article]

Ding, J., Klein, S. A., & Levi, D. M. (2013b). Binocular
combination of phase and contrast explained by a
gain-control and gain-enhancement model. Journal
of Vision, 13(2):13, 1–37, doi:10.1167/13.2.13.
[PubMed] [Article]

Ding, J., & Levi, D. (2015). Interocular contrast gain
control plus monocular luminance gain control can
explain binocular luminance summation. Journal of
vision, 15(12):263, doi:10.1167/15.12.263. [Abstract]

Ding, J., & Levi, D. M. (2014). Rebalancing binocular
vision in amblyopia. Ophthalmic and Physiological
Optics, 34(2), 199–213.

Ding, J., & Levi, D. M. (2016). Binocular contrast
discrimination needs monocular multiplicative
noise. Journal of Vision, 16(5):12, 1–21, doi:10.
1167/16.5.12. [PubMed] [Article]

Ding, J., & Sperling, G. (2006). A gain-control theory

of binocular combination. Proceedings of the
National Academy of Science USA, 103(4), 1141–
1146.

Ding, J., & Sperling, G. (2007). Binocular combination:
Measurements and a model. In L. Harris & M.
Jenkin (Eds.), Computational vision in neural and
machine systems (pp. 257–305). Cambridge, UK:
Cambridge Unversity Press.

Engel, G. (1969). The autocorrelation function and
binocular brightness mixing. Vision Research, 9(9),
1111–1130.

Engel, G. (1970). Tests of a model of binocular
brightness. Canadian Journal of Psychology/Revue
canadienne de psychologie, 24(5), 335.

Geisler, W. S. (1981). Effects of bleaching and
backgrounds on the flash response of the cone
system. The Journal of Physiology, 312, 413.

Geisler, W. S. (1983). Mechanisms of visual sensitivity:
backgrounds and early dark adaptation. Vision
Research, 23(12), 1423–1432.

Georgeson, M. A., & Schofield, A. J. (2016). Binocular
functional architecture for detection of contrast-
modulated gratings. Vision Research, 128, 68–82.

Georgeson, M. A., Wallis, S. A., Meese, T. S., & Baker,
D. H. (2016). Contrast and lustre: A model that
accounts for eleven different forms of contrast
discrimination in binocular vision. Vision Research,
129, 98–118.

Grossberg, S., & Kelly, F. (1999). Neural dynamics of
binocular brightness perception. Vision Research,
39(22), 3796–3816.

Guido, W., Tumosa, N., & Spear, P. D. (1989).
Binocular interactions in the cat’s dorsal lateral
geniculate nucleus. I. Spatial-frequency analysis of
responses of X, Y, and W cells to nondominant-eye
stimulation. Journal of Neurophysiology, 62(2),
526–543.

Guillery, R. (1966). A study of Golgi preparations from
the dorsal lateral geniculate nucleus of the adult
cat. Journal of Comparative Neurology, 128(1), 21–
49.

Hayhoe, M., Benimoff, N., & Hood, D. (1987). The
time-course of multiplicative and subtractive ad-
aptation process. Vision Research, 27(11), 1981–
1996.

Hayhoe, M., Levin, M., & Koshel, R. J. (1992).
Subtractive processes in light adaptation. Vision
Research, 32(2), 323–333.

He, S., & MacLeod, D. I. (1998). Contrast-modulation
flicker: Dynamics and spatial resolution of the light
adaptation process. Vision research, 38(7), 985–
1000.

Journal of Vision (2017) 17(13):4, 1–32 Ding & Levi 30

http://dx.doi.org/10.1167/13.2.14
https://www.ncbi.nlm.nih.gov/pubmed/23397039
http://jov.arvojournals.org/article.aspx?articleid=2193806
http://dx.doi.org/10.1167/13.2.13
https://www.ncbi.nlm.nih.gov/pubmed/23397038
http://jov.arvojournals.org/article.aspx?articleid=2193805
http://dx.doi.org/10.1167/15.12.263
http://jov.arvojournals.org/article.aspx?articleid=2433354&resultClick=1
http://dx.doi.org/10.1167/16.5.12
http://dx.doi.org/10.1167/16.5.12
https://www.ncbi.nlm.nih.gov/pubmed/26982370
http://jov.arvojournals.org/article.aspx?articleid=2504105


Hou, F., Huang, C.-B., Liang, J., Zhou, Y., & Lu, Z.-
L. (2013). Contrast gain-control in stereo depth and
cyclopean contrast perception. Journal of Vision,
13(8):3, 1–19, doi:10.1167/13.8.3. [PubMed]
[Article]

Huang, C. B., Zhou, J., Zhou, Y., & Lu, Z. L. (2010).
Contrast and phase combination in binocular
vision. PLoS One, 5(12), e15075.

Legge, G. E. (1981). A power law for contrast
discrimination. Vision Research, 21(4), 457–467.

Legge, G. E. (1984). Binocular contrast summation–I.
Detection and discrimination. Vision Research,
24(4), 373–383.

Legge, G. E., & Rubin, G. S. (1981). Binocular
interactions in suprathreshold contrast perception.
Perception & Psychophysics, 30(1), 49–61.

Lehky, S. R. (1983). A model of binocular brightness
and binaural loudness perception in humans with
general applications to nonlinear summation of
sensory inputs. Biological Cybernetics, 49(2), 89–97.

Levelt, W. J. (1965). Binocular brightness averaging
and contour information. British Journal of Psy-
chology, 56(1), 1–13.

Levi, D. M., Klein, S. A., & Aitsebaomo, A. (1985).
Vernier acuity, crowding and cortical magnifica-
tion. Vision Research, 25(7), 963–977.

Li, X., Lu, Z.-L., Xu, P., Jin, J., & Zhou, Y. (2003).
Generating high gray-level resolution monochrome
displays with conventional computer graphics cards
and color monitors. Journal of Neuroscience
Methods, 130(1), 9–18.

Lu, Z.-L., & Sperling, G. (2012). Black–white asym-
metry in visual perception. Journal of Vision,
12(10):8, 1–21, doi:10.1167/12.10.8. [PubMed]
[Article]

MacLeod, D. I. (1972). The Schrodinger equation in
binocular brightness combination. Perception, 1(3),
321–324.

Mannos, J., & Sakrison, D. (1974). The effects of a
visual fidelity criterion of the encoding of images.
IEEE transactions on Information Theory, 20(4),
525–536.

Mansfield, J. S., & Legge, G. E. (1996). The binocular
computation of visual direction. Vision Research,
36(1), 27–41.

Mante, V., Frazor, R. A., Bonin, V., Geisler, W. S., &
Carandini, M. (2005). Independence of luminance
and contrast in natural scenes and in the early
visual system. Nature Neuroscience, 8(12), 1690–
1697.

Marr, D., & Hildreth, E. (1980). Theory of edge

detection. Proceedings of the Royal Society of
London B: Biological Sciences, 207(1167), 187–217.

Meese, T. S., Georgeson, M. A., & Baker, D. H. (2006).
Binocular contrast vision at and above threshold.
Journal of Vision, 6(11):7, 1224–1243, doi:10.1167/
6.11.7. [PubMed] [Article]

Moore, R. J., Spear, P. D., Kim, C. B. Y., & Xue, J.-T.
(1992). Binocular processing in the cat’s dorsal
lateral geniculate nucleus III. Spatial frequency,
orientation, and direction sensitivity of nondomi-
nant-eye influences. Experimental Brain Research,
89(3), 588–598.

Moradi, F., & Heeger, D. J. (2009). Inter-ocular
contrast normalization in human visual cortex.
Journal of Vision, 9(3):13, 1–22, doi:10.1167/9.3.13.
[PubMed] [Article]

Ohzawa, I., & Freeman, R. D. (1986). The binocular
organization of complex cells in the cat’s visual
cortex. Journal of Neurophysiology, 56(1), 243–259.

Ohzawa, I., Sclar, G., & Freeman, R. D. (1985).
Contrast gain control in the cat’s visual system.
Journal of Neurophysiology, 54(3), 651–667.

Pape, H.-C., & Eysel, U. T. (1986). Binocular
interactions in the lateral geniculate nucleus of the
cat: GABAergic inhibition reduced by dominant
afferent activity. Experimental Brain Research,
61(2), 265–271.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10(4), 437–442.

Perry, V. H., & Cowey, A. (1985). The ganglion cell
and cone distributions in the monkey’s retina:
Implications for central magnification factors.
Vision Research, 25(12), 1795–1810.

Rodieck, R. W., & Dreher, B. (1979). Visual suppres-
sion from nondominant eye in the lateral geniculate
nucleus: A comparison of cat and monkey.
Experimental Brain Research, 35(3), 465–477.

Sanderson, K., Bishop, P., & Darian-Smith, I. (1971).
The properties of the binocular receptive fields of
lateral geniculate neurons. Experimental Brain
Research, 13(2), 178–207.

Schroeder, C., Tenke, C., Arezzo, J., & Vaughan, H.
(1990). Binocularity in the lateral geniculate nucle-
us of the alert macaque. Brain research, 521(1),
303–310.

Sengpiel, F., Blakemore, C., & Harrad, R. (1995).
Interocular suppression in the primary visual
cortex: a possible neural basis of binocular rivalry.
Vision Research, 35(2), 179–195.

Shooner, C., Hallum, L. E., Kumbhani, R. D., Garcı́a-
Marı́n, V., Kelly, J. G., Majaj, N. J., . . . Kiorpes, L.

Journal of Vision (2017) 17(13):4, 1–32 Ding & Levi 31

http://dx.doi.org/10.1167/13.8.3
https://www.ncbi.nlm.nih.gov/pubmed/23820024
http://jov.arvojournals.org/article.aspx?articleid=2193991
http://dx.doi.org/10.1167/12.10.8
https://www.ncbi.nlm.nih.gov/pubmed/22984221
http://jov.arvojournals.org/article.aspx?articleid=2193780
http://dx.doi.org/10.1167/6.11.7
http://dx.doi.org/10.1167/6.11.7
https://www.ncbi.nlm.nih.gov/pubmed/17209731
http://jov.arvojournals.org/article.aspx?articleid=2121996
http://dx.doi.org/10.1167/9.3.13
https://www.ncbi.nlm.nih.gov/pubmed/19757952
http://jov.arvojournals.org/article.aspx?articleid=2193388


(2017). Asymmetric dichoptic masking in visual
cortex of amblyopic macaque monkeys. Journal of
Neuroscience, 1760–1717.

Singer, W. (1970). Inhibitory binocular interaction in
the lateral geniculate body of the cat. Brain
Research, 18(1), 165–170.

Stevens, S. S. (1960). The psychophysics of sensory
function. American Scientist, 48(2), 226–253.

Tong, L., Guido, W., Tumosa, N., Spear, P. D., &
Heidenreich, S. (1992). Binocular interactions in the
cat’s dorsal lateral geniculate nucleus, II: Effects on
dominant-eye spatial-frequency and contrast pro-
cessing. Visual Neuroscience, 8(6), 557–566.

Tumosa, N., McCall, M. A., Guido, W., & Spear, P. D.
(1989). Responses of lateral geniculate neurons that
survive long-term visual cortex damage in kittens
and adult cats. Journal of Neuroscience, 9(1), 280–
298.

Wang, C., Dreher, B., & Burke, W. (1994). Non-
dominant suppression in the dorsal lateral genicu-
late nucleus of the cat: laminar differences and class

specificity. Experimental Brain Research, 97(3),
451–465.

Williams, D. R. (1988). Topography of the foveal cone
mosaic in the living human eye. Vision Research,
28(3), 433–454.

Xue, J., Ramoa, A., Carney, T., & Freeman, R. (1987).
Binocular interaction in the dorsal lateral genicu-
late nucleus of the cat. Experimental Brain Re-
search, 68(2), 305–310.

Yeh, T., Lee, B. B., & Kremers, J. (1996). The time
course of adaptation in macaque retinal ganglion
cells. Vision Research, 36(7), 913–931.

Yehezkel, O., Ding, J., Sterkin, A., Polat, U., & Levi,
D. (2016). Binocular combination of stimulus
orientation. Royal Society Open Science, 3(11),
160534.

Zhou, J., Georgeson, M. A., & Hess, R. F. (2014).
Linear binocular combination of responses to
contrast modulation: Contrast-weighted summa-
tion in first-and second-order vision. Journal of
Vision, 14(13):24, 1–19, doi:10.1167/14.13.24.
[PubMed] [Article]

Journal of Vision (2017) 17(13):4, 1–32 Ding & Levi 32

http://dx.doi.org/10.1167/14.13.24
https://www.ncbi.nlm.nih.gov/pubmed/25424859
http://jov.arvojournals.org/article.aspx?articleid=2213036

	Introduction
	Methods
	f01
	f02
	Results
	f03
	f04
	f05
	Modeling
	f06
	t01
	Model simulation
	t02
	t02b
	t03
	t04
	f07
	f08
	f09
	Discussion
	f10
	f11
	t05
	f12
	f13
	Akaike1
	Anderson1
	Anstis1
	Baker1
	Baker2
	Banton1
	Bearse1
	Blake1
	Brainard1
	Burnham1
	Campbell1
	Cogan1
	Cohn1
	Curcio1
	Curcio2
	deWeert1
	Ding1
	Ding2
	Ding3
	Ding4
	Ding5
	Ding6
	Ding7
	Engel1
	Engel2
	Geisler1
	Geisler2
	Georgeson1
	Georgeson2
	Grossberg1
	Guido1
	Guillery1
	Hayhoe1
	Hayhoe2
	He1
	Hou1
	Huang1
	Legge1
	Legge2
	Legge3
	Lehky1
	Levelt1
	Levi1
	Li1
	Lu1
	MacLeod1
	Mannos1
	Mansfield1
	Mante1
	Marr1
	Meese1
	Moore1
	Moradi1
	Ohzawa1
	Ohzawa2
	Pape1
	Pelli1
	Perry1
	Rodieck1
	Sanderson1
	Schroeder1
	Sengpiel1
	Shooner1
	Singer1
	Stevens1
	Tong1
	Tumosa1
	Wang1
	Williams1
	Xue1
	Yeh1
	Yehezkel1
	Zhou1

