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Brain-Computer Interfaces (BCI) offer unique windows into the cognitive processes

underlying human-machine interaction. Identifying and analyzing the appropriate brain

activity to have access to such windows is often difficult due to technical or

psycho-physiological constraints. Indeed, studying interactions through this approach

frequently requires adapting them to accommodate specific BCI-related paradigms

which change the functioning of their interface on both the human-side and the

machine-side. The combined examination of Electroencephalography and Eyetracking

recordings, mainly by means of studying Fixation-Related Potentials, can help to

circumvent the necessity for these adaptations by determining interaction-relevant

moments during natural manipulation. In this contribution, we examine how properties

contained within the bi-modal recordings can be used to assess valuable information

about the interaction. Practically, three properties are studied which can be obtained

solely through data obtained from analysis of the recorded biosignals. Namely, these

properties consist of relative gaze metrics, being abstractions of the gaze patterns,

the amplitude variations in the early brain activity potentials and the brain activity

frequency band differences between fixations. Through their observation, information

about three different aspects of the explored interface are obtained. Respectively, the

properties provide insights about general perceived task difficulty, locate moments of

higher attentional effort and discriminate between moments of exploration and moments

of active interaction.

Keywords: fixation-related potentials, brain-computer interface, multi-modal system, interaction analysis, event-

related potentials, eyetracking

1. INTRODUCTION

Brain-Computer Interfaces (BCI) are defined as a special subclass of Human Computer Interfaces.
They take the user’s brain activity as input to either actively generate commands or passively
monitore the user’s state. BCI primarily rely on the communication between two of its components:
a user-side component and a system-side component (Graimann et al., 2010). The primary role of
both components is to record data relevant to a monitored interaction. One component focuses
on data originating from the user (e.g., brain activity) and the other on data from the system
(e.g., currently displayed stimuli). To ensure adequate BCI performance, brain activity has to
be analyzed relative to interaction-relevant moments of interest (e.g., input events or received
feedback). This is done to correctly associate cognitive processes detectable in the brain activity with
corresponding actions performed during interaction. Consequently, obtaining valuable insights
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into the interaction necessitates that the communication between
these two BCI components occurs accurately and synchronously.
To achieve this, both components are often specifically designed
to work in very specific controlled scenarios (Tan and Nijholt,
2010), creating a precise but rather inflexible BCI.When stepping
outside of these specific use cases, the information from one
component provides little to no informative value to effectively
investigate the new interaction.

User-side BCI components aim to record any user-related
information (such as biosignals) during interaction. This
is commonly achieved with arrays of sensors such as in
Electroencephalography (EEG). Sensors are generally conceived
to suit a wide scope of users, varying in physiognomy and
expertise. They usually serve to exclusively acquire and transmit
physiological signals, rarely physically influencing the underlying
interaction situation they are used in. This aspect allows
user-side components to be easily transferred between many
experimental setups without much adaptation to conform to
new BCI paradigms. As a result, the manipulated machine (and
its interface) becomes the main locus of required adaptations
to satisfy the necessary BCI system-side requirements, thereby
putting the burden of producing and relaying relevant context
information mainly on the system-side component. Practically,
the system-side is required to produce triggers or stimuli to
help contextualize data recorded by the user-side component.
Unfortunately, this frequently involves completely overhauling
the original machine interface to accommodate for the
requirements. This necessity introduces a significant workload
during implementation and is a sharp limiting factor for
expanding a same BCI setup to a wider scope of uses.

Adaptation becomes even more extensive when relying on a
particularly common yet informative BCI paradigm: the study
of Event-Related Potentials (ERPs). With ERP, the user’s brain
activity is analyzed at the onset of certain types of events (Teplan
et al., 2002). These commonly system-triggered events do not
only provide the required context information for the data
analysis but can also sometimes induce meaningful brain activity
by presenting contingent stimuli (e.g., flashes of the P300 speller
as a keyboard substitute; Farwell and Donchin, 1988). While
considerably increasing the quantity and quality of information
that can be extracted from the raw data, implementing ERP-
based system-components can also strongly restrict interaction.
Indeed, ERP-based BCI relies on the reaction to events (e.g.,
visual or auditory stimuli such as beeps or light flashes;
Holcomb et al., 1992) which are not traditionally present in most
common interfaces. When adding these events, the nature of the
underlying interaction is thus changed from its original process,
likely altering the scope of cognitive processes that are observed
with the BCI. If BCI is used to investigate an existing human-
machine interaction in greater detail, information obtained
through common ERP paradigms thus may often not be valid for
describing the initial interaction.

Fixation-related Potentials (FRPs) are a subcategory of ERPs
that rely on eye-fixation based events to give context to brain
activity (Baccino and Manunta, 2005). Consequently, user-side
components then also have to host eye-tracking technology.
By their nature, eye movements are user-generated and occur

separately from any system while still being influenced by
presented stimuli (Mills et al., 2011). Accordingly, using eye-
motion as events in an ERP-based BCI means that context-
giving events are produced by user-side components themselves
instead of system-side ones (see case 2 in Figure 1). BCI system
adaptation requirements can thus be partially circumvented,
working toward a more balanced distribution of adjustment
burdens of the two BCI sides.

However, FRP-based BCIs are still rather novel and need
a general approach on how their potentials can be effectively
and efficiently tapped to provide meaningful insights about the
ongoing interaction. Indeed, utilizing eye fixation as context
events without knowing the contents of a fixated visual region
may seem inefficient to gauge interaction. So far, FRP BCI is
still a barely explored subject, mimicking classical ERP-based
interfaces (Finke et al., 2016) and their system-side requirements.
Nonetheless, their bimodal nature allows FRPs analysis to study
interactions from new andmultiple different angles. In this work,
we outline three of these different ways to utilize FRPs, their
properties and sensors used to acquire them, to reduce reliance
on system-side information and still access valuable information
about the interaction. Both EEG and Eyetracking have already
found their application in interaction analysis (Jacob, 1995;
Ewing et al., 2016) but have to be examined together in greater
detail to determine what additional information can be extracted.

The goal of this work is to investigate the informational
value a bi-modal BCI, combining EEG and Eyetracking, can
offer for assessing an interface without relying on system-side
information. In the remaining part of this contribution, we
will discuss different properties which can be analyzed through
this BCI and what information about the interaction they hold.
Starting by using Eyetracking individually, gaze patterns can
be assessed which correlate with the general task difficulty
relating to interaction. Secondly, using a bi-modal analysis of
FRPs, the amplitude of early potential peaks can be used as an
indicator for the cognitive attentional cost. With these stable
peaks, user-fixated regions can be probed for their density
and relevance of visual information. Lastly, utilizing a fixation-
bound segmentation of the EEG signal and analyzing the relative
frequency band power of the segments, discrimination between
moments of exploration and moments of active manipulation
becomes possible without system-side information.

2. RELATED WORK

2.1. Context Information in BCI
Brain-Computer Interfaces can broadly be divided into two
major categories: active and passive interfaces. Active interfaces
allow their users to perform a set of direct and intentional
actions on the system while bypassing classical interaction
tools (e.g., mouse, keyboard, or general muscle movement).
Passive interfaces, on the other hand, monitor the user’s brain
activity continuously and modulate the underlying interaction
accordingly, without requiring volitional input from the user
(Tan and Nijholt, 2010). In either case, broadening the scope of
usability of existing interfaces via this technology is a consistently
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FIGURE 1 | Illustration of the functioning of Event-related potential Brain Computer Interfaces during interaction. Sensors are placed onto the user and adaptations

are made on the system to augment interaction. The brain activity of the user is contrasted and analyzed as it relates to events. Classically (case 1 in red) these events

are produced by system adaptations. In this work, we investigate the acquiring of events via sensors such as eye tracking (case 2 in green).

pursued goal of BCIs. However, achieving this has proven to
be difficult.

Active interfaces rely on thorough bi-directional
communication between their user and the manipulated
system. The user selects an interface option by completing trials
of the BCI paradigm. The system subsequently answers with the
corresponding feedback. Regular BCI interaction is represented
case 1 of Figure 1. Attaching active BCIs to already existing
systems often implies that the communication from system
to user remains identical. On the other hand, the user only
communicates to the system through BCI-related commands,
which is the defining feature of active BCI. This interaction
format based on a rigid interlocking of two communication
streams means that a high adaptation burden on the system
side can hardly be circumvented, as accurate and goal-driven
communication is essential.

In passive interfaces, communication does not need to be
as controlled as explicit and direct interface control is not
provided or required. Passive BCIs still operate as shown in
Figure 1, commonly using case 1. However, as opposed to active
BCI, interaction is performed bidirectionally as it would be
naturally: both in what the system gives the user and in what
the user inputs into the system. In parallel, the BCI continues
to operate by producing additional commands aimed to adapt
interaction. However, for this BCI information to be useful
to the interaction, the interaction context still needs to be
monitored. This is commonly done by adapting the system-
side component. For our application however, in the spirit of

minimizing system-side adaptation, context information gained
from the user-side component should be maximized.

User context-information can be gathered indirectly through
themonitoring of physiological signals as represented by case 2 in
Figure 1. This has been demonstrated by continuously probing
the EEG stream for a general arousal level during a long task
(Lim et al., 2014). This approach is however very limiting in
the amount of context-information it provides, as it only gives
clues about the users general cognitive state. Continuous EEG
monitoring doesn’t allow to determine notable, more localized,
interaction moments on its own. To improve upon it, additional
physiological signals have been used as information supplements
in a variety of BCI studies (Li et al., 2016). Some of the more
commonly used signals include Electromyography (EMG) as well
as Galvanic Skin Response (GSR) (Müller-Putz et al., 2015).
These modalities have shown to reliably improve predictive
accuracy of BCIs (Nijholt et al., 2011), but still only provide
general insights into the users state. They fail to supply precise
and momentary information about any performed action.

For such an approach, another promising physiological
modality can be used: eye movement data, which are recorded
by Eyetracking. Eyetracking itself has already frequently been
employed to assess and characterize interaction in a wide scope
of interfaces (Goldberg and Kotval, 1999). Eye movements have
been shown to be influenced by user intention and the general
task they pursue (Hayhoe and Ballard, 2005). Their utilization,
while strongly dependent on the use case, can be applied to
estimate certain specificities of the interaction (Henderson et al.,
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1999) (e.g., task-relevant visual regions), giving information
about the user, as well as their surroundings. Furthermore, as
opposed to continuous modalities such as GSR, EMG, or EEG,
eye movement can be decomposed into discrete events (e.g.,
fixations and saccades) which help to segment and analyze
recorded brain activity as ERP. Combining EEG and Eyetracking
may thus allow to combine the strength of both approaches to
gain a holistic view of the interaction. So far, the combination
of these modalities has been exploited to improve the accuracy
of existing BCIs (Protzak et al., 2013), but has only rarely been
used in general interface analysis. The use of Fixation-related
potentials may allow for these kinds of analysis.

2.2. Fixation-Related Potentials
Fixation-related Potentials have only recently been studied
and can be observed through combined analysis of EEG and
Eyetracking recordings. This type of ERP is time-locked to the
onset of an eye fixation. This characteristic aligns these events
with the underlying cognitive processing which occurs during
visual exploration (Holmqvist et al., 2011). This subsequently
allows to inspect said cognitive processes as they relate to the
examined visual information.

These potentials have so far been examined in psychological
studies investigating their informative value in simple visual
tasks. This includes the identification of target objects (Brouwer
et al., 2013), reading tasks (Takeda et al., 2001), or face
recognition (Kaunitz et al., 2014). In most of these cases, FRPs
have been studied in very controlled environments, proposing
artificial and curated stimuli to the users during interaction. Yet,
by their nature, these potentials lend themselves to an enhanced
evaluation of brain activity in a wide variety of more natural
scenarios (Dimigen et al., 2011). Indeed, the additional recording
of eye movements allows for the monitoring of where and how
the user attention is allocated with respect to the manipulated
system (Luck et al., 2000).

FRPs have so far rarely been used in an actual BCI setting.
When they are utilized, they serve as a new medium through
which commonly used BCI paradigms are explored anew and
extended. This includes paradigms comparable to the P300
oddball and N400 studies (Finke et al., 2016; Wenzel et al.,
2016; Coco et al., 2020). However, these uses still require
extensive system context information to function. Considering
the established links between gaze direction and subject task,
FRPs are also likely contain valuable information about a
currently performed interaction and may thus overcome these
limitations. Indeed, it has been shown by Shishkin et al. (2016),
that FRPs allow to identify the intention of users from fixations,
improving interaction for active BCI. By refining analysis of
FRPs in the context of a passive BCI, a better understanding of
interactions may be achieved. Additionally, the setup required
to measure FRPs enables other types of analysis, such as using
EEG and Eyetracking technology separately, and thus increasing
the amount of potential information. Through this approach,
methodsmay be foundwhich can be used to broaden the usability
of BCIs.

The guiding research question is: Can the data gathered
through the proposed EEG and Eyetracking setup, including

resulting FRPs, provide new insights in helping to understand
common interaction? To investigate this aspect, datasets are
required with which this setup and the data it provides
can be studied in a naturalistic interaction environment. To
increase the relevance and transposability of the findings to
other interactions, the considered interaction should resemble
interactions commonly occurring in real life. This means that
they include phases where the interface is probed for information
by the user and phases of active manipulation. The recorded
interaction would have to feature both phases of active and
passive interaction while still providing accurately labeled data
as ground truth for a detailed analysis.

3. MATERIALS AND METHODS

To explore the informative capabilities of an EEG and
Eyetracking BCI in natural interaction, paradigms are required
which are representative of natural interaction. However, these
paradigms also need to remain sufficiently controlled to ensure
the acquired data is meaningful labeled for subsequent validation.
The proposed study was designed to allow for thorough analysis
of FRP while maintaining a generic approach to interfaces which
can be extrapolated from. A simple visual search task was
chosen. It contained the two fundamental aspects of interaction:
exploration of an environment as well as input of commands
for selection made within this environment. This dataset allows
for FRPs to be easily extracted and accurately analyzed as they
relate visual information or action performed during interaction.
The study was performed in a completely controlled computer-
generated environment to ensure the correct logging and labeling
of all data.

3.1. Task
Participants were presented with a scene on a 1,920× 1,080 pixel
(24 inch) computer screen, which was split into two sections:
a smaller “target scene” on the left side and a larger “search
scene” on the right side. The search scene was initially hidden.
Both parts of the whole scene contained a variety of geometric
shape. The target scene contained between three and five non-
overlapping shapes, while the search scene contained a much
greater number of sometimes overlapping shapes (as illustrated
in Figure 2). Subjects had to locate the shapes presented in the
target scene within the search scene. Practically, participants were
told to fixate an individual target shape (as measured with the
Eyetracker) in the search scene and simultaneously execute a
keyboard input (pressing the space key) to validate their selection.
A short feedback sound, either a soft positive bell sound or harsh
negative buzzer sound, was played depending on the validity
of their selection. Concurrently, a small feedback image was
also shown in the upper left part of the screen. If the selection
was done correctly, the target shape was removed from both
scenes. To ensure participants remained vigilant during the entire
experiment, in rare cases (8% of scenes) some target objects
shown in the target scene were missing in the search scene. In
these cases, the participants had to perform the same selection
procedure (i.e., simultaneous fixation and keyboard press) on the
shape in the target scene, which is missing in the search scene. A
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FIGURE 2 | The experiment procedure: First, a calibration of the eyetracker is performed. Once completed, the participant performs a keyboard press showing a

scene. At first, only the target scene is shown. Upon performing another keyboard input, the search scene is revealed. The fourth image illustrates a correct selection,

the participant performed pressing space while fixating on a target object in the search scene. This removes the shape from both scenes (here the purple cross) and

displaying a feedback image (cyan circle) in the upper left corner. This process is repeated until all target objects are removed. After this, the next search scene

is displayed.

scene was completed when all target objects were either selected
or 3 min after the unveiling of the search scene.

3.2. Stimuli
The participants were presented with a series of 138 scenes. These
scenes varied in terms of color similarity between target and
non-target objects (in three categories: high, medium, and low
similarity) and in terms of number of objects (in two categories:
few andmany objects) present (which includes how strongly they
overlapped) in the search scene (see Figure 3). Twenty-three pre-
constructed scenes of each condition were shown to the subject
in a random order. To introduce participants to the task, a small
tutorial session featuring ten additional scenes was presented
prior to the actual recording session. This also allowed them to
familiarize themselves with interface operation.

The objects presented within these scenes were abstract 2D
geometric shapes. Their size was scaled to fit exactly within
a bounding box of fixed dimensions. Shapes were randomly
selected from a larger list during scene creation. Shapes were also
randomly rotated before being placed in a scene. The positioned
shapes could be both convex or concave, ranging from simple
(such as squares or circles) to more complex forms (such as
half-moons or arrows). A uniform color was applied to each
individual shape with no contouring color. The distance in color
D between any two of these shapes (here labeled i and j) was
determined by Equation (1).

Dij =

√

2(Ri − Rj)2 + 4(Gi − Gj)2 + 3(Bi − Bj)2 (1)

With Ri,Gi,Bi corresponding to the red, green and blue values
respectively of a chosen color for a given shape i. This equation
was chosen to approximate the human perception of color
distances (Robertson, 1990). In scenes featuring “high” color
similarity, the value of distance D was kept between a value
of 0 and 200. This range changed to 200–475, and 475–765
to consider color similarity “medium” or “low,” respectively. In
scenes featuring many objects, the centers of each shape were
placed at a Euclidean distance of at least 100 pixels apart. In
scenes featuring few objects, this minimal distance was increased
to 170 pixels.

3.3. Apparatus
EEG activity was recorded through 16 electrodes positioned at
the locations Fz, Cz, Pz, Oz, F3, C3, P3, F4, C4, P4, PO8, PO7,
F7, F8, T7, and T8 respective to the 10-20 system (Acharya et al.,
2016). Additionally, horizontal and vertical Electrooculography
(EOG) was also measured using four further electrodes. Two
g.tec g.USBAmp biosignal amplifiers were synchronized via
g.INTERSync cable and used for the EEG recording (at 256
Hz). Eye movements were recorded using an LC Technologies
Eyefollower Desktop Eyetracker. This Eyetracker (ET) has a
location accuracy with <0.4 degree error. The Eyetracker was
positioned below the interaction screen and calibrated through
a 9-point screen calibration at the start of the experiment. The
device was also recalibrated using the same procedure after every
tenth scene was completed or between any two scenes if the
subject deemed it necessary. Eye gaze samples were recorded with
a frequency of 60 Hz for each eye in alternation (120 Hz total).
Both devices were operated by two different computers whose
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FIGURE 3 | Examples for each of the six types of stimulus scene presented to the participant: top to bottom show the variation in quantity of objects, left-right

illustrates the color similarity between target and non-target objects.

clocks were previously synchronized. Due to their differences in
sampling rate, comparing the timestamps of an EEG sample to
an ET sample introduces an inaccuracy range of 2–4 samples.
Participants were seated facing the screen at a distance around 80
cm. As a result, their foveal region during the study encompassed
a circular screen region with a radius of about 80 pixels.

3.4. Participants
Twenty-one volunteers participated in the study. The
participants were aged between 19 and 38 years (mean 26.5
± 5.0, 14 female). All were recruited from the local student,
university visitors, and staff population and were either paid
for their expenditure of time or granted course credit. All
participants had no known prior or current pathological
neurological condition (based on self-report) and normal or
corrected-to-normal vision. The experimental procedure and
written consent form for this study were approved by the
ethics committee at Bielefeld University, and adhered to the
ethical standards of the seventh revision of the Declaration of
Helsinki. All participants gave their informed written consent to
participate in the study.

3.5. Pre-processing
Once a participant completed the entire 138 scenes, their
data was saved. Every information presented to the participant
was also logged with the respective timestamps. This included
what stimuli were presented to the subject, moments of action
(i.e., keyboard inputs), feedback shown, sounds played, and
performed recalibrations of the Eyetracker. All pre-processing
was performed offline. Fixation locations and onset times were
extracted from raw eye-tracking data of the subject’s dominant
eye. The fixation detection algorithm registered a fixation when
the subject’s eye gaze remained in a 5 degree eye-rotation angle
area for at least 100 ms. Code-wise, this translated to the gaze

position remaining in a circular region of 80 pixels diameter
during 6 Eyetracker frames. A fixation was considered over once
the gaze jumped further than 80 pixel from the previous frame.
Practically, the software provided by the manufacturer was used
with these thresholds. This ensures an easy reproduction of
the results. The EEG data were firstly filtered using a 0.1 Hz
highpass and an 8th order Butterworth 45–55 Hz notch filter.
This was done to remove low frequency artifacts as well as
artifacts originating from device voltages.

Subsequently, artifactual components, resulting from eye,
head, and other muscle movements, were removed from
the signal using an Independent Component Analysis (ICA)
performed on the EEG channels (Jung et al., 2000). Artifactual
ICA components were identified and rejected using the Multiple
Artifact Rejection Algorithm (MARA) (Winkler et al., 2015).
The usage of MARA for artifactual component selections also
facilitates the reproducibility of the results. The ICA and
MARA calculations were performed using the EEGLAB Matlab
Toolbox (Delorme and Makeig, 2004) with default parameters.
Furthermore, due to desynchronization between recording
modalities, the EEG and Eyetracker recording timestamps were
adjusted using a resynchronization method developed to deal
with static and linear offsets (Wobrock et al., 2019).

4. RESULTS

To be relevant for examining interactions, information extracted
from the combined analysis of EEG and Eyetracking needs to
provide valuable information about the considered interaction.
To remain useful across a wide variety of interfaces, the methods
used to access this information need to be applicable in many
different situations. Here, using the recorded data, three methods
are detailed which provide insights without requiring system-side
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FIGURE 4 | Variation of task completion duration depending on the number of

objects present in a scene. Data from all participants is used in this figure.

information, thus allowing to be easily applied to new interaction
situations in the future.

4.1. Analyzing Recording Modalities
Separately
EEG and Eyetracking technology have commonly been used
individually to assess interfaces. Before using them conjointly,
information from either modality can be inspected separately.
Looking at single modalities is notably interesting for gaining
information into more general aspects of interaction, such as
overall satisfaction or difficulties (Tanriverdi and Jacob, 2000).
These kinds of analysis are performed using EEG to attain
indicators of general attention or wakefulness during interaction
(Bonnet and Arand, 2001). The use of Eyetracking technologies
notably makes the analysis of gaze patterns possible.

Indeed, Eyetracking, used independently, serves as a means
for the probing of interfaces. It is particularly utilized when
validating the usability of an interface layout (Goldberg and
Kotval, 1999) providing information about which regions are
most easily perceived and explored by the user. However, an
adequate probing of the interface requires comparing gaze
patterns to the displayed interface elements and information
related to them. Classically, system-side adaptation would thus be
required to access the precise location and role of each presented
stimulus and determine which areas in the interface are of
interest to the user. Instead, as we aim to avoid this requirement,
more generic measurements taken from Eyetracking are used to
identify the general difficulties the user might be facing.

Within the presented study, general difficulty was introduced
using the two scene dimensions: the number of objects and the
similarity in color between objects (as represented in Figure 3).
These parameters showed an influence on the gaze patterns with
which participants explored the scene. One common indicator
of general difficulty is the time taken to complete a scene: the

FIGURE 5 | Variation of number of revisits of target scene depending on the

color similarity present in a scene. Data from all participants is used in

this figure.

more objects were present within the scene, the longer the
participant took to complete it and the more fixations were made
(as shown in the boxplots represented in Figure 4). However,
task duration, the number of fixations and their interpretation
vary drastically depending on the studied interface and on the
participant, making these measures prone to uncertainties on
a task by task basis. This can notably be seen in the standard
deviation shown in Figure 4, making it difficult to effectively use
this metrics to assess interaction in most situations.

Using time-independent measures can also serve to assess the
interaction on a more abstract level. Indeed, time-independent
measures also contain features useful for showing variation
between different complexity categories (Zhang and Seo, 2015)
even beyond the number and saliency of stimuli, such as the
familiarity of the stimuli. This is the case here, where different
patterns could be observed depending on scene complexity
dimensions. Indeed, the more similar the colors, the more
subjects tended to switch back and forth between the search
and target scenes as seen in Figure 5. To expand on informative
value of time independent measures, three gaze metrics have
been chosen to assess difficulty as they encode relevant parts of
the interaction:

• M1: the relative amount of long fixations (i.e., fixations longer
than 250 ms; Hooge et al., 1998).

• M2: the relative number of distant saccades (i.e., saccades
going outside the foveal region covered by the previous
fixation).

• M3: the relative number of times the subject revisited
previously fixated regions (i.e., fixation within the foveal
region of any prior fixation).

The word “relative” refers to a percentage, such as the ratio of
long fixations to all fixations done during one scene. The last two
gaze metrics were extracted from the eyetracking recording by
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FIGURE 6 | t-SNE projection on two dimensions. Each point represents a scene, represented through the three time-independent metrics. (A) Colors show the

variation in color similarity between target and non-target objects. (B) Colors show the variation in number of objects in scenes. Only the data of one participant was

used for these figures.

allowing the software to memorize the location of fixated regions
during interaction. These metrics summarize certain aspects
of the interaction in a time-independent manner effectively.
Notably, in an abstract fashion, the ratio of distant saccades
represents how often the participant switched their gaze between
the target and search scene parts during manipulation.

Once we calculated thesemetrics for every scene, we visualized
the distribution of the three dimensional point cloud [with
M(i) = (M1(i),M2(i),M3(i)), for each scene i, as a point]
using the two dimensional projection resulting from the t-
distributed Stochastic Neighbor Embedding algorithm (t-SNE)
(van der Maaten and Hinton, 2008). In this visual projection
of the distribution, differences between difficult and simple
scenes can already be qualitatively observed (see Figures 6A,B).
These visualizations make apparent that most classes appear
easily separable, forming distinct clusters. Exception to this
are the “medium” and “high” color differences, which mix
these features together (as seen in the colors red and blue in
Figure 6A). Properly associating a scene as belonging to one of
these categories is subsequently performed through multiclass
Fisher Discriminant Analysis (FDA) classification (Bishop, 2006).
All three metrics were collected from the 138 scenes separately
for each subject and used as features in this five-fold FDA
classification (i.e., using four folds as training and one for testing,
swapping, and repeating). Each fold contained the balanced
amount of data from all categories of scenes (as defined in
Figure 3). The classification aimed to gauge the separability
these gaze metrics provide, to tell apart the different categories
of presented scenes, and thus the scene composition variables
modulating difficulty (see Table 1).

The results show that while good separability cannot be
achieved through these metrics alone, above-chance level results
still emerge when comparing gaze metrics coming from scenes
with different difficulty dimensions. Comparing the classification
scores between each other then allows to get an indication
of the general difficulty a user faces during a scene without
possessing any information about the stimulus layout. This

TABLE 1 | Multiple linear classification utilizing the combination of three visual time

independent features.

Classification accuracy Chance level

Discriminating number of objects 69.18% (±3.86) 50% (2 classes)

Discriminating color similarity 53.63% (±7.75) 33.33% (3 classes)

Discriminating all scene types 26.28% (±3.48) 16.67% (6 classes)

information, particularly when using the t-SNE projection,
makes this transposable method a possible starting point for
obtaining general information about the type of task the user
is performing, as it suggests where general difficulties may lie.
Using the presented data as an example, scenes presenting high
and medium color similarly were inspected in a similar fashion
by the participants, indicating little perceptual difference between
the two. For a more focused and in-depth approach to assessing
interaction, the following analysis may utilize multiple modalities
at the same time and restrict itself to more distinct moments
occurring during interaction, e.g., by looking at well defined
events occurring during interaction. As a promising candidate for
such an approach, we consider in the next subsection the analysis
of Fixation-Related Potentials.

4.2. Analyzing Fixation-Related Potentials
Generally, in the study of ERPs, the continuously recorded EEG
signal is analyzed at particular moments of interaction. These
moments are marked by specific logged events which allow for
the segmentation the signal into same length intervals, referred
to as epochs. These epochs can then be compared. Here, for
the observation of FRPs, the EEG signal is segmented into 1 s
long epochs starting at 100 ms before the onset of an eye-
fixation. Fixation onsets are timestamps marking the beginning
of fixations. These onsets were obtained by subtracting 100 ms
from the moment a fixation which was identified using the
method detailed above. As described above, this timestamp was
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FIGURE 7 | (A) Average Fixation related potential epoch profile recorded on the Oz electrode. The red line marks the location of P100 peak. (B) Scalp activation at the

P100 peak. A redder color indicates a higher measure voltage at that location. The bottom central electrode is Oz. Only data from one participant was used in

this figure.

then compared to EEG timestamps to locate the start of the FRP.
As mentioned before, there are inaccuracies in this comparison
of around four samples (or around 16 ms). These imprecisions
are however inconsequential for considered analysis as highly
accurate latency is not needed. The average ERP profile of these
epochs reveals a prominent peak occurring around 90–100 ms
after fixation onset (as seen in Figure 7A). This peak, termed
P100, is present in occipital EEG channels (see Figure 7B) and
commonly associated with natural fixations (Herrmann et al.,
2005). According to Luck (2014), the amplitude of this early
potential provides an indicator of the subject’s current attentional
effort: a higher amplitude of this peak correlates with more
effort used for the processing of visual information. So far, these
properties have been investigated in very controlled studies and
rarely in closer to everyday-life visual search tasks or BCI settings.

To investigate the utility of this peak’s amplitude for BCI, we
investigated its correlation with changes in the presented stimuli
needs to be verified. This early peak was therefore identified and
located in each constructed epoch and its amplitude extracted
accordingly. This was done by filtering the epochs (using 1–10 Hz
bandpass filter), keeping only prominent oscillations in the signal
segment intact, and employing a Multiple Linear Regression
with dispersion term (MLRd) (Hu et al., 2011; Wobrock et al.,
2016) on the first 200 ms of each epoch. Single epochs usually
contain certain amounts of noise which make the location of
specific potential peaks difficult. The MLRd algorithm consists
of creating regressors for a peak, present within a reference
signal segment, as to locate this same potential within similar
signals. These regressors consist of the principal components of
the concerned reference potential and are constructed in such
a way to account for possible shifts in peak amplitude, latency
(i.e., temporal location in the epoch) ormorphology (i.e., shape of

the peak) in an epoch. Fitting the regressors onto the signal then
allows to locate the concerned peak reliably within every epoch.
This includes epochs in which peaks are occluded or difficult to
differentiate from other ones. Furthermore, theMLRd also allows
to locate peaks accurately when slightly inaccurate fixation onsets
are presents. However, in such cases, more indepth analysis
of peak latency should be avoided. This method is explained
in greater detailed in Wobrock et al. (2016) as well as in the
Supplementary Material. Here, only the peak at 90–100 ms
contained within the Oz Channel recording was located and is
further investigated in the following.

To observe the variations in peak amplitude across attentional
demand, epochs and the MRLd-extracted amplitude of their
early peak were grouped according to the visual content of their
corresponding fixation region. For each fixation, the contents of
the corresponding visual region was examined and categorized.
This was done depending on the number of objects, the amount
of different colors, the presence of target objects and the presence
of keyboard presses during the fixation. It is to note that two
objects were considered different in color when the value of
Equation (1) was above 200. The amplitudes were then compared
between categories (as seen in Figure 8). This was shown in
Figure 10 where each significance comparison bracket indicates
a pair of complementary amplitude distributions.

Statistically significant differences in P100 peak amplitude
are present between conditions of different number of objects
and colors within the foveal area of the fixation (as per two
tailed t-test, p-value < 0.01 in both cases). These differences
are present in all subjects. Additionally, a higher number of
objects or colors in the fixated region correlates with in higher
peak amplitudes being measured (as qualitatively observed in
Figures 9, 10). This indicates that the P100 amplitude can be
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FIGURE 8 | Amplitude of the P100 component peak measured at the Oz electrode measure for one subject. Amplitudes were grouped by class. Eight categories

were compared in pairs. Target/non-target define if a target object was fixated. Keypress/No Keypress is determined based on the participant performing a keyboard

press (the space key) during fixation. The categories labeled Objects are defined depending on the amount of shapes in the foveal region. The categories labeled

“Colors” are defined depending on the amount of different colors in the foveal region. Significant differences are present between 3 pairs of categories. Using Student

t-test: “ns” means p-value > 0.05, “*” means p-value < 0.05, “**” means p-value < 0.01.

FIGURE 9 | Average fixation related potential epoch profiles recorded on the

Oz electrode. The lighter the color, the more objects were present within the

fixated region. Data from one participant was used in this figure.

interpreted as correlated to the amount of visual information
to process. Interestingly, a statistically significant difference (p-
value< 0.05) in peak amplitude is also present between a fixation

FIGURE 10 | Average Fixation related potential epoch profiles recorded on the

Oz electrode. The lighter the color, the more different colors were present

within the fixated region. Data from one participant was used in this figure.

on target and non-target object (seen in first pair of boxplots in
Figure 8). This suggests that while peak difference mostly relate
to the quantity of information, the relevance of this information
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FIGURE 11 | Peak amplitude variation depending on the quantity of objects

within the visual fixation region. Data from one participant was used in

this figure.

in the subject’s current task also has an influence on peak
amplitude. Variation between subjects regarding the significance
of this property is, however, large. Indeed, certain subjects did
not present significant difference which may reflect their of a
individual strategy for visual exploration (Nikolaev et al., 2016).

These amplitude differences can, however, only observed
reliably over a larger set of epochs: as peak amplitude presents
strong variation even between fixations on the same visual
regions, the epochs from multiple visits have to be averaged
for this property to emerge clearly. This is especially necessary
as amplitude distributions of each of the considered categories
strongly overlap (see the standard deviations of Figure 8 shown
more prominently in Figure 11). As such, the attentional cost
of processing a visual region is only attainable when multiple
visits of a same location are performed. In their current form,
these single trial FRP evaluations may still allow to investigate if
certain regions of the interface require more attentions from the
participant. As such, the method allows to gain general hints of
the visual difficulty a participant is experiencing. These hints can
then be used by designers to improve the concerned system and
its interface.

The information obtained through this FRP method is similar
to the one gained through gaze pattern analysis of eyetracking but
can provide information faster. So far, these insights provided by
the proposed methods mainly concern passive interaction (i.e.,
exploration) of the interface. To inspect the value of this bi-modal
setup further, properties relating to the active manipulation of
the interface must be looked at in greater detail. Looking at
fixations still remains useful as they represented concrete steps
of communication with the interface which can allow for deeper
understanding of interaction than just time-locked FRPs. As,
rather than being restricted to 1 s of signal, fixations can be
inspected over their full duration.

FIGURE 12 | Relative fixation duration depending on the present or absence

of keyboard presses, expressed in probability. Data from one participant was

used in this figure.

4.3. Analyzing Entire Fixations
Fixation-related potentials can be observed during any
manipulation where eye-movements occur. Commonly, in
many interaction contexts, the recorded EEG signal will also
contain other interaction-relevant components unrelated to
FRPs. These ERP components usually only manifest themselves
when subjects encounter specific tasks or stimuli (Teplan
et al., 2002), making it difficult to utilize these components
consistently in a broad variety of situations. Similarly, ERP are
difficult to utilize when they can only be labeled with vague
user-side information (e.g., fixation duration). Nonetheless,
depending on the studied interaction, being able to still access
these potentials increases the likelihood of gaining insights
into underlying nature of the interaction. A notable example of
this are Error-related Potentials, which occur when a subject
makes a manipulation error or obtains an unexpected outcome
(Nieuwenhuis et al., 2001).

As mentioned previously, in FRP studies, fixation onsets
serve as contextual reference points when analyzing the EEG
signal. Non-fixation-related events are not time-locked within
fixations, making their observation through these reference
points more difficult. However, events which provoke these
potentials often require specific focus from the part of the
subject (Hayhoe and Ballard, 2005). In the present study,
subjects performed keyboard inputs to select target objects.
When locating these actions in relation to the subject’s fixations,
fixations containing a keyboard press presented a generally
longer duration occurred than those where it did not contain
presses (as seen Figure 12). This difference in fixation length
serves as a means to identify moments in which more complex
interaction may have happened.

However, there is a considerable overlap in fixation duration
between “exploratory” non-action fixations and “input” action
fixations during which the participant actively manipulated
the system, rendering it difficult to spot other event-related
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FIGURE 13 | Relative frequency bandpower depending on the presence or

absence of keyboard presses. Data from one participant was used for

this Figure.

potentials difficult through this fixation duration measure alone.
To improve their detection, data from EEG recordings ranging
over the entire duration of a given fixation is probed rather
than fixed 1 s segments. Ensuring the varying fixation duration
does not bias signal analysis, the relative bandpower of these
EEG segments is examined. Relative frequency band power has
been traditionally used to assess the wakefulness or different
states of arousal of the observed subject (Benca et al., 1999).
Here, however, it allows identification fixation which contains
potentials as characterized by prominent low frequency waves in
the EEG signal. The studied bands are the delta (0.5–4 Hz), theta
(4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), and beta (13–30
Hz) bands. They are calculated via Fourier Transformation and
are expressed proportionally to each other.

When comparing these relative bandpowers across
conditions, major differences present themselves between
the fixation-bound EEG segments which contained keyboard
pressed and those that contained no such events (this can be seen
in Figure 13). Indeed, this difference is highest when comparing
low-frequency delta bands. This band contains a much higher
percentage of the total power of the signal when observing
fixation segments containing keyboard presses, suggesting the
presence of low frequency potentials.

Using these five bands as features for each fixation-bound
EEG segment (i.e., fixations), the single-trial discrimination
between both conditions (i.e., action and non-action) is tested.
This is done using FDA as a classification algorithm. A five-
fold training of this method resulted in an average accuracy
of 83.11% (±4.71) across all subjects between action and no-
action segments. This confirms that the actions performed
by the user produce different activity which is allows to
quite accurately discriminate between passive and active
interaction. While the keyboard inputs imply the presence
of the Event-related desynchronization (Pfurtscheller and

FIGURE 14 | Average potentials occurring at the onset of a key press

performed to validate shape selection. Data from one participant was used for

this Figure.

Da Silva, 1999), which could serve as a main discriminative
feature for this classification, other event related potentials
could also factor into this differentiation. One example of
such potentials could be Error-related Potentials (as the
averaged ERPs recorded after keyboard input represented in
Figure 14 suggest). In either case, these frequency bands
values allow to identify the presence of moments of more
active interaction.

This method offers greater clarity than the simple fixation
duration comparison. Yet, it still does not allow for an exact
event-related potential location, and thus the exact location of
the start of the event remains unknown without using system-
side information. A still finer analysis of fixation segments
should be considered in the future to improve localization.
While it may improve detection, such an approach would
still not always identify the actual event onset required for
proper ERP analysis. Figure 14 illustrates a situation where
target and non-target shape selection results in similar yet
slightly shifted signal profiles. The FDA classification method
permits to narrow down and interpret other events that occur
during manipulation. This allows for a general detection of a
large variety of events without adapting user or system side
components, providing better understanding of the importance
of certain specific moments during interaction. Further analysis
specific form the explored interface can be considered from
there on.

5. DISCUSSION

The goal of this work was to offer a way to explore how
a bi-modal BCI, combining EEG and Eyetracking recordings
could be used to give access to valuable information about an
interaction without relying on system-side information. Three
methods were developed in this work revealing insights about
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general task difficulty, localized increases in attentional effort
and identification of different moments of interaction. Our three
approaches build almost exclusively on information from user-
side components, relying little on system-side information thus
decreasing necessary BCI system adaptation requirements and
increasing its portability to new scenarios. The proposedmethods
were tested in a sedentary setting but could technically be
extended to a mobile scenario. This may, however, require a finer
tuning of modalities to account for new artifacts and tackling of
technical challenges induced by user motion.

A major question that remains is if the information provided
by these three perspectives are both sufficient and stable enough
to propose an interesting use of Brain-Machine interfaces to
assist in the inspected human-machine interaction. Within the
conducted study, the first results of these methods are promising
and novel when compared to classical approaches.

With the first method, a more general investigation of the
interaction was proposed by utilizing the bi-modal FRP setup.
The two core recording modalities were used separately accessing
their respective informative value about the interface. Namely,
this includes the analysis of gaze patterns and potentially the
observation of relative frequency band analysis over the entire
interaction. Here, the inspection of gaze pattern, especially when
considering relative fixation duration, region revisits and saccade
length, permits an initial estimation of the difficulty a participant
encounters during a given task. More specifically, gaze patterns
help to delineate between features of the scene exploration
which can be used to infer the origins of difficulty. When
considering interface analysis, such insights allow to understand
which characteristic of the presented scene introduces difficulty.
However, in this particular case, these differences, in particular
relating to saccade distance could be related to the spatial
organization of the stimulus scene.

The second method focused on identifying attentional cost
in FRPs. This was done by observing early P100 peak in the
FRP epochs. Significant increases in P100 peak amplitude were
present when regions presenting higher quantity and relevance
of information were observed. Observing the properties of
individual potentials opens a way for a more in-depth analysis
on the importance of specific fixations during exploration and
the visual information they considered. This approach could
provide information for identifying which locations are most
relevant for the subject, as well as which moments required
more attention. The method, however, also revealed a strong
variability of early potentials which make their properties only
reliably accessible using a larger set of epochs. To expand the use
of this property to function with a smaller number of fixations,
an algorithm using finer heuristics or additional reference
points than solely the P100 amplitude can be considered.
Furthermore, the correlation of amplitude with attentional cost
could, for example, enhances gaze pattern analysis, allowing for
the construction of a more detailed visual heatmap closer to the
subject’s implicit perception of the scene.While far from perfectly
accurate, this may allow to identify more locally when the user is
having difficulties.

The last method was used to identify more active moments of
interaction. Fixation-bound epochs were be used as an alternative

way to segment the EEG signal. The resulting segments follow
the individual fixations the participant performed, which add
flexibility to the analysis of the EEG signal when compared to
the stricter 1 s FRP epochs. As fixations vary in length, these
segments cannot be traditionally used for classification, like
FRP epochs, but can serve as orientation points to access other
events that also occurred during interaction. Relative frequency
bandpower analysis was used to differentiate quite accurately
between fixations. Practically, this would augment analysis of
interfaces further, giving information on when events occurred
and what region was fixated at these moments of interaction.
One could consider using this method for an even more
precise analysis on the obtained frequencies. Small variation
in these relative event-related frequencies could, for example,
be utilized to identify and differentiate between different types
of potentials. This could notably be employed to identify
error-related potentials (Spüler and Niethammer, 2015), thus
giving a deeper understanding on how the subject handles
the interface.

All of the three presented methods rely exclusively on
data gathered from EEG and Eyetracking. Furthermore, as all
underlying paradigms occur naturally during regular interaction,
this approach to interface evaluation is flexible and can be
adopted by a wide range of visual interfaces. The obtained
results show that proposed methods, while not offering perfect
precision, still provide meaningful information about peaks on a
single trial level. These methods thus provide new information
on the user’s state without requiring additional adaptations on
the BCIs system-side or imposing new tasks on the subject.
Additionally, these methods allow to gain a holistic view of the
interaction by obtaining general and momentary information
about the interaction. Notably, by concentrating on momentary
FRPs, a much more targeted analysis of the interaction becomes
possible, and by focusing on EEG and Eyetracking alone, general
difficulties are identified. This characterizes our multimodal
approach as being more resource efficient than classical BCI
approaches, which traditionally rely on a rather narrow analysis
of specific and properly labeled events.

6. CONCLUSION

In conclusion, the three presented methods offer a novel and
useful way to analyze interfaces. They integrate themselves easily
into BCI and are portable between scenarios. Our approach
permits to obtain more information from the user side for
analysis, minimizing the necessity of system-side adaptations
and the workload they require. The methods themselves offer
new windows into aspects of interaction allowing analysis on
new and different levels. This ranges from a general overview
of the task, to identifying very specific moments of visual
attention or active interaction. However, all these described
approaches, while usable, require testing as well as further
improvement to be effectively used and efficiently implemented
to reveal their full potential when applied in a live BCI setting.
Further improvements could also be obtained by focusing
on information contained within the, so far mostly explored,
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short fixations. The average fixation lasts 250 ms and over
70% of fixations last under 300 ms (Hooge et al., 1998),
which remains true in the presented study (see Figure 12).
Looking at other paradigms, interaction relevant properties
are known to occur later in the epoch (e.g., P300, N400),
signifying that important information is potentially present but
overlapped by following fixation causing artifacts (Woldorff,
1993). Correcting this overlap may allow an even further
expansion of this system. Further research is necessary to explore
all mentioned possibilities.
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