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A B S T R A C T   

Path planning is an crucial research area in robotics. Compared to other path planning algo-
rithms, the Rapidly-exploring Random Tree (RRT) algorithm possesses both search and random 
sampling properties, and thus has more potential to generate high-quality paths that can balance 
the global optimum and local optimum. This paper reviews the research on RRT-based improved 
algorithms from 2021 to 2023, including theoretical improvements and application imple-
mentations. At the theoretical level, branching strategy improvement, sampling strategy 
improvement, post-processing improvement, and model-driven RRT are highlighted, at the 
application level, application scenarios of RRT under welding robots, assembly robots, search and 
rescue robots, surgical robots, free-floating space robots, and inspection robots are detailed, and 
finally, many challenges faced by RRT at both the theoretical and application levels are sum-
marized. This review suggests that although RRT-based improved algorithms has advantages in 
large-scale scenarios, real-time performance, and uncertain environments, and some strategies 
that are difficult to be quantitatively described can be designed based on model-driven RRT, RRT- 
based improved algorithms still suffer from the problems of difficult to design the hyper- 
parameters and weak generalization, and in the practical application level, the reliability and 
accuracy of the hardware such as controllers, actuators, sensors, communication, power supply 
and data acquisition efficiency all pose challenges to the long-term stability of RRT in large-scale 
unstructured scenarios. As a part of autonomous robots, the upper limit of RRT path planning 
performance also depends on the robot localization and scene modeling performance, and there 
are still architectural and strategic choices in multi-robot collaboration, in addition to the ethics 
and morality that has to be faced. To address the above issues, I believe that multi-type robot 
collaboration, human-robot collaboration, real-time path planning, self-tuning of hyper- 
parameters, task- or application-scene oriented algorithms and hardware design, and path plan-
ning in highly dynamic environments are future trends.   

1. Introduction 

Path planning is one of the extremely important problems in robotics, and one definition is that a robot works autonomously to plan 
a path from the initial point to the goal point in a certain map scenario under the premise of ensuring that no collision occurs with other 
obstacles in the map. Challenges in this field include the difficulty of modeling the environment, convergence of algorithm, and 
avoiding local optimal solutions. In addition, most traditional path planning algorithms are designed for scenarios with known maps 
and may not be suitable for use in unfamiliar environments. 

The classical path planning algorithms contain a search strategy represented by A* and a sampling strategy represented by 
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probabilistic roadmap (PRM), the former relies on the current position and historical position information, and thus is prone to local 
optimal solutions; the latter makes use of the global information of the map, which is possible to get the optimal solution, but this 
method lacks the optimization strategy of the local paths, which leads to the redundancy of path generation. The Rapidly-exploring 
Random Tree (RRT) [1,2] algorithm combines the characteristics of search and sampling: Its search characteristics are manifested 
in the fact that the algorithm starts from the root node and keeps branching, growing like a tree until it searches for the target node; its 
sampling characteristics are manifested in the fact that the algorithm is affected by the random sampling points in the process of 
branching, so the RRT improvement algorithm has the potential to achieve a better performance than the other algorithms. Theo-
retically, the hyper-parameters or strategies involved in the RRT algorithm, such as the setting of the search step size, the selection of 
branching nodes and the design of branching strategies, can be designed to address different optimization objectives; application-wise, 
the improvement strategies of RRT also needs to be designed to address the objectives and constraints of specific application scenarios; 
however, both the theoretical optimization itself and the leap from theory to reality are facing challenges. At the theoretical level, we 
need to know whether the RRT-related improved algorithms and the model-driven RRT are capable of searching large-scale scenarios? 
How is the real-time performance of the improved RRT algorithms? Can the improved RRT algorithms cope with uncertain envi-
ronments? Has the path quality been further improved? At the application level, we need to know in which fields the improved RRT 
algorithm has been applied? What are the results? What problems are still faced in real scenarios? Therefore, it is crucial to review the 
recent advances in the RRT-related literature at both the theoretical and application levels, summarize the challenges mentioned in the 
literature, and look ahead to future work. 

Based on the above motivations, the layout of this paper is as follows: In section 2, the advantages and disadvantages of RRT and 
other traditional path planning algorithms are compared. In order to show the improvement strategies of the RRT algorithm more 
clearly in the subsequent sections, this section also describes the implementation process of the traditional RRT algorithm in detail. 
Section 3 describes in detail the research progress of the RRT improvement algorithm at the theoretical level, from the aspects of 
branching strategy improvement, sampling strategy improvement, post-processing, model-driven RRT, and summarizes the advan-
tages of the theoretical improvement in large-scale scenario search, real-time performance, uncertain environments, and path quality 
improvement. Section 4 reviews the achievements of RRT-related algorithms on real robots, including arc welding robots, assembly 
robots, search and rescue robots, surgical robots, free-floating space robots, mining robots, inspection robots, and interactive robots. 
Section 5 summarizes the challenges faced by the algorithms at the level of real-world applications, as well as future research trends. 

2. Rapidly-exploring random tree 

2.1. Fundamentals of rapidly-exploring random tree 

The Rapidly-exploring Random Tree (RRT) algorithm commonly referred to in the field is actually heuristically biasing RRT 
(HBRRT) [3], target-biased RRT (TBRRT) [4–7], goal-biased RRT (GBRRT) [8–11], goal-oriented RRT (GORRT) [12–14] or 
goal-directed RRT algorithm (GDRRT) [15–18], the idea of this algorithm is to take the initial position as the root node and then add 
leaf nodes by random sampling. When the leaf nodes of the random tree arrive at the target position, the path from the initial position 
to the goal position is planned. The implementation of the RRT algorithm is shown in Algorithm 1: Firstly, randomly scatter the node 
qrand, then call the function FindQNear to find the nearest node qnear to qrand, then call the function FindQNew to get the new node 
qnew, next, judge whether the generated the new node qnew has collision with the obstacles in the map environment, if not, then a space 
search extension is successfully completed and the new node qnew is determined, on the contrary, qnew needs to be discarded. Finally, 
repeat the above process until qnew reaches the defined desired goal position qgoal.  
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In the traditional RRT algorithm, among all the existing nodes, the strategy to select the node qnear that is currently the most 
suitable for branching is to choose the Euclidean distance as the cost function, from which the node with the minimum surrogate value 
is selected; and the strategy for generating the path from qnear to qnew is to connect these two nodes directly, thus generating a line 
segment. In an ideal path planning scenario, these two strategies of the traditional RRT algorithm seem to be the optimal solution, but 

Table 1 
Performance comparison of classical algorithms.  

Algorithms Principle Advantages Disadvantages 

Dijkstra Expand outward, layer by layer, centered on 
the starting point, until it reaches the target 
point. 

Optimal paths can be found Too many nodes traversed 

A* The cost function is designed based on the 
Dijkstra algorithm 

Improved search efficiency compared to the 
Dijkstra algorithm 

computationally expensive 

D* An improved version of A* For dynamic path planning problems, it 
reduces the repeated computation of the same 
data by the A* algorithm and is an improved 
version of the A* algorithm. 

Not applicable to changes occurring on the 
shortest path over long distances 

Visibility 
graph 

Connect the obstacle to the target point with a 
line segment and remove the connecting line 
through the obstacle; the remaining connecting 
line is the desired visual graph. 

The shortest path can be solved and path 
generation is also efficient 

Algorithm complexity is limited by the shape 
and number of obstacles, and the 
representation of environmental information 
is too idealized 

APF Take the target point as the gravitational force 
and the obstacle as the repulsive force, and plan 
the obstacle avoidance path through the 
resultant force 

Path generation is efficient Prone to local minima and unable to find 
paths between neighboring obstacles 

GA Mimicking the process of natural selection and 
reproduction 

Strong global search capability for suboptimal 
solutions 

weak local search capability, very long time 
to get the optimal solution 

PSO Mimicking a flock of birds to share information Fast convergence premature convergence, easy to fall into 
local optimal solutions 

ACO Mimicking an ant colony to share information Fast convergence Complex parameter settings leading to 
deviation from high quality solutions 

PRM Random sampling in obstacle maps Plan paths in higher dimensional spaces; Paths 
can be conform to the constraints of the 
robot’s kinematic model 

Inefficient search in complex environments; 
Random sampling leads to redundancy of 
most nodes and increases computational cost 

RRT Build a tree that grows and spreads in all 
directions with the starting point as the root 
node, and nodes are also obtained by random 
sampling in the obstacle map 

In contrast to the PRM algorithm, the random 
sampling process can be oriented by target 
bias probability 

Inefficient search in complex environments;  
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most of the autonomous robots in real scenarios, such as unmanned aerial vehicle (UAV), self-driving cars, unmanned surface vessel, 
etc., belong to non-holonomic constraint systems, and thus, scholars do the following thinking: (1) Is there a better strategy for 
selecting qnear? (2) Is there a better strategy to connect qnear and qnew? In addition, it may also be worthwhile to further investigate 
these issues involved in the GDRRT algorithm: (3) Can the feasible solutions generated by the GDRRT algorithm be further optimized? 
(shorter, smoother and traceable)? (4) How can the algorithm can be improved in cases where the map is not globally known? (5) 
Whether hotly debated large-scale models can also be incorporated into RRTs. This review focuses on these improvement strategies for 
RRT algorithms, presenting recent advances in the last three years (2021–2023). 

2.2. Performance comparison 

Table 1 summarizes the advantages and disadvantages of some classical path planning algorithms. These algorithms can be 
classified into search-based and sampling-based strategies. Representative search-based algorithms include Dijkstra, A*, D*, etc. 
Among them, some use traversal-based search, such as breadth first search (BFS) and Dijkstra, thus have high cost when the target 
point is far away from the initial position; some are cost-function oriented, such as the A*, which expects to find the relatively optimal 
path quickly, but search-based algorithms rely on information about current and historical positions, and thus are prone to have locally 
optimal solutions. Such methods have their inherent limitations. The representative sampling-based algorithm is probabilistic road-
map (PRM), which employs a completely randomized node search and determines the feasibility of the generated paths based on the 
presence of obstacles between nodes, utilizing the global information of the map and therefore possessing the potential to obtain 
optimal solutions. However, this random search lacking objectives leads to redundancy of generated nodes and lacks theoretical basis 
for optimizing local paths. To solve the problems above, strategies that fuse search-based and sampling-based strategies are widely 
used, the most representative of which is the familiar RRT. 

In addition, some strategies from other fields have been introduced into the field of path planning. For example, artificial potential 
field (APF), genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) in the field of optimization, 
deep deterministic policy gradient (DDPG) in the field of deep learning, all of these have been applied to path planning with good 
results. 

Overall, RRT is a hybrid algorithm which contains both searching and sampling features, its searching feature is manifested in the 
fact that RRT starts branching from the root node and finds feasible paths connecting the start and end points in the obstacle map, and 
its sampling feature is manifested in the fact that the branching process is affected by probability, so the algorithm has the potential to 
achieve better performance metrics compared with searching features-based or sampling features-based algorithms, and furthermore, 
the development of other fields such as optimization and artificial intelligence also contributes to the development of RRT. 

3. Overview of RRT-based algorithm improvements 

The stochastic nature of the branch makes it possible to further optimize the algorithm. At the theoretical level, it is generally 
necessary to study the optimality of the paths, and at the practical level, it is generally necessary to weigh the scene constraints, model 
constraints, and other constraints, and design the most suitable paths according to the established requirements. 

In response to the large amount of literature emerging on RRT-based improvement algorithms, this review discusses four aspects, 
including branching strategy improvement, sampling strategy improvement, post-processing, and model-driven RRT, and looks into 
several possible future research directions in this field. 

3.1. Branching strategy improvement 

3.1.1. Branch node selection 
There are no more classical algorithms for branch node selection than RRT* [19], which adds a two-step optimization strategy 

including ‘rewire’ and ‘random relink’, where rewire means that after a new node is added to the tree, a parent node is re-selected for it, 
so that the cost value of the newly generated path is smaller, and random relink means that after rewiring, the nodes surrounding the 
new node are reconnected to the new node. Karaman et al. [20] prove the asymptotic optimality of the RRT* algorithm, implying that 
the algorithm can find the optimal path when the time tends to infinity. 

Some researchers suggest improvements to the algorithm in response to the shortcomings of RRT* in specific application scenarios. 
Aiming at the problem that many RRT*-based variants are inefficient in sampling and slow in convergence in the environment con-
sisting of long corridors, Ding et al. [21] propose the expanding path RRT* (EP-RRT*) based on heuristic sampling in the path 
expansion area, and experiments show that compared with RRT* and Informed-RRT*, the proposed EP-RRT* improves the node 
utilization, speeds up the convergence rate, and obtains better paths for the same number of iterations. Reconfigurable modular robotic 
systems under RRT* are inefficient due to the formation variety. For this reason, Lu et al. [22] propose an obstacle-aware hybrid 
density network to guide the generation of polygonal nodes, and the results show that the strategy of connecting convex polygon trees* 
(CPT*) in the form of RRT* improves scalability to large environments. To minimize the energy consumption of the robot, Yu et al. [23] 
propose a cylinder-based informed-RRT* (Cyl-iRRT*) algorithm, which seeks to find the optimal homotopy path by focusing the search 
space on the designed gradually shrinking cylinder. Alam et al. [24] present a pick-and-place RRT* under the novel flight cost 
(FC-RRT*), which generates nodes in a predetermined direction and then calculates the energy consumption using the circle-point 
method. Modular self-reconfiguring robots can change their configurations to efficiently adapt to various tasks. To address the 
characteristics of such robots, Odem et al. [25] defined RRT*-based topological configurations, a new approach that represents a set of 
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modular self-reconfiguring robot equivalent configurations as topological configurations, thus significantly reducing the tree size. The 
Quick-RRT* algorithm proposed by Jeong et al. [26] reselects the parent nodes and optimizes the pruning range, and the superiority of 
the algorithm is verified by calculating the space complexity and time complexity. 

RRT-connect [27,28] also known as bidirectional RRT (B-RRT), introduces a dual-tree expansion mechanism that simultaneously 
expands the random tree with the initial and goal points as root nodes, respectively, Rajendran et al. [29] present RRT-Connect that 
incorporates human awareness, and paths generated by the algorithm are as visible as possible to humans, making it easier for 
human-robot collaboration. Chen et al. [30] fuse RRT-Connect and Bezier curves and apply them to a cooperative assembly system 
with two robotic arms composed of six degrees of freedom, effectively optimizing the trajectories of the dual robotic arms. Li et al. [31] 
notice that Rapidly-exploring random vines (RRV) [32] performs well in single narrow channel environments but poorly in cluttered 
environments, while RRT presents the opposite result, so they propose a fusion algorithm based on RRT-Connect and RRV. Cao et al. 
[33] point out the advantages of RRT-Connect, artificial potential field (APF) and cubic B-spline for global path planning, local path 
planning and curve smoothing, respectively and fuse these three algorithms together to optimize the paths of unmanned aerial vehicle 
(UAV). In Ref. [34], a novel adaptive gravity field-based RRT-connect method is proposed and the efficiency of the improved algorithm 
is further demonstrated on an actual manipulator platform. Li et al. [35] optimize the RRT-Connect nearest node selection mechanism, 
which has better adaptability in the apple orchard environment and promote the automation of orchard operations. Other application 
scenarios for RRT-connect include path planning of the fruit tree pruning manipulator [36], insect-like mobile robots in a narrow 
environment [37], UAV trajectory tracking [38] and navigation [39], multi-UAV formation shape generation [40], automatic sampling 
of exhaust emissions [41], closed-loop control of microrobots subjected to flowing fluid disturbances in a microfluidic environment 
[42], home service robot arms [43]. Several researchers investigate improved strategies for RRT-connect, Spinos et al. [44] propose the 
link-augmented graph to increase the range of feasible solutions for truss robots and apply it to RRT-Connect to search all target points 
more efficiently. Kang et al. [45] propose a rewiring method based on triangular inequalities to bring RRT-Connect closer to the 
optimum. To deal with manipulator path planning in complex multi-obstacle environment, Petit et al. [46] introduces a new method 
called RRT-Rope, which builds on RRT-connect by using a deterministic shortcut technique for fast post-processing while adding 
intermediate nodes at branches of the tree. 

The study of the fusion of RRT-connect and RRT*-based algorithms is also a branch of the study of improved RRT-based algorithms. 
The B-RRT* algorithm [47] directly fuses RRT-connect and RRT* and also inherits the advantages of both algorithms. To improve the 
obstacle avoidance efficiency of the redundant robotic arm, Dai et al. [8] propose a B-RRT* based on a novel potential field guidance 
(PB-RRT*), and the results show that the proposed algorithm plan shorter paths, larger gap between the manipulator and the obstacle 
and fewer invalid nodes when compared with the B-RRT*. Singh et al. [48] incorporate B-RRT and a modified Bezier curve, and try and 
test the technique in various real-world experiments. Shama et al. [49] use a probabilistic Gaussian mixture model to identify the 
regions most likely to generate nodes for faster convergence. Wang et al. [50] propose a growth point evaluation function based on the 
adaptive resolution octree map, which guides the generation of RRT paths to make the growth strategy purposeful, and then the al-
gorithm also reselects the parent and candidate nodes and rewires them. The experimental results show that the improved RRT al-
gorithm can eliminate the redundant bifurcations of the growing tree, reduce the number of sampling times, and greatly improve the 
growth efficiency compared with the traditional RRT, RRT* and B-RRT*. Other application scenarios for B-RRT or B-RRT* include ice 
navigation [51], arc welding robot [52], the autonomous flight of UAV [53], robot path planning in constrained environment [48,54], 
redundant manipulators [8,55], autonomous parking [56], lunar rover [57], litchi-picking robot [58]. 

There is also some literature that implements branch-node selection improvements based on RRT. In order to design trackable paths 
for articulated vehicles, I and my team propose a hybrid strategy combining RRT, farthest node search and head correction with fixed 
wheel position [16]. To solve the non-convex optimization problem, He et al. [59] devise an barrier pairs-based RRT (BP-RRT) al-
gorithm, where each barrier pair consists of a quadratic barrier function and a full-state feedback controller, to achieve the synthesis of 
locally optimal controllers, which are validated in the simulation of a dual linkage manipulator robot. Hao et al. [60] present the 
complex environments RRT (CERRT), which restricts vertex selection and expansion, and samples the region near obstacles multiple 
times to avoid useless exploration. Guo et al. [61] introduce the concept of candidate point array, where when an obstacle is present on 
the straight line between the nearest point and the randomly generated current point, that point is not used for the current stage of path 
generation but for subsequent path optimization, and this strategy is applied to the Yobogo legged robot navigation. Pareto dominance 
is a very well known theorem in game theory, where a Pareto improvement is defined as an allocation of resources that makes at least 
one person better off without making anyone worse off. When using the RRT path planning algorithm, the Pareto improvement method 
is used to select the optimal node from dozens to hundreds candidate nodes [62], motion planning based on zero-sum games is also a 
similar idea [63]. 

3.1.2. Branch design 
Branching designs are generally improved in terms of branch step size or branching mode. In terms of branch step size 

improvement, some researchers determine the optimal branch size through extensive experiments in a given scenario [64,65], and 
others give specific strategies, for example, In Ref. [6], a step growth rate is introduced into the expression of angle selection [66]. 
introduces the "step-size dichotomy" to solve the problem of excessively long step size in the APF algorithm due to the large range of 
obstacle rejection, and applies it to the motion planning of the citrus picking manipulator. In Ref. [67], the step size varies according to 
the density of obstacle distribution and Q-learning is used to reduce the randomness of RRT, a scenario that no longer requires accurate 
environment modelling and vehicle modelling. In Refs. [36,68], the adjustment coefficient is introduced and when encountering an 
obstacle collision, the step size becomes progressively larger, and vice versa, the branch size returns to its initial value. A similar 
strategy is presented in Ref. [34], where the branch size increases by a fixed length when the node is successfully extended, and vice 
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versa, the branch size decreases by the fixed length. Another similar strategy is presented in Ref. [26], where a direct connection 
between ancestor nodes and the new node is considered during the rewiring procedure. In Ref. [69], the step size is adapted using the 
gradient descent method to make the step size smaller as the target region is approached. In Ref. [70], the dynamic step size is designed 
by means of a segmentation function, where the branch length varies in a logarithmic trend when it is less than a certain threshold, and 
is a fixed constant when it is greater than a certain threshold. In Ref. [37], a dynamic step size formula is designed based on the pattern 
of exponential changes. In Ref. [71], Peng et al. calculate the number of expansion failure times and use this parameter as a variable in 
the branch size adjustment coefficient. In Ref. [72], gravity adaptive step size strategy is applied. In terms of branch mode 
improvement, Nasir and Islam notice that the paths explored by RRT and RRT* are often stitched together by multiple folded segments, 
whereas the optimal path in the obstacle-free space is generally a straight line, and therefore design an algorithm called RRT*-Smart 
[73,74], which, after generating a feasible path, continuously searches for an unobstructed and direct connection to the parent node 
from the leaf node, turning multiple folded segments into a single folded segment. A similar strategy is that of Chung et al. [75] who 
argue that when encountering obstacle collision, branches extend in the same direction. In Ref. [76], a simplified rewiring step is 
performed, where only nodes in the set of goal trees are rewired compared to RRT*. Literature [77] proposes the cyclic pruning al-
gorithm to shorten the paths where the first pruning is used to delete unwanted nodes and the second pruning is used to optimize the 
paths. 

Some literature design branching mode depends on scenarios; for example, Zacchini et al. [78] predict the effect of taking more 
actions in unknown environments by considering branch information gain and assessing the impact of the rewiring process on tree 
growth. To enable the spacecraft to plan time-optimal attitude trajectories under complex pointing constraints, Xu et al. [79] propose 
an intelligent branching model based on geometric-level spherical and quadrilateral interpolation, which is capable of planning 
suboptimal solutions within a few milliseconds. Long et al. [80] propose RRT*-Smart based adaptive regional dynamics 
(RRT*Smart-AD) to deal with dynamic characteristics in dynamic environments. Some literature design branching modes depend on 
kinematic constraints, for example, Song et al. [81] develop the kinodynamic RRT*-smart algorithm for collision avoidance strategy 
for unmanned surface vessels. To achieve the lychee harvesting with a rigid robotic arm, Ye et al. [58] propose an adaptive weighted 
particle swarm optimization method. Wang et al. [82] suggest an efficient branch pruning strategy that introduces a new state while 
taking kinematic constraints into account and apply the algorithm to a differential drive robot. James et al. [83] develop two types of 
fillets to meet curvature-constrained vehicles need, a circular fillet for limiting the maximum curvature of the path and a spline fillet for 
achieving continuous path curvature. To address the angular limitations of RRT* for hyper-redundant manipulator applications, Ji 
et al. [84] design an ellipsoid-shape RRT* (E-RRT*), which adopts ellipses instead of line segments to connect adjacent nodes, and 
verifies the superiority of the algorithm in a narrow environment. Xu et al. [16] propose the farthest node search strategy and head 
correction with fixed wheel position to redesign the branch based on the articulated vehicle model. To account for the different 
pointing constraints faced by multiple instruments during spacecraft attitude manoeuvres, discrete quadratic path nodes are obtained 
using RRT* [85]. To solve the path planning problem under ocean currents [86], establish a data-driven energy model and a 
time-varying current model, and introduce these constraints into RRT. 

3.2. Sampling strategy improvement 

B-RRT is an improved RRT algorithm based on branch node selection. However, this algorithm still suffers from slow convergence, 
some scholars note that more subtrees may accelerate search efficiency, Chai et al. [87], Tu et al. [88] and Zhang et al. [89] propose 
generating multiple subtrees within a narrow channel and merging them into a main tree in subsequent sampling. Luo et al. [90] 
construct a third random tree based on B-RRT, which constructs intermediate points to find and converge global paths in an efficient 
way. In Ref. [68], a pre-harvesting guide point is designed between the start point and the end point and four random trees are 
generated between these three points. Some scholars make improvements based on bias probabilities [91]. proposes to construct the 
RRT with the probability of changes of 1 and 0 (1-0 Bg-RRT) in order to jump out the local minima in time, while [77] proposes the GM 
(1,1) model to optimize the background values and verifies that the proposed model has a faster convergence speed and higher stability 
in a narrow-channel environment as compared to the 1-0 Bg-RRT. 

Some scholars notice that the slow convergence of the RRT* algorithm is due to uniform sampling of the free space, so Informed- 
RRT* [92] employs an elliptical sampling approach instead of globally uniform sampling. Uzun et al. [93] propose a n-sliced 
Informed-RRT* method, which divides the reference path into a certain number of path segments and optimizes them one by one, 
solving the convergence problem of Informed-RRT* in multi-curve paths. In Ref. [94], spatio-temporal Informed RRT* is proposed to 
provide the coordinates and velocity of each planning point in a road scene. In Ref. [95], a linear quadratic minimum time local 
planner-based Informed-RRT* method is proposed for a laboratory-scale 3D gantry crane. In Ref. [73], Informed-RRT* incorporates 
pre-harvest points and quad-tree for fast citrus harvest. In Ref. [96], Informed-RRT* incorporates dynamic window approach further 
reduces the global path length. To address the safety and productivity of construction sites due to temporal and spatial conflicts, a 
hybrid algorithm incorporating Informed-RRT*, geometry and discrete event simulation is implemented and evaluated, and experi-
ments show that the proposed algorithm satisfies all types of obstacle avoidance constraints, provides priority for higher priority 
construction activities, and also obtains the shortest route and time for each transport vehicle [97]. In order to plan energy-efficient 
paths for reconfigurable robots in complex environments, Kyaw et al. [98] introduce an energy objective function into the batch 
informed trees*, where the energy objective function considers the energy cost of each reconfigurable action of the robot. In Ref. [99], 
the design of the short-horizon planner for collision avoidance is addressed, and an improved Informed-RRT* algorithm is proposed, 
which encodes the International Regulations for Preventing Collisions at Sea (COLREGs) by defining a rule-compliant region in the 
configuration space and searching for feasible paths within that region. 
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Similarly, the circle-based sampling strategy is proposed. For example, the center-circle sampling strategy based B-RRT shows the 
advantage of generating a smaller number of nodes [100], the forward and reverse sampling circles strategy based B-RRT demonstrates 
the advantages of local optimization of quadrotors trajectories in complex dynamic environments [101]. In Ref. [24], an 
energy-efficient industrial robot motion planning method is proposed and the energy consumption is calculated using the circle point 
method. 

Another hotly discussed sampling strategy is Quick-RRT* [26], which uses triangular inequality for parent node selection and 
rewire improvement. One class of studies uses Quick-RRT* as a baseline to highlight the superiority of the proposed algorithm, for 
example [102], generates semi-triangular regions based on triangular inequality to improve the path quality and uses a tabu table to 
enhance the path generation efficiency during the rewiring process, and the results show that the proposed algorithm outperforms 
Quick-RRT* in terms of both path quality and path generation efficiency [103]. constructs the gravity field function based on seafloor 
topographic data and uses it for underwater path planning, and the results show that the proposed algorithm is more efficient under the 
demand of path planning considering gravity, with an efficiency of 5.98 times that of Quick-RRT*. The underwater path planning 
problem has also been considered in the literature [104], with a focus on rescue missions for underwater robots. The algorithm takes 
the ancestor node that is farthest from the sampling point and has no collision as the parent node, increases the intermediate nodes in 
the path depending on the step size, and uses the triangular inequality several times throughout the process to obtain the optimized 
path, and the results validate that the path planned by the proposed algorithm is faster compared to the Quick-RRT* algorithm. Unlike 
the above algorithms, Literature [105] is more concerned with robustness, and tries to adjust the sampling strategy to optimize the 
planned path, specifically, adjusting the size of the sector sampling region and the sampling probability through the scene, and the 
results verify that the algorithm is more robust than Quick-RRT*. In Ref. [106], potential function-based optimal path planning 
considering congestion (CCPF-RRT*) is proposed and the results show a better performance in initial solution, quick convergence 
speed and the movement cost compared to Quick-RRT*. Another class of studies performs further optimization based on Quick-RRT*, 
for example, Wang et al. [107] combine the backtracking idea of Quick-RRT*, the greedy search strategy of RRT-Connect, the triangle 
inequality path optimization, and verify the effectiveness of the proposed algorithm, they also propose a novel algorithm based on 
circular arc fillet (CAF-RRT*) [108] for the path planning problem in two-dimension workspaces, which obtains the initial path by 
combining Quick-RRT* with B-RRT. Qureshi et al. introduce APF to achieve a trade-off between exploration and exploitation, named 
P-RRT* [109], and potential functions based Quick-RRT* (PQ-RRT*) is proposed [110] to overcome the limits of the slow convergence 
rate of RRT*. Experiments show that the proposed algorithm guarantees a fast convergence to an optimal solution and generates a 
better initial solution. In Ref. [111], Quick-RRT*-based map is constructed and unsafe nodes for mobile robots are deleted from the 
constructed map. In Ref. [112], the virtual light-based Quick-RRT* is proposed, where in this algorithm, a sector-shaped light intensity 
sensing region centered on the target point is constructed [113]. optimizes the sampling area in real time based on the node density. On 
the application area of the Quick-RRT* algorithm, aiming at the application object of the cable-driven super-redundant manipulator 
with 17 degrees of freedom and the narrow and complex application environment [114], design paths based on the relationship 
between the maximum deflection angle and the operating speed of the manipulator, and achieve good results, Jeong et al. [115] 
develop an optimal obstacle avoidance path planner for stabilizing the robot’s heading, and this strategy. Similar improvement 
strategies to Quick-RRT* are Fast-RRT* and F-RRT*. Fast-RRT* [116] combines a target bias strategy with constrained sampling to 
reduce the blindness of sampling, and prioritizes the ancestors of the nearest node to the root node in the branching phase. To address 
the issue of autonomous navigation for micro aerial vehicles, Martinez et al. [117] optimize the paths by reconnecting the nodes based 
on Fast-RRT*. They also develop a signed distance field to facilitate collision checking. In Ref. [4], a new fusion algorithm for target 
bias, gravitational potential field and Fast-RRT* is also proposed. F-RRT* [118] optimizes path creation by generating parent nodes for 
random points, outperforming traditional RRT’s parent selection strategy. Experiments demonstrate that the algorithm surpasses 
RRT*-Smart [73], and Quick-RRT* [26] in terms of initial solution and fast convergence rate. Spatial offset sampling RRT* (SOF-RRT*) 
[7] is an enhancement of the F-RRT* algorithm, which introduces a spatially probabilistic weighted sampling strategy that increases 
the likelihood of sampling in regions with larger feasible regions. Cong et al. [119] propose FF-RRT*, a hybrid method that combines 
the target bias sampling strategy with the random sampling strategy. The branching strategy in this algorithm creates new parent 
nodes. Experiments demonstrate a significant reduction in convergence time when compared to the Fast-RRT* [116] and F-RRT* [118] 
in both simple and complex maze environments. The improved path planning algorithm considering congestion in Ref. [106] 
incorporate the advantages of F-RRT* and utilize the movement cost function to design an ideal path in a crowded environment. In 
Ref. [120], radar data is used to generate maps and the Graham algorithm is employed to delineate the dynamic flight exclusion zone 
(FEZ) for planning feasible paths under hazardous weather. The influence range, size and distribution characteristics of the FEZ are 
then investigated. Other mainstream strategies based on region sampling improvements include the generalized voronoi 
diagram-based sampling regions [121], non-threshold adaptive sampling region [122], Gaussian distribution and local biasing sam-
pling regions [123], dynamic region sampling [105], the adaptive forward and backward sampling regions [124]. 

In addition to considering more trees and designing differently shaped sampling regions, there are a number of other strategies for 
improvement. Wang et al. [52] devise a function to compute the variation parameter whose exponential term introduces the number of 
collision detection failures. In Ref. [76], the conditional sampling method is proposed, where nodes that cannot be part of the solution 
path due to velocity constraints are prohibited from sampling. In Ref. [125], dynamic RRT is proposed which, by heuristically using 
this path length as the major axis diameter of the informed subset, balances convergence time and path length in an environment with 
randomly distributed obstacles. In Ref. [126], sequential convex feasible set is introduced to RRT*, and bad local optima are avoided to 
get stuck in. In Ref. [72], double sampling points comparison and selection strategies are used to reduce the randomness of sampling 
points [127]. introduces a virtual field sampling algorithm and a current constraint function for multi-unmanned surface vehicle path 
planning under spatially varying currents. 
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In addition, requirements at the application level also contribute to the improvement of RRT sampling strategies, to address the 
problem of relatively low efficiency due to the increase in degrees of freedom in the robot system equipped with gantry structures, 
Wang et al. [128] introduces the sampling pool mechanism, and selects the node nearest to the connection line between the starting 
node and the target node in the sampling pool, which effectively shortens the length of the search path. Experiments show that 
compared with IB-RRT* [129], the path cost and time cost are increased by 22.2 % and 32.5 %, respectively, and the success rate is 
relatively stable. To address the issue of low search efficiency in large-scale road network environments, Adjacent-relation based RRT 
repetitive sequence optimization (A-RRT-RSO) is proposed, in which the A-RRT adopts a greedy strategy to sample neighboring mesh 
nodes, increase the leaf nodes and generate the RRT + extended tree. The proposed A-RRT-RSO reduces the number of search nodes, 
avoids blind search, and minimizes the cost of path computation [130]. To address obstacle avoidance path planning for manipulators, 
Zhanga et al. [131] develop a sampling motion planning algorithm. The algorithm samples configurations in advance that satisfy 
specific constraints associated with a prescribed motion planning task and stores them in an offline configuration dataset. This 
approach is based on the premise that the manifolds are continuous over a specific range. Zeng et al. [132] propose a 
tournament-selected point sampling strategy based on RRT to guide the underwater vehicle to the area of interest for sampling. The 
strategy maximizes information collection while working within a limited budget. Other applications include circular sampling 
strategy for autonomous vehicles [133], path planning for a UAV in communication-constrained operating environments [134], flight 
cost-based RRT for energy-efficient industrial robot motion planning [24], vector field stream based RRT* to plan unmanned surface 
vehicle paths under spatially variable ocean currents [135,136]. 

3.3. Post-processing 

The reason why RRT algorithms need post-processing can be stated at the theoretical level and the application level. From the 
theoretical level, the feasible solutions can be further optimized in terms of evaluation metrics such as path length, complexity, and 
consumption time, etc. Some of the previous reviews also falls into post-processing, like Some kinds of RRT-Connect [35,36,45,46], 
informed-RRT* [23,92,96], Quick-RRT* [26,110,112,113], RRT*-Smart [73,79,80], Fast-RRT* [116,119], F-RRT* [7,118], post 
triangular rewiring strategy [52,137], interpolation post-processing [138,139]. From the application level, the feasible solutions are 
likely to not satisfy the kinematic model constraints of the robot or the scenario constraints in some application scenarios, therefore, 
the theoretically generated feasible solutions cannot be applied to real scenarios and further optimization is still required. In terms of 
considering kinematic model constraints, Zhou et al. [140] design a redundant dual-chain manipulator with two kinematic chains and 
a fixed base. They generate joint trajectories corresponding to the paths using flow shape analysis. Experiments confirm the method’s 
practicality. Berg et al. [141] design curvature-aware with closed-loop RRT (CA-CL-RRT) to enhance the path planner’s performance 
on curved highways, where in the closed-loop prediction phase, the virtual car follows the generated reference path and speed profile. 
In the curvature phase, the upper bound of the curvature constraint is introduced. Experiments demonstrate that the CA-CL-RRT 
algorithm proposed can significantly improve the path quality, particularly on curved roads with a radius of less than 1000 m. In 
the current automatic parking system, the parking trajectory planning algorithms based on geometric connection or optimization 
problem descriptions have problems such as strict requirements on the starting position, low planning efficiency, and discontinuous 
reference trajectory curvature. To solve these problems, Wang et al. [142] propose a hierarchical planning algorithm combining 
nonlinear optimization and an improved RRT* algorithm with Reeds-Shepp curves. Simulation results show that the proposed algo-
rithm can design an effective parking trajectory under multiple parking scenarios. The Stanley algorithm is also used for path tracking 
and Reeds-Shepp curve to adjust the final parking attitude of the truck [143]. Mao et al. [144] propose the retains the discrete search of 
the original rules of RRT while adding the continuity of the motion of unmanned surface vehicle (USV), where each movement 
including position, yaw angle, velocity, etc. is takes into account the complete dynamic constraints, which is called the state prediction 
RRT (SP-RRT) algorithm. In Ref. [145], the improved two-step timed elastic band is introduced to smooth the path and optimize path 
lengths of automatic guided vehicles. To address the significant challenges faced by RRT-related algorithms in ship path planning, such 
as slow convergence and excessive turning points, Gu et al. [146] first cluster the priori data to construct a bootstrap region that guides 
the RRT branching. Then, they optimize the paths using the Douglas-Peucker compression technique. The results show that the 
proposed algorithm achieves a good balance between efficiency and accuracy. To solve the online cooperative path planning problem 
for multiple quadrotors in unknown dynamic environments, Jia et al. [147] establish the kinematic constraints for quadrotors and 
propose a spatio-temporal coordination strategy applicable to RRT. In addition, commonly used curve smoothing methods are also 
introduced into the RRT algorithm, including the Bezier curve-based RRT [83,107,148], B spline curve-based RRT [37,116,149]. 

In terms of considering scenario constraints, Kim et al. [150] introduce TargetTree-RRT* for complex environments like narrow 
parking spots, where in this algorithm, clothoid paths are introduced for post-processing to address curvature discontinuity, a cost 
function is used to create an objective tree that considers obstacles. For the problem of path planning in dynamic environments, Guo 
et al. [151] propose a hierarchical structure that updates the surrounding information in real-time at the perception layer. This 
structure aims to obtain heuristic paths at the path planning layer and improve path quality at the path optimization layer by 
combining a sampling method with an artificial potential field function. To address the long-distance and multi-level planning tasks of 
self-driving vehicles, Zhao et al. [152] propose a lifelong learning framework with GAN and RRT, taking the tractor-trailer as an 
application case and testing the proposed method in several scenarios with different characteristics. To address the path planning 
problem in visual servoing, Reyes et al. [153] incorporate visual servo control into state information to create local trajectories for 
RRTs. They demonstrate that this approach is probabilistically complete. To address the problem of RRT* failure in certain constrained 
environments, Ramasamy et al. [154] design an adaptive RRT* (ARRT*) algorithm in a created digital twin simulation environment, 
which designs a collision detection function to achieve dynamic sampling. The results show that ARRT* performs better than RRT* in 
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constrained environments. In response to stochastic disturbances in the scene, Pedram et al. [155] propose a novel path length metric 
containing a weighted sum of the robot motion cost and the robot perception cost in an uncertain configuration space, and combine 
this strategy with the existing RRT* algorithm. In Ref. [156], the improved RRT algorithm takes into account the direction of 
movement of the obstacles, iteratively generates paths within a specified time and selects the shortest flight path. To overcome the 
situation when scanning complex objects with many obstacles, Yan et al. [65] propose the direction-guided RRT, an algorithm that 
builds on RRT by first simplifying the invalid paths through linear processing and then, smoothing the paths. 

Some scholars notice that RRT-based improvement are generally applicable to static scenarios, but there is a need for dynamic 
obstacle avoidance in real scenarios, so combining other dynamic obstacle avoidance strategies to achieve RRT dynamic obstacle 
avoidance path planning is also a hot research topic. Dynamic window enables dynamic obstacle avoidance tasks, but there is a risk of 
falling into local optimal solutions, therefore [157], proposes RRT*-fuzzy dynamic window approach (RRT*-FDWA) for collision-free 
path planning, where a reward and penalty function is designed so that the robot can quickly enter global path planning once it has 
successfully avoided an obstacle. D*, or Dynamic A*, is also a general class of techniques for dealing with dynamic obstacles, based on 
the principle of updating the overheads between states in the map in real time when a moving obstacle is detected during robot motion, 
and in Ref. [80], dynamic A* evaluation function is designed and introduced to RRT*-smart. The finite acceptance of bad solutions is 
the core of the Metropolis acceptance criterion. It is frequently used in simulated annealing algorithms to calculate the acceptance 
probability of a solution. In Ref. [158], based on the Metropolis acceptance criterion, an asymptotic vertex acceptance criterion and a 
nonlinear dynamic vertex acceptance criterion are developed. Q-Learning is an algorithm in reinforcement learning for making de-
cisions and learning based on behavioural norms and rewards, in Ref. [63], a decoupled real-time motion planning framework is 
proposed that combines robust intermittent Q-learning with a sampling-based motion planner in which the sampling module begins 
each iteration by updating the neighbourhood radius. Some advanced control theories, such as linear quadratic regulator (LQR) and 
nonlinear model predictive control (NMPC), can withstand dynamic disturbances. The literature [159] proposes a two-stage risk 
aversion architecture designed for the safe control of stochastic nonlinear robotic systems. This architecture combines a novel RRT* 
variant for nonlinear steering, distributed robust collision checking, and a low-level reference tracking controller. Numerical exper-
iments on unicycle dynamics demonstrate that NMPC outperforms LQR and its LQR variants in terms of performance metrics. In 
Ref. [160], the nominal mean value of the stochastic control distribution in the model predictive path integral is provided by RRT, 
leading to satisfactory control performance in both static and dynamic environments without any parameter fine-tuning. Other ap-
plications include manipulator dynamic obstacle avoidance [161], hybrid assembly path planning for complex products [162], 
10-DOF rover traversing over 3D uneven terrains [163], UAV path planning [77,151,164], electric inspection robot navigation [165], 
cobot in dynamic environment [166], underground vehicles [167], automated guided vehicle [145], mining truck [143], redundant 
robots [168]. 

3.4. Model-driven RRT 

3.4.1. RRT with support vector machine classifier 
In 2019, I and our team plan paths fuse RRT, Support vector machine (SVM) classifier and longest accessible path with course 

correction (LAP-CC) to address the articulated vehicle path planning problem under globally known maps [169]. We first use the RRT 
algorithm to generate a feasible path from the starting point to the end point, and then label the obstacles on both sides of the path as 
positive and negative classes, and learn to obtain the zero-potential decision curve through the SVM algorithm, and then for the 
problem that the curvature of the zero-potential decision curve does not conform to the kinematic model of an articulated vehicle, we 
propose the LAP-CC algorithm for post-processing of the path. 

3.4.2. RRT with random trees classifier 
Dominik et al. [170] investigate the classification results of Random Trees (RT) classifier and SVM classifier in a real outdoor scenes 

containing grass, leaves, pavement, trees, asphalt, wall, bushes and concrete as a way to construct the obstacle map, and the authors 
conclude that RT classifiers are more suitable for field scenes compared to SVMs, and then the authors use the RRT-Connect algorithm 
for six-legged walking robot path planning in scenarios modelled after RT-based classifiers. 

3.4.3. RRT with k-nearest neighbor queries 
Pan et al. [171] present a new method for fast probabilistic collision checking to accelerate the performance of RRT-based motion 

planning, where k-nearest neighbor (k-NN) is used to find the nearest prior query sample to the new query configuration. The results 
show that this fusion method improves the RRT-based path planner in terms of accelerating local path and improving search order on 
the roadmap, and the findings are also validated on rigid and articulated robots. Similar work is done in Ref. [172]. The authors also 
state the shortcomings of the fusion algorithm and discuss future directions: first, the algorithm is parameter-sensitive, which means 
that the hyper-parameters of k-NN need to be adaptively tuned for datasets of different sizes; second, the collision search strategy 
should not be balanced, and well-explored regions should be subjected to as few collision detection queries as possible; furthermore, it 
is also meaningful and necessary to improve the method to adapt it to collision exploration in dynamic environments. 

3.4.4. RRT with logistic regression 
To address the problem of obstacle avoidance path planning for irregularly shaped obstacles, Peng et al. [173] propose a control 

barrier function-based RRT* to generate a collision-free path for a bipedal robot with multiple polynomial-shaped obstacles, where the 
polynomial-shaped obstacles are estimated by logistic regression. The authors summarize the shortcomings of this method, including 
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an obstacle occupancy that is too small to generate a suitable control barrier function, and the inability to express the surrounding 
obstacles with a single control barrier function. 

3.4.5. RRT with random forest 
Cano et al. [174] evaluate and compare four different hyper-parameter tuning methods (random sampling, AUC-bandit, random 

forest, and bayesian optimization) for RRT-connect, and random forest (RF) is more effective in hyper-parameter optimization as 
compared to random sampling and bayesian optimization, and its path generation under RRT-connect is 1.2 times more efficient than 
the default hyper-parameters. 

Song et al. [19] use five machine learning algorithms to learn static obstacle data from the scene in the expectation of improving 
obstacle avoidance efficiency. Experiments show that RF provided the best predictions compared to k-NN, multinomial naive bayesian, 
gaussian naive bayesian and SVM. 

3.4.6. RRT with neural networks 
Baldoni et al. [175] utilize neural networks to guide the generation of path planning with the expectation of improving the gen-

eration of datasets and increasing the efficiency of path planning. The authors conclude that the path planning task for narrow passages 
and maze-like maps is very similar to the image segmentation task, so they choose U-net, which is widely used in the field of image 
segmentation, to train the path planning task, and the results show that the neural network-guided RRT significantly outperforms the 
traditional RRT in terms of path planning. 

In many cases, robots do not want their paths to be predictable, and to satisfy this need, Nichols et al. [176] exploit the feature of 
adversarial neural networks to improve network generalization and propose adversarial RRT*, which is the addition of a deception cost 
term to RRT* through the use of recurrent neural networks (RNN). The results show that the paths generated by RRT* containing RNN 
reduce the observer accuracy (47 % for RRT* and 19 % for adversarial RRT*), increase the path length by 29 % and the entropy by 22 
% compared to the optimal paths, suggesting that the paths generated by adversarial RRT* are more difficult to predict. 

Considering that RRT* fails to generate optimal paths due to the inability to know the features of the environment in advance, Ma 
et al. [177] propose a supervised neural network based method to learn scene features. In terms of network design, considering that 
conditional generative adversarial networks (CGANs) have the property of improving the performance of both adversarial and 
collaborative work, they have more potential for algorithmic performance metrics improvement than traditional supervised neural 
networks. The authors fuse CGAN into RRT*, and the results show that CGAN-RRT* outperforms Neural RRT* [178] on the same 
training set. 

In highly dynamic environments where efficient embedded implementation of algorithms is critical due to limited resources of the 
on-board microcontroller, Chaulwar et al. [179] propose a hybrid augmented CL-RRT including strategies such as introducing iterative 
ConvNet feature generation, input iterative convolution, compression of fully-connected layers in sparse columns, and storing only the 
states with the lowest severity of injuries for rapid generation of safety trajectories in critical traffic scenarios and deploy it on a 
TMS570LS20216 microcontroller. 

3.4.7. RRT with reinforcement learning 
To address the non-homotopic path problem that leads to significant differences between the demonstration path and the generated 

path (the generated path may be shorter, but do not conform to human social relations), Ding et al. [180] suggest combining a 
non-isotropic path penalty strategy with RRT inverse reinforcement learning, where the non-isotropic features are extracted as a 
penalization term in the objective evaluation metrics, and the subjects are allowed to perform a Turing test as a real moving obstacle on 
the generated paths in the subjective evaluation metrics. 

For multi-robot scheduling problems, such as the multi-ship aircraft unmanned path optimization problem for ship deck scheduling 
efficiency, Shang et al. [181] point out that reinforcement learning is used to generate paths for multi-ship aircraft, and the results 
show that the reinforcement learning based path planning algorithms are superior in terms of response time, scheduling completion 
rate and average path length compared to traditional path planning algorithms. 

For the path planning problem in hostile environments, the classical path planning method fails when the risk characteristics 
cannot be accurately labeled manually, to address this problem, Guo et al. [182] reduce the risk of generating paths based on the 
data-driven approach that constraints the growth direction of RRT*. The authors also mention that multi-UAV risk aversion and the 
need for further balance between unbiased and biased sampling also deserve attention. 

In safety-related domains such as driverless driving, it is extremely difficult to design a cost function and assign appropriate weights 
taking into account self-interests, ethics, laws, and limitations faced by the field of view, and therefore the use of human driving 
experience data and reinforcement learning algorithms for generating local goals and semantic speeds is also an important research 
topic. Yu et al. [183] develop a framework for self-driving cars by combining deep learning with RRT. Specifically, the authors extend 
deep neural networks (DNNs) to environments with multiple traffic participants and accelerate the training process using double-deep 
Q-networks (DDQNs) and prioritized experience replay (PER). Reinforcement learning is also needed to guide the generation of path 
planning for similar problems containing good candidate states identification and the accurate steering angle calculation [184], 
bevel-tipped needle paths design for surgical robots [185], assembly tasks with human-robot collaboration [186]. 
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3.5. Advantages of the RRT-based improvement strategies 

3.5.1. Branching strategy improvement for large-scale scenario search 
The reason why traditional RRT is difficult to be applied in large-scale scenarios is that RRT tends to get stuck under certain ob-

stacles, such as maze-like obstacles and narrow passages, resulting in the failure to obtain a feasible solution, as a contrast, branching 
strategy improvement plays an important role in the application of RRT in large-scale scenarios. For example, RRT-Rope is designed for 
UAV exploring large-scale environments such as underground mining stopes. The algorithm is validated in real time on an HP Z440 
workstation equipped with 12 Intel Xeon processors for a long tunnel over 20 m, long and a sloped planar space over 30 m, and an 
indoor environment containing columns and doors over 40 m, with path generation taking 0.25 s, 0.55 s, and 0.45 s, respectively [46]. 
Studies that are relevant to branching strategy improvement and also claim to be large-scale scenarios include 131.4 s to explore an 8 
m*8 m map [187], 56.75 s to explore 143.13 square meters of 182-square-meter indoor maze map with 81.46 % precision and 92.89 % 
accuracy [188], 1758.8 s to explore 30 m*30 m map [189], 555.6 s to explore 1000 m*1000 m with 3D terrain map [64], 10 s to 
explore 467*785 pixel maps of complex ocean environment with multiple vortices [136], 12 machine cycles for power inspection 
[165], 53.1 s to explore 20*20 grid maps [190], 6.654 s, 8.8845 s, 6.654 s, 16.1148 s, 7.7544 s, 6.0529 s to explore the dataset of 
Chem97ZtZ, gemat12, bcsstk33, kron_g500-logn162, CoAuthorsCiteseer [191]. The reason for the large gap in time cost is that some 
results only consider the time required for path generation, while others consider the time required for the robot to explore the map, 
and the above results demonstrate that branching strategy improvements can handle the challenges of large-scale environments. 

3.5.2. Sampling strategy improvement for real-time performance 
The improvement to branching strategy, sampling strategy, and post-processing increase the complexity of the algorithm, but due 

to the increased computational power of the hardware, these improved strategies still result in a fast solution while substantially 
increasing the quality of the paths. The real-time performance of the improved RRT in a static scenario is shown in 3.4.1, and even for 
dynamic scenarios, the improved algorithm still shows its superior real-time performance. For example, STL-RT-RRT* [192] and 
RT-RRT* [193] can react to moving obstacles in real scenarios (1.1 m/s for moving obstacles and 0.55 m/s for the robot). STL-RT-RRT* 
even achieves 100 % obstacle avoidance success rate in 1000 trials, with a failure chance of less than 0.1 %. In Ref. [151], the 
time-based sampling process performs well in radar and missile tracking avoidance (92 % success rate). In Ref. [192], a car-like robot 
on a miniature circular runway at a speed of 0.17 m/s successfully avoid the moving obstacles across the runway. In simple dynamic 
scenarios, the average dynamic obstacle avoidance success rate of the robotic arm is 100 % and the average path generation time is less 
than 0.1s [161]. Minkyu et al. [156] conduct UAV path planning experiments in which UAVs can generate an average of 1262 potential 
paths in a single obstacle environment and 770 potential paths in a multi-obstacle environment within 0.1s. In Ref. [101], when the 
distance between the quadrotor and the mobile platform is 15 m, the average computation times for path search, corridor generation, 
and trajectory generation are 3.7 ms, 4.9 ms, and 20.1 ms, respectively, even if the environment is filled with various types of dynamic 
obstacles. In Ref. [194], the robot with a speed of 4 m/s explore a dynamic scene of 97 m*142 m in less than 70s, and the path 
generation time is almost negligible compared to the path tracking time. 

3.5.3. Post-processing in uncertain environments 
One type of uncertain environment is the dynamics of the scene, Alexis et al. [192] introduce a signal temporal logic (STL) for 

real-time dynamic obstacle avoidance, which has the potential for dynamic obstacle avoidance optimization as it expresses through 
quantitative semantics that a robot should always keep a safe distance from a human or move slowly in narrow passages. The authors 
compare the performance of STL-RT-RRT* and RT-RRT* [193] and show the better performance of STL-RT-RRT* in terms of success 
rate in dynamic obstacle avoidance (no collisions for STL-RT-RRT* and 513 collisions for RT-RRT* in 1000 trials), the number of stops 
affected by dynamic obstacle avoidance (4 times for STL-RT-RRT* and 286 times for RT-RRT* in 1000 trials), and safe distance from 
dynamic obstacles (e.g., 1.2 m radius from human). Aiming at the targeted dynamic threat (radar or missile tracking) and random 
dynamic threat (tracking moment and tracking speed) that UAV may face, Guo et al. [151] propose a time-based sampling process for 
continuous change process of dynamic obstacles, fuse the APF structure for potential collision process, and introduce the cost function 
consisting of the true distance cost and the estimated distance cost to construct the heuristic path-finding process, and the comparative 
experiments verify the advantages of this algorithm in terms of the navigation time, path length, and the success rate of generated 
paths. Yu et al. [195] construct a miniature circular runway as an autopilot environment for a car-like robot and set moving obstacles 
across the runway as dynamic obstacles, and the algorithm can plan the trajectory points over time in advance according to the 
trajectories of the moving obstacles and smooth the paths under the premise of satisfying the curvature constraints of the car-like robot, 
tracking the trajectories at a speed of 0.17 m/s and avoiding the obstacles successfully. For the robotic arm path planning problem in a 
dynamic scene, Yuan et al. [161] compare D-RRT and DBG-RRT, and both algorithms have good real-time performance and high 
success rate of obstacle avoidance under three different maps. Under map 1, the average time and the average success rate for 
generating paths are 0.064s and 97 % for D-RRT and 0.017s and 100 % for DBG-RRT. Under map 2, the average time and the average 
success rate for generating paths are 0.083s and 98 % for D-RRT and 0.022s and 100 % for DBG-RRT. Under map 3, the average time 
and the average success rate for generating paths are 0.204s and 91 % for D-RRT and 0.021s and 100 % for DBG-RRT. Shubhi et al. 
[163] investigate the rapidity of path generation and the stability of path tracking for rover in 3D terrain, and several experiments 
show that the rewiring process for dynamic obstacle avoidance only takes less than 3 ms. Another interesting example is the interaction 
with humans. Considering the two types of human behaviors (conservative walkers and aggressive walkers) when encountering ob-
stacles, the authors [196] design two types of moving obstacles to simulate conservative and aggressive behaviors; when the moving 
obstacle is perceived as an conservative walker, the robot replans its trajectory to go around the obstacle from in front of the obstacle, 
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and when the moving obstacle is perceived as an aggressive walker, the robot replans its trajectory that bypasses the obstacle from 
behind the obstacle. 

Another type of uncertain environment is unknown environment, and this part of the task mainly involves exploration tasks, as 
detailed in section 4.2.5. The above literature demonstrates that the improved RRT has been widely used in two types of uncertain 
environments with good results. 

3.5.4. Model-driven RRT for path quality improvement 
Model-driven RRT is broadly classified into two categories, one in which there is already prior data (supervised learning), and the 

other in which lessons are learned over multiple explorations (reinforcement learning), both of which can improve the quality of path 
generation, as summarized below: (1) Considering irregular obstacles in real scenarios, some supervised learning strategies model 
obstacles in the environment to improve the accuracy of paths and enhance the applicability of the algorithm in complex scenarios [19, 
169,170,173]. (2) Supervised learning algorithms improve the search order of paths, thus improving the quality of local paths [172]. 
(3) Under supervised learning algorithms, the collision detection queries involved in RRT should not be balanced, i.e., regions with 
sparse obstacles can have fewer collision detection queries, which can further improve the path generation efficiency [171]. (4) The 
selection of hyper-parameters is difficult for any algorithm, whereas supervised algorithms can use historical data to select more 
appropriate hyper-parameters to optimize path quality [174]. (5) For the similar specific problems in the field of artificial intelligence 
and the field of path planning, the methods involved in the field of artificial intelligence may also be directly used in the field of path 
planning to achieve good results, for example in Ref. [175], the authors fuse U-net into RRT due to the similarity between path 
planning for maze-like maps and high-precision image segmentation. (6) An interesting work is to generate unpredictable paths to 
ensure privacy, a time when supervised adversarial neural networks show their strengths [176]. (7) Supervised networks that enable 
more accurate environment perception have the ability to enable RRT* with asymptotic optimality to achieve optimality [177,178]. 
(8) Some optimal paths that are consistent with human cognition are difficult to design suitable cost functions, in which case it is 
necessary to use reinforcement learning and social rules for path optimization, such as calculating non-homotopic features (area 
between the demonstration paths and the generated paths), as well as a questionnaire survey of the subjects (Turing test) to evaluate 
the degree of socialization of the generated paths [180]. (9) Reinforcement learning primarily addresses problems caused by the 
inability to accurately model or evaluate, including the inability to estimate risk characteristics [182], good candidate states identi-
fication and the accurate steering angle calculation [184] and the various factors caused by human-robot interaction [183,185,186]. 

4. Recent advances in the application of RRT to robotics 

According to the different application scenarios of robots, the International Federation of Robotics (IFR) classifies robots into 
industrial robots and service robots, and this part summarizes the latest progress of RRT on various types of robots. 

4.1. Industrial robots 

Industrial robots are robots that can be automatically controlled, reprogrammable, multifunctional, and multi-degree-of-freedom 
robots, which include handling operation/loading and unloading robots, welding robots, spraying robots, machining robots, and 
assembly robots, etc., and this section reviews recent advances in RRT for these robots. 

4.1.1. Welding robots 
Wang et al. [52] design the adaptive extended bidirectional RRT* algorithm applied to the path planning problem in complex 

environments with concave and convex surfaces, narrow passages and multiple obstacles. The authors not only prove the probabilistic 
completeness and asymptotic optimality of the proposed algorithm, but also conclude that the time complexity and space complexity 
are the same as those of the RRT and RRT* algorithms. Although the authors do a lot of simulation experiments and verify that the 
performance of the proposed algorithm is much better than many improved RRT* algorithms, the field test consumes a lot of time 
because of the need for collision detection of the six arms of the robotic arm and the welding gun. The results show that with a search 
step size of 10 mm, when the path length are 831.5 mm, 353.7 mm, 554.0 mm and 543.7 mm, the running time is 1109s, 307s, 210.8s 
and 447.5s. Similar tasks, strategies and conclusions are presented in Ref. [128], where the improved RRT* is used for gantry welding 
robot system. 

Considering three conflicting objectives of arc welding robots: minimum transfer path length, energy consumption and joint 
smoothness, Zhou et al. [197] calculate the path length using Euclidean distance and the energy consumption and joint smoothness 
expressions using the kinematics of the robotic arm, and assign 40 %, 30 %, and 30 % weights to the three objectives, respectively. In 
order to accomplish the multi-objective search task, the authors also propose a decomposition-based multi-objective evolutionary 
algorithm with a hybrid environment selection algorithm, and set the value ranges of the optimization parameters according to the 
application scenarios. The authors also mention that future work needs to focus on real-time path planning tasks for welding robots. 
Similar tasks, strategies and conclusions are presented in Ref. [198], where the goal is to minimize path length and energy 
consumption. 

4.1.2. Assembly robots 
Shu et al. [199] present an improved RRT* for the assembly of lightweight structures for COVID-19 healthcare facilities, which 

excels in collision avoidance, trajectory smoothness, trajectory length and execution time, and the authors note that the total assembly 
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time for the assembly robots designed in this paper is approximately 28 min, whereas professionals recommend a manual assembly 
time of no less than 45 min, making it competitive. However, the authors also note that the assembly process is not yet fully automated 
due to the lack of flat-packed housing components, and suggest that the use of aerial operation robots to assist in tightening the bolted 
joints can further reduce installation time and fully automate the assembly. 

Chen et al. [30] propose a dual-robot collaborative assembly path planning algorithm based on RRT-Connect and design a 
collaborative wire removal task for the dual robots. The results show that the trajectories generated in field tests are consistent with the 
simulation, and the task of removing the wires is successfully executed, and the results indicate that the designed trajectory planning 
method and the dual-robot collaborative system are effective. 

For the problem of assembling parts with different geometries, Ahmad et al. [200] introduce constraints on the initial and final pose 
grasping of the parts, and successfully accomplish the task of assembling the parts in a disturbance-free environment; for the dynamic 
environment, the authors propose that in the future, they will intend to install proximity sensors on the robotic arm to detect the 
surrounding obstacles in real time and to generate dynamic obstacle avoidance paths. 

4.2. Service robots 

Service robots are designed to perform service tasks that benefit humans, including commercial and domestic robots in the fields of 
accommodation, catering, finance, cleaning, logistics, education, culture and entertainment, as well as robots that include assisting or 
replacing a human in performing tasks, such as search and rescue robots, surgical robots, underwater robots, free-floating space robots, 
etc., and this section reviews recent advances in RRT for these robots. 

4.2.1. Search and rescue robots 
For exploration missions, commonly used methods include frontier-based methods and sampling-based methods. Frontier-based 

methods are similar to search-based strategies in the path planning domain, but two different definitions are used in the field of 
path planning, but two different definitions are used in the field of path planning and in the field of simultaneous localization and 
mapping (SLAM), since exploration missions also involve mapping the unknown regions. Sampling-based methods in the field of SLAM 
are also similar to sampling-based strategies in the field of path planning, and RRT-based algorithms are also a representative algo-
rithm for this type of methods for exploration task. The advantages and disadvantages of the two types of algorithms are shown in 
Table 2. 

The two representative algorithms have their own strengths, therefore, the fusion of the two algorithms is a research direction in 
the field of task exploration. To address the problem of switching exploration targets back and forth, which exists in both methods, Bi 
et al. [201] design a novel utility function to evaluate candidate targets and a target reselection mechanism to assign exploration 
targets. Simulation and field tests show that compared with traditional RRT-based multi-robot exploration, the proposed framework 
has less time cost and path cost with 99 % exploration coverage rate. The authors also draw some conclusions and discuss them: (1) 
When the number of robots is increased from 2 to 4, the exploration efficiency increases almost linearly with the number of robots, 
while when the number of robots is increased from 4 to 7, the increase in the exploration efficiency is not significant, so the optimal 
value of the number of robots in the same scene can be determined through multiple experiments. The reason that increasing the 
number of robots does not increase the exploration efficiency is that the starting position of each robot, the complexity of the scene, the 
size of the scene, and the detection distance of the laser scanner all affect the exploration efficiency. (2) When the detection distance of 
the LiDAR is increased from 4 m to 16 m, the exploration efficiency is increased, while when the detection distance of the LiDAR is 
increased from 16 m to 50 m, the exploration efficiency is slightly decreased, so the detection distance should also be set appropriately 
according to the size of the environment. In addition, too large LiDAR range also increases the computational cost. (3) Compared with 
the frontier-based method, the proposed centroids of unknown connected regions is superior in terms of computational cost, detection 
robustness and decision-making performance in unknown environments. (4) This paper adopts a centralized architecture, and when 
the number of robots is large, the amount of data in the central node increases dramatically. (5) Data transmission can be optimized in 
the future to reduce the requirement of communication bandwidth. 

For the underwater search and rescue missions, Wang et al. [104] propose the smooth-RRT algorithm and use the 3D point cloud of 
the underwater scene captured by the sonar as the environment data to simulate and verify the algorithm’s contribution to the initial 
solution quality and convergence speed. Similar work is in Ref. [202], which introduces the KD-tree based RRT-connect algorithm and 
verifies that the algorithm can be used for fire guidance on a rescue robot equipped with sensors including LiDAR, IMU, and camera. 
The above literature only tests the performance of one robot in a single scenario containing only static obstacles and only verifies the 
feasibility of the algorithms, thus failing to evaluate the level of intelligence of rescue robots in real scenarios. 

For the ground search and rescue missions, Noé et al. [203] investigate a ground robot navigation and exploration system in 
complex indoor 3D environments such as mines, solving or optimizing the problems of scenario creation, path planning, path tracking, 

Table 2 
Performance comparison of classical algorithms.  

Methods Advantages Disadvantages 

Frontier-based methods Robustness Inefficient in large maps; Trajectories overlap; Moving back and forth between two targets 
Sampling-based methods (e.g. 

RRT) 
Efficiency Weak robustness; Trajectories overlap; Moving back and forth between two targets; Trapped in narrow regions; 

Missing small regions;  
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and region importance assignment, and summarize the following conclusions: (1) After filtering local point cloud with a fixed size and 
without walls and ceiling, the improved RRT algorithm can be prevented from sampling and evaluating in invalid regions, and 
therefore, the efficiency of path generation is significantly improved. (2) To balance the quality and efficiency of the generated paths, 
as well as to avoid inaccurate scene descriptions, this paper investigates the appropriate point cloud downsampling resolution, which is 
taken to be 0.05 m. (3) RRT rather than grid or voxel grid is used to find the frontiers with the strategy of clustering the leaf nodes, but 
the clustering radius and the clustering density still need to be selected manually. (4) The coefficients of the cost function of the 
proposed improved RRT algorithm need to be manually adjusted to find the optimal path, taking into account different terrains such as 
inclination, roughness, etc. (5) During path tracking, the maximum linear and angular velocities of the vehicle need to be manually 
adjusted for optimal performance. With the manually adjusted parameters, a 4-m wide tunnel is explored in 20 min and a 17-m by 
17-m rugged terrain with different ramps and obstacles is explored in 25 min, both successfully covering more than 90 % of the area. 
(6) In terms of the rescue mission, the frontier threshold determines the level of exploration; excessively low frontier thresholds result 
in many areas being potentially unexplored, and too high frontier thresholds result in many areas being thoroughly explored, which 
can lead to some relatively unimportant regions being over-explored, resulting in a significant increase in rescue time, so an adaptive 
frontier threshold selection strategy is also particularly important. (7) To avoid repetitive exploration of the same area, the evaluation 
indicator of visit area assessment is also introduced, but no solution is given. 

Gui et al. [204] propose a decentralized multi-UAV cooperative exploration method that considers both the position and current 
task of each UAV to ensure that the task can be reassigned in real time during each UAV’s exploration. Each UAV is equipped with a 
depth camera to achieve localized scene sensing in a dynamically partitioned area, and the improved RRT is used to explore the 
unknown environment. The paper draws the following conclusions: (1) The average time for the three UAVs to explore an area of 10 
m*8 m*3 m with obstacles is 209. 4s, and there is no collisions or prolonged inability to complete the task, therefore, although the 
authors are not concerned with hardware limitations, network bandwidth, and flight trajectory control, the results are stable and 
effective; (2) Although multiple UAVs can accomplish the missions in a limited time, there are some undetected areas due to the 
inherent limitations of the depth camera, and the authors mention the need to use more powerful sensors (e.g., 3D LiDAR) to alleviate 
this problem, but this approach still requires further consideration of the applicability of the experimental system and its applicability 
to different environments; (3) In the early stage of the exploration, UAVs with sampling-based strategies can find a sufficient number of 
mission points in a short time, but as the unexplored area gradually shrinks, the time to compute the target becomes longer and even 
converges to a lower level. (4) Uncertainty in sampling leads to irrational partitioning, preventing different trials with the same 
parameter settings from providing a stable exploration process. 

Communication constraints is an important problem faced by robots. To address the problem of signal interference of disaster relief 
UAVs caused by low-altitude clouds and smoke, Diao et al. [70] regard clouds as dynamic obstacles and set the direction and speed of 
their movement. At the algorithmic level, the authors use the adaptive step and angular incremental sampling to limit the sampling 
range, which reduces the curvature of the generated paths and accelerates the convergence speed. 

None of the above literature considers the impact of communication constraints on the rescue robots, or simply identifies 
communication constraints as obstacles [70], but since robots can only communicate with each other within line-of-sight, the safety 
hazards due to communication constraints in decentralized collaborative exploration tasks should be considered. To address this issue, 
Victoria et al. [205] propose decentralize path planning for multi-robot systems with line-of-sight constrained communication, and 
make the following assumptions: (1) Known static scenes; (2) Robots can brake instantaneously; (3) Robots can communicate with 
other robots through a multi-hop communication network; (4) The communication between robots is lossless and without delay; (5) 
The initial positions of all robots are sufficiently safe; and (6) Robots start from a set of waypoints that satisfy all safety constraints. 
Some of the assumptions mentioned above are extremely idealized, therefore, although the results validate the effectiveness of the 
RRT-based method, it is far from meeting the requirements of practical applications. 

4.2.2. Surgical robots 
Zhang et al. [206] design flexible needles that can flexibly avoid blood vessels and organs and reach diseased tissues. Considering 

that the non-holonomic characteristics of the needle tip can lead to dynamic and tissue deformation of the flexible needle during 
insertion, the accessibility and safety of the needle state need to be considered in the path planning stage. In this paper, the following 
conclusions are drawn: (1) The proposed algorithm can adapt some of the parameters according to the strategies of different tissues 
during the insertion of the needle tip, which improves the safety of surgical procedures. (2) The proposed algorithm takes into account 
the potential field of the surrounding obstacles in the path cost and simulates the effect of the needle tip insertion process on the local 
motion of the tissues, so as to address the effect of needle tip insertion on local tissue movement. (3) The improved RRT* algorithm 
generates smooth and safe trajectories in a layered fabric environment, verifying the first two conclusions. It can be seen that for 
surgical robot path planning, the modeling of tip motion constraints and human tissue properties determines the quality of the 
generated paths. Similar design and modeling constraints are in Informed-RRT* based cranial puncture robot [207] and RRT-Connect 
based surgical suture robot [208]. 

Chen et al. [209] propose the shape state cross-entropy based RRT* planner for surgical experiments, and for the continuum robot, 
this algorithm has the following advantages: (1) High-dimensional continuum robot configuration space is considered. Arc coordinate 
domain is designed to perform both obstacle-free and approximate follow-the-leader motions. (2) Kinematic constraints are consid-
ered. The generated paths introduce kinematic and shape constraints, including constraints on the maximum extension direction angle 
of the robot tip, to ensure traceability of the trajectories. (3) Stable numerical solutions are ensured. Stable numerical solutions are 
ensured by rewiring paths via damped least squares to minimize robot configuration changes and trajectory costs, and by solving the 
singularity problem in the pseudo-inverse kinematics solutions. The authors segment the anatomical environment from medical 
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images of real patients and generate point cloud maps of this environment in MATLAB. Simulation results show that the proposed 
algorithm performs well in follow-the-leader error and success rate, as long as collisions with intracranial blood vessels (arteries and 
veins) can be avoided. 

Song et al. [210] also design a master-slave control framework applied to minimally invasive surgery, in which the motion of the 
master manipulator with respect to the monitor corresponds to the motion of the surgical instrument with respect to the endoscope, 
and realize the removal of a porcine gallbladder. 

Fan et al. [211] design a micro-robot for working in vascular environments. Although the simulation results demonstrate the safety 
and feasibility of the experiments, as well as the ability to automatically avoid static and dynamic obstacles in the simulated vascular 
environments, the human vascular and tissue environments are extremely complex and almost difficult to model, and thus the 
implementation of micro-robots working in vascular environments is still a great challenge. Similar work can be found in Ref. [212]. 

Surgical robots have very different path planning strategies due to their specific application scenarios. 

4.2.3. Free-floating space robots 
Free-floating space robots (FFSR) consisting of spacecraft and robotic arms are commonly used for on-orbit servicing, and motion 

planning is also the most essential task. Tomasz et al. [213,214] investigate the trajectory tracking performance of a space station 
robotic arm and find that the actual values differ from the expected values, although the deviation does not affect the utility of path 
planning, the authors still analyze the phenomenon: (1) The planar air-float microgravity simulator is subjected to various pertur-
bations. The unevenness of the granite table may cause the spacecraft to slide to one side of the table, the robotic arm is controlled in 
the joint space, and the control system is unable to compensate for the positional and directional errors of the gripper. (2) There are 
significant uncertainties in the known parameters of the spacecraft and the robotic arm. Attitude deviations are most likely due to 
non-perfect knowledge of spacecraft inertia. In response to the latter question above, the authors also perform Monte Carlo simula-
tions, which shows that the results of the Monte Carlo simulations are still useable even with a large range of uncertainty (±10 %), 
which further suggests that the errors caused by the latter are negligible. The authors also discuss the problems associated with the 
application of RRT to FFSR, as summarized below: (1) Spline-based planner and B-RRT* are compared, and the paths generated by RRT 
have more complex shapes, larger errors, discontinuities and unstable results, but in complex scenarios filled with obstacles, spline 
planner fails to generate feasible paths, so both algorithms have their advantages and disadvantages. (2) Only static obstacles and 
target objects are considered. However, earth-based measurements of potential targets for active debris removal missions show that 
some of these targets have non-zero angular velocities. Therefore, the end effector linear and angular velocities should be allowed to be 
adjusted during trajectory tracking. (3) The generated optimal paths do not take into account self-collisions between the robotic arm 
links. For the specific kinematic structures, such as the WMS lemur robotic arm, there is no risk of collision between the links of the 
robotic arm, but this risk should still be avoided for some robotic arms, as it could lead to a further increase in path costs. (4) The 
experiments are carried out in open-loop control mode, so it is impossible to correct the paths, especially when the navigation state is 
uncertain. For example, unexpected changes in attitude during a grappling maneuver may disrupt the communication link or interrupt 
power generation. (5) The computational cost is not taken into account, which makes it difficult to apply in practice. To address (3) 
mentioned above, Yu et al. [215] separate inertial spaces when performing the spline-RRT* algorithm and apply it to a dual-arm FFSR. 

Some studies do not analyze in depth the drawbacks of these algorithms in applications, but nevertheless validate the applicability 
of various improved versions of RRT in FFSR, such as RRT for 12+2n dimensional satellite-manipulator system [216], B-RRT for a 
three-link FFSR [217], RRT without inverse kinematics for FFSR [218], B-RRT for 7-DOF FFSR [219], Improved adaptive RRT for 
close-range FFSR with continuous thrust [220], RRT-Connect for dual-arm FFSR [221] et al. These studies corroborate that RRT-based 
planner has potential for further development in the field of FFSR. 

4.2.4. Mining robots 
Compared with ordinary robots, mining robots, as a kind of underground robots, work in a non-structural terrain with limited space 

closure and GPS rejection. In addition, explosion-proof, dust-proof, moisture-proof, water-proof, corrosion-proof and other problems 
are challenging! 

In [46], RRT-Rope benefits from RRT-Connect and is designed with the expectation of finding suboptimal solutions in a short period 
of time. Simulation results show that the method works well in large-scale uncluttered 3D environments such as underground mining 
stopes. The algorithm is also insensitive to the number of iterations and the environment due to the introduction of the shortened rope 
algorithm, resulting in further improvements in stability and efficiency, although the authors also point out that future work should 
introduce dynamic constraints to handle more complex environments. In addition, the authors specify that RRT-Rope falls into the 
local minimum for pillar-like structural obstacles, but since underground mining stopes scene do not involve such obstacles, the 
proposed RRT-Rope is also more applicable to underground mining scenarios. 

Wang et al. [167] attempt to solve the path planning problem that satisfies the scenario constraints and the articulated vehicle 
model constraints in coal mine roadways, but the following problems still exist: (1) Despite utilizing parallel computing, the path 
generation time reaches 86.12s, which still fails to satisfy the application requirements; and (2) Joint debugging with the real vehicle 
has not yet been realized, and thus the gap between the performance of the simulation and that of the field experiments has not yet 
been understood. 

Aiming at the problem that geological structure, ore characteristics, rock characteristics, and mine planning parameters all affect 
ore transportation, Shao et al. [222] first use Dubins paths and hierarchical density-based spatial clustering of noisy algorithm to build 
a constraint model containing the above conditions mentioned, and then combine the 3D RRT with Dubins paths for obstacle 
avoidance. The proposed framework has the following advantages: (1) Nodes of varying importance are identified based on ore 
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characteristics and rock characteristics to provide guidance to the path planner. (2) Safer and less costly paths are selected for un-
derground haulage based on geological structure. (3) User-intervention step is added to improve path connections in some cases after 
Dubins paths smoothing. 

RRT for drill arm of anchor drilling robots [223], for mining truck [143]. 

4.2.5. Inspection robots  

(1) Ground inspection robots 

Five-axis coordinate measuring machine is widely used for machining part data acquisition, but how to rationally plan inspection 
paths of multiple features from different locations is an important issue in the automatic inspection of machining parts. Unlike other 
path planning tasks, the special application scenarios of machining and manufacturing require that certain critical features need to be 
measured multiple times to ensure the accuracy of the product, and furthermore, the critical features to be inspected are different in 
each process. To address problems mentioned above, one strategy is to reuse the initial paths, but this approach generates a large 
number of redundant paths; another strategy is to re-plan the paths, which reduces the redundant paths but increases the path search 
time. Zhao et al. [224] formulate a path reuse strategy that takes into account both the number of paths and the direction of the probing 
measurements, which is achieved by firstly, based on the feasible cone of probing directions and the accessibility of MPs classification 
of measurement features to minimize the probe rotation time, secondly, RRT with multi-root node is proposed to plan the local paths 
for path reuse, and then, the intra- and inter-group planning paths are generated based on the enhanced genetic algorithm, and finally, 
the effectiveness of the method is verified by the simulation of the cylinder body inspection case. 

Aiming at the problem that long-term operation of gas-insulated switchgear leads to the accumulation of foreign matter in the 
cavity, which can lead to safety accidents, Zhong et al. [225] propose a beetle-antennae search-guided RRT* for the gas-insulated 
switchgear inspection and maintenance robot. Since the map for path planning is a cylindrical surface, the authors introduce the 
idea of simulating the foraging behavior of beetles, but still only at the level of algorithm validation. 

Huang et al. [226] investigate a possible multi-objective path planning problem in inspection and solve the path planning problem 
with 25 destinations on an open street map of Chicago containing 866,089 nodes and 1,038,414 edges in only 0.44 s. However, 
realistic inspection scenarios may encounter some great challenges: firstly, the realistic inspection scenarios are a three-dimensional, 
which means that the obstacles cannot be treated as points as in a 2D plane, and second, the maps are not known a priori and the 
quality of the map generation is limited by the accuracy of the sensors, which further exacerbates the difficulty of path planning. 
Nevertheless, the conclusions of this paper provide good evidence that improved RRT is capable of achieving excellent performance at 
this stage. 

With the rapid growth of the demand for clean energy, the number of solar power plants is gradually increasing, and the automation 
of solar power plant fault inspection is also booming, for the path planning problem of such narrow and long passages of solar power 
plants, Wang et al. [227] improve the RRT* algorithm, and the authors also point out two limitations, one is that the parameters 
designed are not applicable to other environments, and the other is that it fails to solve the problem of real-time dynamic obstacle 
avoidance. 

In [228], the authors design a snake robot and investigate the effect of dynamic obstacles velocity on its path planning. The results 
show that the success rate of dynamic path planning gradually decreases as the velocity of dynamic obstacles increases, although the 
path planning time remains almost the same. This reveals that highly dynamic environments substantially increase the difficulty of the 
path planning task.  

(2) Aerial inspection robots 

To address the difficulty of observing the faults of high-altitude equipment in substations, Yang et al. [229] construct an archi-
tecture involving sensor technology, edge computing, and UAV substation inspection, and design a path planner using UAV physical 
constraints, sensor operation constraints, and inspection task constraints as the constraints, and inspection distance, time, and energy 
consumption as evaluation metrics. Zhao et al. [165] also do research on multi-objective cooperative path planning for electric in-
spection robot. Since only simulation experiments are done, the application effect of the algorithm in real scenarios is difficult to 
evaluate, and the authors also mention that future research should focus on substation inspection in complex environments such as 
plateaus, where the problem may still have challenges. Fang [230] et al. do similar work, but the authors further explore the effec-
tiveness of different numbers of aircraft performing inspection tasks at different intervals. Similar work and findings also includes UAV 
trajectory planning for track inspection of rail-mounted gantry cranes in container terminal yards in port environments [231,232]. 

To address the subway tunnel environment with poor light and no GPS signal, Zhou et al. [233] equip MB1212 sonar and HOKUYO 
UTM-30LX LiDAR on a quadcopter and validate RRT with regression filtering mechanism and trunk constraint. Similarly, the authors 
only use a quadcopter to obtain the map information of the tunnels and verify the performance of the proposed algorithm on the 
simulation software, so many issues remain unresolved, such as the stability, accuracy, real-time performance of the scene modeling, 
the percentage of the actual inspected area, and the communication constraints. 

The olive fly is a pest that affects the quality of olives in the Mediterranean region and one strategy is the use of insect traps. In order 
to realize the inspection of insect traps in the olive tree area, Gabriel et al. [234] verify the performance of Dijkstra, genetic algorithm 
and RRT + DQN in a simulation environment built with Gazobo, where the Dijkstra algorithm, although it performs the best in terms of 
time, generates paths with a low accuracy (1 m error), and the genetic algorithm, while the genetic algorithm generates smooth paths 
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but has the highest time cost. In contrast, RRT + DQN is more suitable for this scenario. Unlike traditional simulation experiments, the 
authors create a simulation environment that attempts to match reality, including adding the perturbed environments, non-random 
robots behavior, and stochastic functions to dynamically adjust the velocity of objects. However, DQN’s performance in large-scale 
(>400 cubic meters) challenging environments is far from optimal, in which case the authors suggest that large tasks can be coun-
tered by dividing them into multiple subtasks. Future directions on this topic mentioned by authors include testing in real scenarios 
and fusion of different types of sensors to obtain multi-source data. 

In order to improve the durability and accuracy of pipeline array inspection in chemical plants, Alejandro et al. [235] propose an 
aerial manipulation robot with a rolling base. In this system, a human operator determines the inspection point and manipulates the 
robot to realize the pipeline inspection task under human-robot collaboration, and the RRT algorithm used to assist the human 
operator in generating paths for the inspection task is also validated in an outdoor scenario as well. In addition, considering the 
specificity of the pipeline inspection task, the authors also design a slender robot implemented with the RRT path planning algorithm 
to realize the inspection of narrow spaces such as pipelines under human-robot collaboration. For another robot specifically designed 
robot for pipeline inspection of gas-insulated switchgear, see Ref. [236]. 

For hazardous inspection tasks in open-air warehouse environments, Zhang et al. [237] perform similar work using the high 
maneuverability and aerial view characteristics of UAVs, and they also note that countermeasures to dynamic changing environments 
to improve UAV reaction time to emergencies are a focus for future work.  

(3) Underground inspection robots 

In subsea inspection tasks, traditional strategies utilize sensors to passively collect data; these paths can be optimized by taking into 
account the characteristics of the sensors, but cannot predict the environmental conditions, therefore, they do not guarantee access to 
data across the entire domain of interest and may lead to repeated attempts. To address this problem, Leonardo et al. [78] build the 
forward-looking sonar seabed inspections framework, present a RRT-based sensor-driven receding horizon approach, and introduce 
the entropy-based evaluation metric for solution searching. Comparative results show the proposed algorithm achieves the same 
coverage area rate at a shorter path cost. 

The effectiveness of the seabed inspection tasks is related to the quality of the data acquired by sonar sensors, which depends on the 
characteristics of the environment, the target, and the sensor, which are also difficult to predict. To address this issue, Zacchini et al. 
[238] design a sensor-driven path planning method. The proposed framework realizes the inspection path planning task in a 67 m*67 
m*4 m seabed area in a few minutes and can cover more than 90 % of the area to be inspected, but with the following problems: (1) For 
some special environments, special attention needs to be paid to certain areas of interest, but the strategy of passively acquiring data 
through sensors is inefficient in inspections. (2) The modeling quality of the experimental scenarios is closely related to the quality of 
the data, but for undetected regions, the characteristics of the obstacles or targets are difficult to predict, and therefore the modeling 
quality is unstable and unpredictable. (3) High-precision sensors for environmental modeling contain large amounts of data and are 
accurate but time-consuming, while low-precision sensors are able to model the scene quickly but with low accuracy. 

In order to obtain cleaner and better quality seafood from distant waters, large net cages are used for seafood farming, and damaged 
cages lead to huge economic losses. Aiming at this issue, Wu et al. [239] provide robust path tracking algorithms, in which RRT is 
introduced to correct the trajectory when the underwater vehicle deviates from the desired path. 

4.3. Other applications of human-robot interaction 

4.3.1. Crowd avoidance 
Inspired by the social force model (SFM), Henderson et al. [240] introduce the social intention model into RRT to design paths 

capable of interacting with humans, and to clearly evaluate social interaction-based path performance, the authors introduce the social 
effort index (SEI) as a novel benchmark. The authors conduct experiments in three scenarios: In the oncoming traffic scenario, the 
robot is required to avoid collisions with oncoming crowds, and the results show that the median SEI of RRT-SMP is on average 86.3 % 
lower than that of typical RRT-embedded MP (RRT-MP). In the bi-directional intersections, the robot is required to avoid crowds in 
two-way traffic and at crosswalks, and the results show that the median SEI of RRT-MP increase significantly with increasing popu-
lation density, whereas the median SEI of RRT-SMP does not increase significantly, implying that RRT-SMP is more socially competent 
in chaotic environments. The SEI performance of RRT-SMP and RRT-MP on the moving with the crowd is also similar to the 
bi-directional intersections case, showing the result that RRT-SMP is more socially competent in chaotic environments, but the 
conclusion is not verified in a real scenario. 

4.3.2. Repetitive tasks requiring human cognitive assistance 
Robots excel at simple repetitive tasks, whereas humans possess unique cognitive skills for handling a variety of different tasks, and 

are therefore more likely to handle repetitive tasks in unstructured environments with human collaboration. In Ref. [241], Kelly et al. 
design a human-assisted RRT path planner and validate on a Franco-Emika Panda robotic arm, which overcomes the constraint of 
actuator saturation and limited joint ranges and avoids the property of RRT that it tends to fall into the local optimal solution, and the 
authors summarize the conclusions as follows: (1) The planner takes 30–130 ms to plan paths with varying levels of obstacle 
complexity, so the human-robot collaborative system is able to perform path-planning tasks in complex scenarios when the rate of 
change of dynamic obstacles in the scene is less than 1 Hz. (2) The trajectory-based explicit reference governor, as a closed feedback 
control scheme, has a maximum average computation time of 1 ms and can therefore be neglected with respect to the path planner. (3) 
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Planners with human assistance are able to avoid falling into local minima in some cases compared to planners lacking human 
assistance. (4) The safety of the constrained planned path can only be demonstrated when the robot is moving slowly, since a 
fast-moving robot cannot stop moving immediately. Human-assisted RRT to surgical robots [210] and autonomous driving [242], 
Customized plug-ins for collaborative autonomous path planning of multi-manipulator collaboration [243], is presented in other 
sections. 

4.3.3. Human driving experience assisted vehicle interaction 
Due to the large number of decision-making behaviors during interaction with other vehicles, such as determining the safe distance, 

whether to overtake or not, and how the speed changes dynamically, human driving experience assisted vehicle interaction tasks are 
also important. Chi et al. [242] consider the process of interaction of unmanned vehicle with other moving vehicles. The authors 
specify the desired speed with a look-ahead distance (a safe distance to avoid emergency braking by other vehicles in front) of the 
unmanned vehicle, while the vehicle in front (viewed as a moving obstacle) moves at a slow speed. The results show that the unmanned 
vehicle goes through several phases; in the first phase, the distance between the position of the unmanned vehicle and the moving 
obstacle decreases gradually due to the fact that the desired speed of the unmanned vehicle is greater than the moving obstacle; in the 
second phase, the path tracker evaluates the speed and the safe distance in an integrated manner and reduces the speed of the un-
manned vehicle; in the third phase, when the environment-awareness sensors detect that there is no vehicle in the neighboring lane, 
the unmanned vehicle performs an overtaking operation; in the fourth stage, it changes back to its original lane and adjusts the speed to 
the desired speed; and in the fifth stage, it arrives at the target position and stops. 

4.3.4. Multi-robot cooperation 
Multi-robot collaboration without human intervention is described in other sections, such as multi-robot systems with line-of-sight 

constrained communication [205], decentralized multi-UAV cooperative exploration [204], online cooperative path planning for 
multi-quadrotor maneuvering in unknown dynamic environments [147], formation shape generation for multi-UAV [40], 
multi-unmanned surface vehicle path planning under spatially varying currents [127], cooperative path planning for multiple ship-
board aircraft [181]. However, in some tasks, the lack of guidance from human experience reduces the reliability of path planning. 

For the path planning problem in hostile environments, the classical path planning method fails when the risk characteristics 
cannot be accurately labeled manually, to address this problem, Guo et al. [182] reduce the risk of generating paths based on the 
data-driven approach that constraints the growth direction of RRT*. The authors also mention that multi-UAV risk aversion and the 
need for further balance between unbiased and biased sampling also deserve attention. 

Ramasamy et al. [243] investigate a multi-robot based plug-and-play system suitable for a multi-robot system that can be operated 
online during the manufacturing process, which utilizes an improved RRT algorithm to automatically plan the paths of 
multi-manipulator collaboration. The results show that the plug-in exhibits its superiority in terms of energy consumption, path 
quality, and path generation efficiency. The hyper-parameters involved in such customized plug-ins require large a priori datasets or 
manual guidance. 

5. Challenges and future trends 

5.1. Challenges 

This paper reviews the RRT improvement strategies in the last three years in terms of branching strategy, sampling strategy, post- 
processing and model-driven RRT. From the above review, it can be seen that the research of RRT algorithm has two directions 
roughly: theoretical research and application research, the former is aimed at optimization, such as path length, time complexity, space 
complexity, etc., while the latter takes more consideration of various problems in real scenarios, such as model constraints, scenario 
constraints. Theoretically, the improved RRT algorithms are capable of accomplishing real-time path planning tasks for large-scale, 
complex scenes with multiple objectives, e.g., the literature [226] plans paths with 25 objectives on a map containing more than 
800,000 nodes and 1,000,000 edges in only 0.44 s. Maps with narrow passages are generally considered challenging for RRT, however, 
literature [227] uses an improved RRT* algorithm to plan paths on maps containing multiple narrow passages, and due to the 
advantage of efficient path generation in RRT-based algorithm, the search time is less than 1 s, even when the algorithm has more than 
10,000 iterations, and thus is sufficiently tailored to the application scenario. However, from the above literature, the application of 
improved RRT-based algorithms is still challenging, and the main issues are discussed in the following sections. 

5.1.1. Modeling of unknown environments 
The need to model unknown scenarios is largely due to GPS denial, in which case many researchers also load sensors on robots to 

build maps, such as sonar for seabed inspection [78,238] and tunnel inspection [233], LiDAR for indoor inspection [201], tunnel 
inspection [233] and fire guidance [202], and depth camera for indoor scene modeling [204]. This environment exploration strategy 
has been proven to be effective, for example, three UAVs each loaded with a depth camera take 209.4s to explore a 10 m*8 m*3 m room 
filled with various types of obstacles [204], whereas underwater robots loaded with sonar sensors detect more than 90 % of the 67 
m*67 m*4 m seafloor area in a few minutes [238], but there are problems such as difficulty in selecting interest point regions, unstable 
modeling quality, and difficult trade-off between modeling accuracy and efficiency. 
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5.1.2. Limitation to highly dynamic environments 
Although the RRT algorithm has been shown to have global convergence and asymptotic optimality [20], this is based on the 

globally static known environment, which means that improved RRT algorithms may not be able to cope with dynamically changing 
environments or partially (globally) unknown scenarios. Some literatures regard dynamically changing scenarios as a direction for 
future research, such as hazardous inspection tasks in open-air warehouse environments [237], solar power plant fault inspection 
[227], underground mining stopes [46], assembling parts with different geometries [200], some literatures considers dynamic scene 
changes, such as motion planning framework for the quadrotor [101,147], robot with nonlinear control affine dynamical system 
[160], however, the performance of the algorithm is not validated in real scenarios. Yuan et al. [161] conduct the robotic arm motion 
planning test to validate the dynamic obstacle avoidance performance of RRT in real scenarios, but the dynamic obstacles given in the 
experiment are added suddenly by human beings, and are not the dynamic obstacles that we usually think of as changing position over 
time, and this assumption is also unreasonable. For similar work, see Ref. [62], where the dynamic obstacles also change abruptly in 
that scenario. Such assumptions are not compatible with the design of moving obstacles in real scenarios. 

Strictly speaking, the dynamic obstacle avoidance problem of RRT-based path planning algorithms in real highly dynamic envi-
ronments remains unsolved due to reasons including the extremely fast accuracy degradation as the obstacle speed increases [228], 
extremely complex human vascular and tissue environment [211], safety issues encountered in overtaking [242]. 

5.1.3. Hyper-parameter settings 
Due to the limitations of the algorithms themselves, many of the algorithm parameters need to be manually tuned for better 

performance in different scenarios. For example, the hyper-parameters of RRTs are different in different scenarios, and the tuning 
process of these hyper-parameters is unavoidable, and many studies have been done by manual tuning, such as search step size [52]. In 
the design of the cost function, since the evaluation of many tasks is multiple levels, for example, the evaluation of the arc welding 
robot path planning task consists of the minimum transmission path length, energy consumption, and joint smoothness [197], which 
are constrained by each other, it is also necessary to set the weights of these three metrics with the help of human experience. The 
choice of how the sensor acquires the data and the post-processing of the acquired data may also involve some hyper-parameters, for 
data-rich sensors such as LiDAR, experiments show that an increase in detection distance within a certain range improves the detection 
efficiency, but beyond this range, increasing the detection distance leads to a slight decrease in detection efficiency, while too large a 
detection range greatly increases the computational cost [201]. Properly filtering the local point cloud and selecting the appropriate 
point cloud downsampling accuracy also greatly improve the quality and efficiency of the scene description, but this still requires 
setting the parameters manually and implementing several experiments [203]. For multi-robot collaborative tasks, the optimal value 
for the number of robots also needs to be determined by several experiments [201]. In addition, the improved RRT may introduce new 
algorithms whose parameters need to be chosen manually in several experiments, for example, leaf clustering is one of the 
improvement strategies for RRT-based exploration, but unsupervised clustering still requires manual selection of cluster radius and 
cluster density [203]. In terms of frontier-based rescue mission, the selection of the frontier threshold is also critical [203]. 

5.1.4. No generalization of hyper-parameter settings 
When the scenario is changed or the algorithm is adjusted, the manually-tuned parameters mentioned in Section 5.1.2 may also no 

longer be applicable, such as the step size of RRT [52,227], weights of multiple evaluation metrics under different missions [197], 
cluster radius and cluster density for leaf nodes of RRT-based algorithms [203]. 

5.1.5. Multi-robot collaboration task 
Multi-robot collaboration involves more difficult tasks than individual robots, and the challenges are illustrated in several points.  

(1) Centralized or decentralized architecture 

The centralized architecture is easy to manage, but when the number of robots is too large, the amount of data in the central node 
increases dramatically [201]. Decentralized architecture is characterized by high performance, but data consistency is a challenge 
[128]. In addition, over-idealized assumptions about the decentralized architecture, including the fact that robots can brake instan-
taneously and that inter-robot communication is lossless and latency-free, lead to the framework that is theoretically feasible but far 
from satisfying the needs of practical applications [205].  

(2) Efficient or high-precision sensors 

Multiple UAVs loaded with depth cameras separately can detect known areas in a short time. However, low accuracy of scene 
modeling is inevitable due to the limitations of sensor accuracy. LiDAR is a sensor that allows for accurate scene modeling, but the real- 
time performance of the LiDAR-based RRT navigation is poor due to its large amount of data [204].  

(3) Breadth or depth of exploration 

In [203], the frontier threshold determines the level of exploration; Excessively low frontier thresholds result in many areas being 
potentially unexplored, and too high frontier thresholds result in many areas being thoroughly explored, which can lead to some 
relatively unimportant regions being over-explored, resulting in a significant increase in rescue time, so the search strategy is also 
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crucial and challenging.  

(4) Switching exploration targets back and forth 

In the field of multi-objective exploration under multiple robots, either frontier-based methods or sampling-based methods suffers 
from the problem of one robot switching back and forth between two regions or two objectives, leading to difficulty in accomplishing 
the task [203].  

(5) Rationalization of the dynamic division of tasks 

Regions of the same size may vary greatly in the number of critical nodes, but this information may only be known gradually during 
the robot exploration process, so it is also important to assign tasks to each robot in advance and adjust task assignment strategy in real 
time. In addition, the problem that sample-based algorithms are fast in the early stages of detection and slow in the later stages of 
detection needs to be considered [204].  

(6) Communication constraints 

Since robots can only communicate with each other within line-of-sight, the safety hazards due to communication limitations in 
decentralized collaborative exploration tasks cannot be ignored. Victoria et al. [205] demonstrate the effectiveness of the improved 
RRT method to this problem, but over-idealized assumptions including that robots can be braked instantaneously, that inter-robot 
communication is lossless and latency-free, and static scenarios result in algorithms that are far from being adequate for practical 
applications. 

5.1.6. Poor real-time performance 
Although simulation experiments validate the real-time performance of RRT algorithms [79,226,227], such algorithms still 

perform unsatisfactorily in real application scenarios, for example, the improved path planning algorithm in coal mine roadways takes 
86.12 s s under various constraints [167], due to the collision detection constraints between the six arms, the proposed AEB-RRT takes 
1109 s, 307 s, 210.8 s and 447.5 s to generate weld trajectories of 831.5 mm, 353.7 mm, 554.0 mm and 543.7 mm, respectively, which 
is far from the requirements of coherent welding [52]. The average time for the three UAVs to explore an area of 10 m*8 m*3 m with 
obstacles is 209. 4s [204]. The assembly of lightweight structures for healthcare facilities is approximately 28 min [199]. 

5.1.7. Restricted by upper limits in other areas 
For exploratory tasks, robots usually undertake the tasks of localization, mapping, partitioning and path planning simultaneously. 

Therefore, as the last tasks (path planning), the upper limit of the quality and efficiency of RRT is determined by the previous tasks, 
which means that inaccurate localization, mapping, and irrational task allocation all result in RRT being far away from the high-quality 
solution, and this problem cannot be solved at the path planning level alone. 

5.1.8. Unstable results 
Due to the stochastic nature of RRT, even in the same algorithm, the same set of hyper-parameters, and the same scenario, dif-

ferences in initial values (e.g., initial pose of robots) lead to large differences in results [201], not to mention that real scenarios include 
a variety of disturbances such as communication constrain and dynamic obstacles. 

5.1.9. Large-scale environment 
Model-driven algorithms are the trend in the development of path planning incorporating artificial intelligence, but large-scale 

environments pose a challenge to these kinds of algorithms, for example, DQN’s performance in large-scale (>400 cubic meters) 
environments is far from optimal [234]. In contrast, improved RRTs may still work well in large-scale scenarios, for example, 
RRT-Rope is designed with the expectation of finding suboptimal solutions in a short period of time, and results show the method 
works well in large-scale uncluttered environment [46]. However, this conclusion is only valid when only static obstacles are included 
and the scenario is globally known, so large-scale scenarios are still challenging for exploration tasks. 

5.1.10. Stability and long-term performance involving continuous operation 
Stability is critical in safety-related fields, represented by human-related surgical robots. Surgical robots overcome the problems of 

poor precision, long operating times, surgeon fatigue, and lack of a three-dimensional precise field of view in traditional surgical 
procedures. Current surgical robots are auxiliary systems that are not fully intelligent enough to perform surgeries on their own, but 
needs to provide assistance to surgeons through remote control and mechanical drive, but the major concern of patients undergoing 
surgery and their families is the ability to ensure the absolute safety of the surgical robot. Although the surgical robot undergoes a long 
period of debugging and calibration before each surgery, and the surgery is operated by experienced surgeons, it is still difficult to 
ensure that the operation of the surgical robot is foolproof, and worse still, the surgical robot fails to deal with the regulation of special 
situations, and once a safety hazard occurs, the robotic arm cannot make adjustments independently like a clinically experienced 
surgeon to minimize the harm. Therefore, at present, most of the surgical robots still belong to the primary stage of semi-automatic 
collaboration, for the stability of the power system and control system requirements are extremely high, if there is a sudden power 
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failure and restart or a malfunction of the control system during surgery, the surgical robotic arm is likely to cause irreparable damage 
to the patient’s organs. Although the probability of a safety incident occurring is low, once it happens, the damage to the patient’s life 
and health is irreparable. 

Liu et al. [244] propose a long-term perspective planning strategy based on RRT*. which is motivated by the fact that (1) 
Co-awareness provides critical information beyond the field of view, (2) Planning using perspective long-range sensing techniques 
allows earlier response to obstacles, improving path quality and path generation efficiency, and (3) the branching property of RRT* is 
easy for real-time online path planning and preserves probabilistic completeness. The strategy investigates the fusion of different 
vehicle perception beliefs and proposes a cooperative perception-based cost map to represent the uncertainty and transmission delay. 
Results of campus experiments at the National University of Singapore demonstrate the improvement of the algorithm in remote 
sensing. Although the paper claims to validate the long-term performance, no quantitative metrics are actually given, and the 
experimental scenarios are only conducted on campus, and no indication is given of how long the algorithm runs for. 

Thus, while much of the literature describes their work as stable and highly reliable, e.g., no failures in 1000 trials [192], in 
practice, even with very low failure rates (Consider hardware, communication failures, etc.), some robots may fail to achieve full 
autonomy, especially in safety-related tasks, such as surgical robots [206]. On the other hand, the long-term performance of RRTs in 
continuous operation is hardly reported, the only relevant literature retrieved is from 2013 [244], but although the authors mention 
the long-term performance, they do not give detailed data, so there is no way to know the reliability of RRT under long-term operation. 
Overall, various studies have shown that RRT has good long-term performance in small and medium-sized environments [52,167,204, 
234,235], but this is also limited to the algorithmic level. This suggests that, first, the long-term stability of RRT in large-scale un-
structured scenarios remains to be verified; second, since RRT itself does not enable robot autonomy, the long-term stability of RRT in 
real-world applications is also related to the control (path-tracking stability), sensors (environment-awareness stability), communi-
cation (signal-awareness stability), and power supply. 

5.1.11. Challenges to artificial intelligence approaches 
Data-driven artificial intelligence methods achieve many difficult problems, such as inaccurate modeling, hardly evaluable cost 

functions, and various problems related to human beings. However, there are some problems with artificial intelligence itself, the most 
important of which is the poor interpretability, which leads to the increasing difficulty in designing and improving the model, and 
optimizing the hyper-parameters, and secondly, the solution of the path planning problem under artificial intelligence is closely related 
to the quality of the data, and it is very difficult to obtain a large amount of high-quality data in some scenarios, which also leads to the 
failure of this type of methods. 

5.1.12. Ethics and morality 
Ethics and morality are also factors that cannot be ignored. Common ethical and moral issues in autonomous driving include over- 

speeding, dangerous overtaking, and failure to maintain a safe distance, and literature [242] discusses an overtaking operation process 
while maintaining a safe distance. Unlike other tasks, when it comes to metrics in safety-related domains, it is important to design a 
reasonable framework that weighs the "public transportation rules" and "utility" rather than just optimizing the driver’s interests (e.g., 
energy consumption, minimum time, etc.). In addition, in some extreme cases, when autonomous vehicles fail to find a path that avoid 
all the risks, they are caught in a dilemma, which generally consists of two tricky scenarios (1) the "other-other" dilemma, where the 
choice fails to take into account the safety of different people outside the car. For example, the autonomous car is driving normally 
according to the traffic rules, and suddenly there are two children running in front of the driveway. If there are only two choices at this 
point, either drive straight ahead and run over the two children, or avoid the children and dash to the sidewalk and run over pe-
destrians. (2) The "other-me" dilemma, where the choice fails to take into account the safety of people sitting in the car and people 
outside the car. For example, the autonomous car is driving normally according to the tunnel entrance, and suddenly a child runs into 
the lane ahead, if there are only two choices at this time, run over the child straight ahead or avoid the child to crash into the wall at the 
side of the tunnel, resulting in the death of the person in the car. 

RRT, as a path planning method, is also an important process for intelligent military robots, but there may be ethical and legal 
issues. For example, whether military robots choose lethal weapons or weapons of mass destruction when performing tasks and making 
decisions independently; whether international humanitarian law is obeyed to ensure the safety of civilians and non-combatants, and 
how to define the responsibility of robots or human beings in human-robot collaboration of combat robots. 

5.2. Future trends 

5.2.1. Multi-type robot collaboration 
Typical unmanned scenarios of cross-domain collaboration include sea-air unmanned cluster systems and air-ground unmanned 

cluster systems; the former is mostly used for maritime combat and joint operation missions, such as sea area alert patrol, ocean 
detection, target reconnaissance, and coordinated anti-submarine warfare; the latter consists of ground-based unmanned systems such 
as UAV and unmanned vehicles, and its missions include cross-domain collaborative reconnaissance, strikes, and searches. Specifically, 
for example, in Ref. [199], the authors mention that full automation of lightweight structure assembly can be achieved by 
ground-based robots assembling the shell while aerial-based robots assist in tightening the bolts. In the field of pavement construction, 
pavers and rollers collaborate with each other to automate the entire process of pavement compaction tasks, and I and our team also 
propose a bi-directional path planning strategy for the idle robot and the malfunction robot to address the problem of insufficient fuel 
that may be involved in pavement construction machinery [245]. 

T. Xu                                                                                                                                                                                                                     



Heliyon 10 (2024) e32451

22

5.2.2. Human-robot collaboration 
In some safety-critical applications, human-robot collaboration is a major trend for technical and safety reasons, for example, 

emotionally, patients and their families do not trust surgeries that are completely dependent on robots; technically, the complexity of 
the human tissue and organ environment also poses a great challenge for the full autonomy of surgical robots, and more critically, there 
is an inevitable failure rate of the hardware, so the stability of human-robot collaboration in surgery is much better [207,208], such as 
removing porcine gallbladder using a master-slave robotic arm within the framework of human-robot collaboration [210]. Under some 
accuracy-sensitive path planning requirements, such as ore transportation [222], the smoothed paths may no longer be asymptotically 
optimal solutions under the RRT framework, and may even generate unreasonable local paths, which makes manual intervention 
extremely important. Certain experimental results show that better performance can be achieved with human-assisted path planning 
[241], which is one of the conclusions that human-robot collaboration is the future trends. Balancing unbiased and biased sampling 
based on human experience is also one of the important research directions for RRT improvement [182]. In conclusion, all kinds of 
robots still have a bright future under human-robot collaboration. 

5.2.3. Real-time path planning 
Real-time path planning plays a decisive role in the efficiency of task completion, and examples of applications where tasks cannot 

be completed efficiently due to poor real-time performance are mentioned in Section 5.1.6, such as path planning for a coherent 
welding task [52] and path planning for a coal mine tunnel [167]. In addition, in some safety-critical domains, such as autonomous 
driving, failure to perform real-time path optimization and feedback control for sudden obstacles increases the risk of accidents, and 
thus the development of real-time path planning is still urgent from the perspectives of work efficiency and safety. 

5.2.4. Self-tuning of the hyper-parameters 
The self-tuning of hyper-parameters is also a very important research direction as many hyper-parameters change with different 

application scenarios or even different maps in the same application scenario, which is discussed in detail in Section 5.1.3. At present, 
swarm optimization algorithms or artificial intelligence algorithms have been capable of self-tuning the hyper-parameters of some 
algorithms, but there are still many algorithms whose hyper-parameters still need to be adjusted manually, which leads to a large 
amount of resource consumption. Artificial intelligence-driven path planning algorithms also suffer from self-tuning of network model 
hyper-parameters. Therefore, the self-tuning of hyper-parameters is one of the future trends. 

5.2.6. Application-scenario-oriented algorithm and hardware design 
At the algorithmic level, each algorithm has its advantages and disadvantages, so improving the existing algorithms for specific 

application scenarios is also a future trend. For example, although the proposed RRT-Rope in Ref. [46] cannot handle pillar-like 
structural obstacles, the authors apply it to a mining robot path planning scenario without such obstacles, and also achieve satis-
factory results. At the hardware level, targeted hardware design is also critical, for example, Alejandro et al. [235] specifically design a 
slender robot for the pipe inspection task and further improve the RRT algorithm for the robot’s kinematic characteristics, and this 
optimization, which includes both hardware and software system design, is more effective. In Ref. [236], a novel robot is also designed 
for pipeline inspection of gas-insulated switchgear. In the field of autonomous driving, it is also particularly important to customize 
some strategies, such as maintaining a safe distance and triggering overtaking conditions, taking into account self-interests, ethics, 
laws, and local field of view constraints, and the customized data can also be obtained through model-driven RRTs in human expe-
rience [183]. In the field of multi-robot and smart city infrastructure, such as the full automation of lightweight structure assembly 
mentioned in Ref. [199], aerial robots used to assist in tightening bolts also require customized designs. Therefore, task- or 
application-scenario-oriented algorithm and hardware design is also a future research trend. 

5.2.5. Uncertainties handling 
Uncertainty is caused by various factors, such as unknown time-varying environments, unknown types of perturbations, and 

communication connection interruptions, etc. Therefore, enhancing the system’s resistance to interference under various constraints is 
also one of the research trends, and the solution of this problem can also help to improve the instability of the results described in 
Section 5.1.8. 

5.2.7. Highly dynamic environments handling 
Highly dynamic environments are extremely challenging. At the algorithmic level, such environments not only require stable and 

reliable generated paths, but also require algorithms with high computational efficiency, strong dynamic optimization capability, and 
even predictability; at the hardware level, sensors are required to accurately capture the rapid changes in the scene, and the sampling 
period of various types of hardware is also a determining factor that affects the ability of the robot to cope with highly dynamic 
environments. 

6. Conclusion 

This paper mainly reviews the articles published in the field of RRT in the past three years, and the author believes that although 
RRT-based improved algorithms have advantages in large-scale scenarios, real-time performance, and uncertain environments, and 
some strategies that are difficult to be quantitatively described can be designed based on model-driven RRT, there are still the problems 
of difficult hyper-parameter design and weak generalization ability. In the practical application level, the reliability and accuracy of 
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the hardware such as controllers, actuators, sensors, communication, power supply and data acquisition efficiency in large-scale 
unstructured scenarios is still a challenge. In the field of multi-robot collaboration and human-robot collaboration, there are still a 
lot of problems to be solved. In summary, the author believe that multi-type robot collaboration, human-robot collaboration, real-time 
path planning, self-tuning of hyper-parameters, task- or application-scenario-oriented algorithm and hardware design, and path 
planning in highly dynamic environments are the future trends. 
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