
RESEARCH ARTICLE

VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to
promote RhoA activation and proliferation in skin cancer cells
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Elena Geretti4, Akiko Mammoto4, Michael Klagsbrun4 and Misuzu Kurokawa Seo1,2,*

ABSTRACT
Neuropilin-1 (NRP1) has been identified as a VEGF-A receptor.
DJM-1, a human skin cancer cell line, expresses endogenous
VEGF-A and NRP1. In the present study, the RNA interference of
VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore,
the overexpression of the NRP1 wild type restored shNRP1-treated
DJM-1 cell proliferation, whereasNRP1 cytoplasmic deletionmutants
did not. A co-immunoprecipitation analysis revealed that VEGF-A
induced interactions between NRP1 and GIPC1, a scaffold protein,
and complex formation between GIPC1 and Syx, a RhoGEF.
The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1
cell proliferation without affecting the MAPK or Akt pathway. C3
exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of
DJM-1 cells. Conversely, the overexpression of the constitutively
active form of RhoA restored the proliferation of siVEGF-A-treated
DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling
upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide
that targeted GIPC1/Syx complex formation inhibited the VEGF-A-
induced activation of RhoA and suppressed DJM-1 cell proliferation.
In conclusion, this new signaling pathway of VEGF-A/NRP1 induced
cancer cell proliferation by forming a GIPC1/Syx complex that
activated RhoA to degrade the p27 protein.

KEY WORDS: Cancer, VEGF-A, Neuropilin, Syx, RhoA

INTRODUCTION
Malignant tumors express vascular endothelial growth factor A
(VEGF-A), a glycoprotein that recruits blood vessels, thereby
supplying tumors with the oxygen and nutrients that promote
tumor cell migration, proliferation, survival, permeability, and
metastasis (Potente et al., 2011). VEGF-A signaling involves via
two tyrosine kinase receptors, VEGFR1 and VEGFR2. A previous
study demonstrated that the blockade of VEGF-A by Avastin, an
antibody, or blockade of VEGFR2 with a specific kinase inhibitor,
such as Sutent, suppressed tumor angiogenesis (Potente et al., 2011).
Avastin, in combination with chemotherapy, has exhibited

some efficacy in clinical trials for metastatic colorectal cancer,

non-small cell lung cancer, renal cell carcinoma, and metastatic
breast cancer (Herbst and Sandler, 2008; Mountzios et al.,
2014). However, its impact on overall survival is not well
documented.

Neuropilin-1 (NRP1) is a 130 kDa transmembrane protein that
has been identified as a novel VEGF-A receptor (Soker et al., 1998).
NRP1 is expressed by endothelial cells and functions as a co-
receptor of VEGFR2, enhancing VEGF-A binding to its receptor
and promoting downstream signaling, e.g. the MAPK pathway
(Kawamura et al., 2008). NRP1 is associated with tumor
progression; it is strongly expressed in lung, brain, colon, ovarian,
and prostate cancers with poor patient prognoses (Geretti et al.,
2008). A Phase III study to evaluate the combined effects of Avastin
and chemotherapy in patients with advanced gastric cancer reported
that overall survival was worse in patient groups that strongly
expressed tumor NRP1 than in patients with low baseline expression
levels (Van Cutsem et al., 2012), suggesting that NRP1 is
tumorigenic.

Structurally, NRP1 has two extracellular domains, a1a2 and
b1b2, that bind SEMA3s and VEGF, respectively, in addition to
a dimerization domain, transmembrane domain, and short
cytoplasmic region (Geretti et al., 2008). Since NRP1 lacks
kinase activity, there has been a concerted effort to elucidate the
mechanisms underlying NRP1 signaling. NRP1 possesses a short
cytoplasmic region of 44 amino acids that is involved in
signaling. To date, the expression of NRP1 by tumor cells has
been shown to contribute to proliferative signal transduction
from VEGF-A. In renal cell carcinoma, the VEGF-A/NRP1
signal was found to activate Ras and promote tumor growth
in vivo (Cao et al., 2012), while VEGF-A/NRP1 signals induced
the phosphorylation of Akt leading to breast cancer cell
survival (Bachelder et al., 2001). However, the precise
mechanisms responsible for molecular interactions with the
NRP1 cytoplasmic region remain unknown.

NRP1 lacking the C-terminus three amino acids [Ser-Gln-Ala
(ΔSEA)] led to impaired vasculogenesis in zebrafish (Wang et al.,
2006) and abnormal vascular remodeling during retinal development
in mice (Fantin et al., 2011). A previous study showed that
NRP1ΔSEA did not induce medulloblastoma tumorigenesis
(Snuderl et al., 2013). NRP1 appears to signal via the SEA region.

GIPC1 (GAIP interacting protein C terminus), a scaffold protein,
is the first molecule that was shown to interact with the NRP1
cytoplasmic region (Cai and Reed, 1999; Wang et al., 2010). It has a
PDZ domain that binds to the SEA of NRP1 (Ballmer-Hofer et al.,
2011; De Vries et al., 1998). GIPC1 is overexpressed in breast and
pancreatic tumors and promotes tumor proliferation, survival, and
metastasis (Chittenden et al., 2010; Muders et al., 2009; Wu et al.,
2010); however, its functions have yet to be determined in detail
(Muders, 2011). Syx was identified as a GIPC1 binding protein by a
yeast two-hybrid system (Gao et al., 2000; Garnaas et al., 2008).Received 12 November 2014; Accepted 11 June 2015
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Syx was found to bind to the GIPC1 PDZ domain via its C-terminus
amino acids (Liu and Horowitz, 2006). It has a RhoGEF domain and
activates a Rho family GTPase, specifically, RhoA. Previous studies
demonstrated that Syx was expressed in vascular endothelial cells,
neuronal cells, and some tumors, such as glioma cells (De Toledo
et al., 2001; Liu and Horowitz, 2006; Nessling et al., 2005). RhoA
drives the cell cycle into the S-phase (Croucher et al., 2010). RhoA
has been implicated in virtually all stages of cancer progression.
It may play a role during tumor cell proliferation and survival; for
example, in vitro, constitutively active RhoAwas shown to stimulate
transformation (Vega and Ridley, 2008). The activation of RhoA
is known to induce the protein degradation of p27kip1, a cyclin-
dependent kinase inhibitor (CDI), in the G1 phase, which
progresses the cell cycle, resulting in proliferation (Hu et al.,
1999; Mammoto et al., 2004).
In the present study, we showed that VEGF-A promoted tumor

cell proliferation via the NRP1 signaling pathway. The NRP1
cytoplasmic region was found to be essential for the transduction of
VEGF-A signaling, which enhanced the interaction with GIPC1.
GIPC1 subsequently formed a complex with Syx. This complex
formation activated the RhoGEF activity of Syx, which led to the
activation of RhoA. The downstream signaling of RhoA induced
p27 protein degradation, leading to S phase entry of the cell cycle,
resulting in cancer cell proliferation. A treatment with a cell-
penetrating peptide designed to inhibit interactions between GIPC1
and Syx suppressed the activation of RhoA as well as cancer cell
proliferation.
In summary, we proposed a novel signal transduction pathway of

VEGF-A/NRP1 that induced cancer cell proliferation by forming a
GIPC1/Syx complex that activated RhoA and degraded p27.

RESULTS
Knockdown of endogenous VEGF-A expression decreased
human skin cancer cell proliferation in vitro
The DJM-1 cell line was established from a human skin cancer
obtained from a patient who died from metastases to the axillary
lymph nodes and lungs. DJM-1 cells were orthotopically
inoculated into the backs of mice. After 2 weeks, mice were
sacrificed and the tumors were isolated. Tumor sections were
stained with an anti-CD31 antibody (Arrow: bv) and hematoxylin.
The tumors and peritumoral area were highly vascularized
(Fig. 1A). The amount of VEGF-A secreted into the DJM-1 cell
conditioned media (CM) was 8 ng/ml, as measured by ELISA,
while that secreted into the siControl-treated DJM-1 cell CM was
7.5 ng/ml (Fig. 1B). VEGF-A was suppressed by the knockdown
using 3 different siRNAs, with siVEGF-A #1 being the most
effective (siVEGF-A #1: 90% inhibition, siVEGF-A #2: 88%
inhibition, siVEGF-A #3: 65% inhibition, respectively) (Fig. 1B).
VEGF-A secreted by DJM-1 cells stimulated the migration of
HUVEC. The knockdown of VEGF-A expression suppressed the
migration of HUVEC (siVEGF-A #1: 38% and siVEGF-A#2:
48% of siControl, respectively) (Fig. 1C). Colony formation in
soft agar indicated cancer proliferation under anchorage-
independent conditions. The knockdown of VEGF-A expression
suppressed the anchorage-independent proliferation (52% of
siControl) of DJM-1 cells themselves (Fig. 1D,E). The addition
of exogenous VEGF-A (1 µg/ml) restored the proliferation of
siVEGF-A-treated DJM-1 cells to a similar level to that of
the siControl-treated cells (siVEGF-A#1+1 µg/ml VEGF-A, 92%
of siControl). These results suggested that the endogenous
expression of VEGF-A stimulated the proliferation of DJM-1
cells in an autocrine manner.

VEGF-A-induced DJM-1 cell proliferation did not depend on
VEGFR1 or VEGFR2
VEGF-A has multiple receptors: VEGFR1, VEGFR2, and
neuropilins 1 and 2 (Ferrara, 2009). The expression of VEGFR1
and VEGFR2was detected bywestern blotting in HUVEC, but not in
DJM-1 cells (Fig. 2A). In order to determine whether VEGFR1 or
VEGFR2 signaling occurred in DJM-1 cells in response to VEGF-A,
the effects of SU5614, a VEGFR tyrosine kinase inhibitor, were
examined inDJM-1 cells in soft agar (Fig. 2B).However, SU5614 did
not inhibit the proliferation of DJM-1 cells (DMSO: 100%, SU5614:
96%). Avastin is an antibody that neutralizes VEGF-A and targets
VEGFR-binding sites. However, Avastin did not inhibit DJM-1 cell
proliferation (no addition: 100%, 1 µg/ml: 98%, 10 µg/ml: 96%,
250 µg/ml: 94%, respectively) (Fig. 2C). These results suggested that
autocrine VEGF-A induced cancer proliferation, but did not mediate
the VEGFR1 or VEGFR2 signaling pathway.

VEGF-A promoted cancer cell proliferation via NRP1 in an
autocrine manner
DJM-1 cells expressNRP1, but notNRP2. In addition, NRP1 siRNA
(siNRP1) #1–3 almost completely abrogated protein expression
(siNRP1 #1: 7%, #2: 4%, #3: 3% respectively), inhibiting DJM-1
cell anchorage-independent proliferation from 59 to 94% (Fig. 3A,
B). Since siNRP1 #2was themost effective inhibitor of proliferation,
it was used in subsequent experiments. The siNRP1 treatment
inhibited the proliferation of DJM-1 cells, similar to siVEGF-A
(siControl: 100%, siNRP1: 39%, siVEGF-A: 35%, respectively)
(Fig. 3C). The addition of exogenous recombinant VEGF-A did not
rescue siNRP1-treatedDJM-1 cell proliferation (42%), but did rescue
siVEGF-A-treated DJM-1 proliferation (96%) (Fig. 3C). We also
assessed the expression of the NRP1 protein by western blotting and
VEGF-A by ELISA in other human cancer cell lines: PC3M, prostate
cancer and U87MG, glioblastoma. The NRP1 protein (∼130 kDa)
was strongly expressed in PC3M and U87MG (supplementary
material Fig. S1A). All cell lines expressed NRP1, but did not
express VEGFRs. U87MG cells expressed NRP1 and NRP2
(supplementary material Fig. S1A). U87MG cells secreted the
highest levels of VEGF-A into conditioned medium, as shown in
supplementary material Fig. S1B. The siVEGF-A or siNRP1
treatment inhibited the proliferation of PC3M (siControl: 100%,
siVEGF-A: 15%, siNRP1: 23%) and U87MG cells (siControl:
100%, siVEGF-A: 33%, siNRP1: 41%) (supplementary material
Fig. S1C). The addition of exogenous VEGF-A rescued the
proliferation of siVEGF-A-treated cells (PC3M: 77%, U87MG:
78%). In contrast, the addition of VEGF-A did not recover the
proliferation of siNRP1-treated cells (PC3M: 38%, U87MG: 46%),
suggesting that NRP1 mediated VEGF-A signaling to induce PC3M
and U87MG cell proliferation as in DJM-1 cells (supplementary
material Fig. S1C).

Soluble-NRP (sNRP) is a VEGF-TRAP that consists of the NRP1
extracellular B domain, which is the NRP1 domain responsible for
VEGF-A-binding via its exon 7- and 8-encoded regions (Parker et al.,
2012). sNRP inhibited DJM-1 cell proliferation in a dose-dependent
manner (20 ng/ml: 9% inhibition of no addition, 50 ng/ml: 42%,
100 ng/ml: 51%, respectively) (Fig. 3D). NRP1 bound VEGF-A165,
but not VEGF121 because VEGF-A121 lacked the exon 7-encoded
region. The addition of VEGF-A121 did not promote siVEGF-A-
treated DJM-1 cell proliferation. PlGF-2, a member of the VEGF
family that has been shown to bind NRP1 (Mamluk et al., 2002),
promoted siVEGF-A-treated DJM-1 cell proliferation to 50% of
siControl (siControl: 100%, siVEGF-A: 21%, siVEGF-A +VEGF-
A165: 93%, siVEGF-A +VEGF-A121: 21%, siVEGF-A +PlGF-2:
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50%, respectively) (Fig. 3E). These results suggested that NRP1
mediated VEGF-A signaling to promote DJM-1 cell proliferation.

The NRP1 cytoplasmic region was responsible for VEGF-A-
induced proliferation of DJM-1 cells
NRP1 does not have any known signaling motif in the short 44
amino acid cytoplasmic region; therefore, it currently remains
unclear whether this domain is involved in signaling. We
constructed a shNRP1 vector to abrogate the expression of NRP1
in DJM-1 cells. The sequence of shNRP1 was based on siNRP1 #3,
which targeted NRP1 3′UTR. shNRP1 clones (No. 12 and No. 13)
did not express NRP1 and also did not support DJM-1 cell
proliferation (shControl: 100%, shNRP1-12: 35%, shNRP1-13:
24%, respectively) (Fig. 4A). In subsequent experiments, we used
shNRP1 clone No. 13 and infected shNRP1-DJM-1 cell clones with
NRP1WT, NRP1 lacking the 44 amino acid cytoplasmic region
(NRP1ΔCyto), or NRP1 lacking the C-terminus amino acids, SEA

(NRP1ΔSEA) (Fig. 4B). The growth of the shNRP1 clone was less
than that of the shControl clone (40% of shControl) (Fig. 4C). The
lentiviral overexpression of NRP1WT restored growth, whereas
NRP1ΔSEA and NRP1ΔCyto did not (shNRP1+WT: 90%,
shNRP1+ΔSEA: 27%, shNRP1+ΔCyto: 23%, respectively)
(Fig. 4C). These results suggested that the NRP1 cytoplasmic
region, containing SEA, was essential for VEGF-A-induced
proliferation.

VEGF-A binding to NRP1 induced the interaction between
GIPC1 and Syx, thereby promoting DJM-1 proliferation
GIPC1 (RGS-GAIP-interacting protein C-terminus) has a PDZ
domain that interacts with the NRP1 C-terminal three amino acid
residues, SEA (Wang et al., 2006). Syx has been shown to bind to
the GIPC1 PDZ domain via its C-terminus (Gao et al., 2000;
Garnaas et al., 2008). NRP1, GIPC1, and Syx proteins were
overexpressed in HEK293T cells, which did not express VEGFR1

(bv: blood vessel) 

A B C

siControl siVEGF-A
siVEGF-A 

+VEGF-A 1 µg/ml
D E

0 

5 

10 

15 

20 

25 

30 

C
ol

on
y 

nu
m

be
r /

 fi
el

d 

 siVEGF-A 
+VEGF-A 1 µg/ml

siControl siVEGF-A 

***

bv

Dermis

Tumor

0  
1  
2  
3  
4  
5  
6  
7  
8  
9  

 V
EG

F-
A 

co
nc

en
tr

at
io

n 
(n

g/
m

l) 

#1 #2

siVEGF-A 

no 
addition

#3siControl

**
**

**

0  

20  

40  

60  

80  

100  

120  

140  

160  

M
ig

ra
te

d 
ce

ll 
nu

m
be

r /
fie

ld
 

siControl #1 #2 no addition

siVEGF-A 

**
**

***

52 92100

10 12100 35 38 4810099 120

Fig. 1. VEGF-A secreted by DJM-1 cells induced tumor angiogenesis and cancer cell proliferation. (A) Frozen sectioned DJM-1 tumors were stained
with the endothelial marker CD-31 and hematoxylin. The arrow indicates blood vessels (Scale bar: 100 μm). (B) Quantification of VEGF-A concentrations
secreted by DJM-1 cells. After a 72 h treatment with (20 nM, siControl, or siVEGF-A #1–3) or without siRNA (no addition), conditioned media were collected and
analyzed by VEGF-A ELISA. (C) HUVEC migration assay. (B,C) Data represent the means±s.d. Percentages from the each mean relative to siControl are
indicated below the graph. (D) Endogenous VEGF-A induced colony formation by cancer cells. DJM-1 cells were treated with siControl or siVEGF-A #1 (20 nM
each) and seeded in soft agar. The upper panel shows the bright field of MTT staining colonies; the lower panel shows magnified colonies (Red circle: >80 μm
diameter, Scale bar: 250 μm). (E) Quantitative analysis of D. The means of colony numbers in 6 fields for each condition are shown with ±s.d. Percentages from
each mean relative to the siControl are indicated below the graph. **P<0.005; ***P<0.001.
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or VEGFR2 (supplementary material Fig. S2). A co-
immunoprecipitation analysis (Co-IP) with GIPC1 (HA) showed
that NRP1/GIPC1 and Syx/GIPC1 complexes were more prominent
in the presence of VEGF-A (+) than in its absence (−) (Fig. 4Da,
asterisks). On the other hand, Co-IP with Syx showed that the
GIPC1/Syx complex was increased; however, the NRP1/Syx
complex was less prominent in the presence of VEGF-A (+) than
in its absence (−) (Fig. 4Db, asterisks). These results suggested that
VEGF-A/NRP1 induced GIPC1 binding to NRP1 and formation of
the GIPC1/Syx complex, which appeared to be released fromNRP1.
In order to determine whether GIPC1 and Syx mediated the

VEGF-A/NRP1 signal in DJM-1 cells, we treated DJM-1 cells
with siGIPC1 or siSyx and analyzed proliferation in the presence
of exogenous VEGF-A. The siGIPC1 and siSyx treatments both
reduced the expression of GIPC1 and Syx (Fig. 4E) and
inhibited the proliferation of DJM-1 cells in the absence of
exogenous VEGF-A (Fig. 4F, black columns, siControl: 100%,
siNRP1: 43%, siGIPC1: 15%, siSyx: 3%, respectively). When
exogenous VEGF-A was added, it increased the proliferation of
siControl-treated DJM-1 cells (white columns, siControl: 162%).

However, exogenous VEGF-A did not induce the proliferation of
siNRP1-, siGIPC1-, or siSyx-treated cells (white columns,
siNRP1: 60%, siGIPC1: 22%, siSyx: 13%, respectively),
suggesting that GIPC1 and Syx were downstream molecules
responsible for the VEGF-A/NRP1 signal that induces the
proliferation of DJM-1 cells.

Syx RhoGEF activity was important for signaling DJM-1 cell
proliferation
The MAPK and PI3K pathways are responsible for tumor
malignancy and poor patient prognoses. The phosphorylation of
MAPK (ERK) and Akt has been shown to contribute to cell
proliferation and survival (Owonikoko and Khuri, 2013; Santarpia
et al., 2012). However, siVEGF-A and siNRP1 did not significantly
change the phosphorylation levels of either MAPK or Akt in DJM-1
cells from those in siControl cells (Fig. 5A). These results suggest
that MAPK and Akt were not involved in VEGF-A/NRP1-induced
DJM-1 cell proliferation.

RhoA is a regulator of cell proliferation and drives the cell
cycle into the S phase (Hu et al., 1999). In siControl-treated

A B

C

0 

10 

20 

30 

40 

50 

60 

70 

C
ol

on
y 

nu
m

be
r/ 

fie
ld

 

Avastin (µg/ml)  

N. S.

1 10 250no addition

N. S.

100 96 

100 98 96 94 

IB: VEGFR1 

DJM-1 HUVEC 
250 

150 

250 

150 

IB: VEGFR2 

kDa 

IB: actin 
50 

0 

10 

20 

30 

40 

DMSO SU5614  

co
lo

ny
 n

um
be

r /
fie

ld

Fig. 2. The VEGFR kinase inhibitor SU5614 and Avastin did not inhibit DJM-1 cell proliferation. (A) Western blot for VEGFR1 or VEGFR2 of DJM-1
cell lysates. As a positive control, the cell lysates of HUVEC were applied in the left lanes. Arrows indicate VEGFR1 or VEGFR2. (B) Colony formation assay for
DJM-1 cells treated with 10 µM SU5614, the VEGFR kinase inhibitor, and with 0.2% DMSO as the control. (C) DJM-1 cell colony formation assay treated
with Avastin (from 1 to 250 µg/ml). These data represent the means±s.d. N.S., not significant. Percentages from each mean relative to the DMSO (B) or no
addtion (C) are shown below the graph.

1066

RESEARCH ARTICLE Biology Open (2015) 4, 1063-1076 doi:10.1242/bio.010918

B
io
lo
g
y
O
p
en

http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.010918/-/DC1


cells, RhoA was activated in the absence of exogenous
VEGF-A (Fig. 5B; 0 min; asterisk). In contrast, the siVEGF-
A treatment inhibited the activation of RhoA in the absence of
exogenous VEGF-A (Fig. 5B, 0 min, asterisk). The exogenous
addition of VEGF-A activated RhoA in siControl-treated and
siVEGF-A-treated cells (Fig. 5B; 5 min; 60 min). All siNRP1,
siGIPC1, and siSyx treatments abrogated RhoA activity in the
absence of VEGF-A (−) (Fig. 5C). The exogenous addition of
VEGF-A (+) restored the RhoA activity of siVEGF-A-treated
cells, but not in siNRP1-, siGIPC1- and siSyx-treated DJM-1
cells (Fig. 5C), indicating that the VEGF-A/NRP1 signal
induced the activation of RhoA via GIPC1 and Syx in DJM-1
cells.
RhoGEF is an activator of RhoA. The Syx RhoGEF domain is

located from 423 to 612 in its amino acid sequence (Marx et al.,
2005) (Fig. 5D). The amino acid residue Leu, located at 571, is
important for the binding and activation of RhoA. In order to

elucidate whether Syx RhoGEF activity was important for
VEGF-A/NRP1-induced DJM-1 cancer cell proliferation, we
constructed a lentivirus vector encoding Syx WT or a Syx mutant
with a point mutation at the position of 571 Leu replaced to Glu in
order to lose binding and the activation of RhoA (Marx et al., 2005).
The lentiviruses of Syx WT and the Syx mutant both induced
protein expression in DJM-1 cells. The infection amounts among
the viruses with the different titers for protein expression were
adjusted for equal expression levels in the RhoA activity assay and
colony formation assay (Fig. 5E). The lentiviral overexpression of
the Syx mutant interfered with the VEGF-A-induced activation of
RhoA in DJM-1 cells (Fig. 5F) and inhibited DJM-1 cell
proliferation (no addition: 100%, Syx WT: 129%, Syx MT: 45%)
(Fig. 5G). These results suggested that Syx, the RhoGEF of RhoA,
was an essential and key signaling molecule for mediating the
VEGF-A-induced signal transduction that activates RhoA, leading
to DJM-1 cell proliferation.
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RhoAwas activated by VEGF-A/NRP1, GIPC1, and Syx to
promote cancer cell proliferation
In order to determine whether the activation of RhoA promoted
DJM-1 cell proliferation, DJM-1 cells were treated with C3
exoenzyme, a specific inhibitor of RhoA. C3 exoenzyme
completely suppressed DJM-1 cell proliferation in the absence
and presence of exogenous VEGF-A (2% and 1% of siControl,

respectively) (Fig. 6A). Y27632, a ROCK inhibitor that is a
downstream effector of RhoA, suppressed DJM-1 cell proliferation
(no addition: 100%, 10 µM: 51%, 20 µM: 50%, respectively)
(Fig. 6B). Proliferation was recovered (31% to 82%) when RhoA
constitutively active form (RhoA CA) was overexpressed in
siVEGF-A-treated DJM-1 cells (Fig. 6C,D). p27 was degraded by
the activation of RhoA, thereby leading to cell proliferation
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(S-phase entry). p27 is an inhibitor of G1 cyclin-dependent kinase
and regulates cell proliferation downstream of RhoA. Under
anchorage-independent conditions, the accumulation of p27 was
greater in siVEGF-A- and siNRP1-treated DJM-1 cells than in
siControl-treated DJM-1 cells (Fig. 6E). Taken together, these
results demonstrated that VEGF-A/NRP1 signaling activated RhoA
activity via a GIPC1/Syx complex to inhibit the accumulation
of p27.

The oligopeptide that inhibited GIPC1 and Syx interactions
suppressed RhoA activation and DJM-1 proliferation
We designed a membrane-penetrating peptide targeted to inhibit
complex formation between GIPC1 and Syx (Fig. 7A). The 30 kDa
targeted peptide consisted of TAT, a cell penetrating sequence of the
HIV virus, EGFP, and eight amino acid residues that included the Syx
C-terminal amino acid sequence (STLTASEV). The Syx C-terminal
amino acid sequence was important for recognizing the GIPC1 PDZ
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domain in the GIPC1/Syx interaction; therefore, the targeted peptide
acted as a competitive inhibitor. The incorporation of these peptides
into DJM-1 cells was confirmed through the detection of a green
fluorescent protein linked to the peptides after a 1 h treatment
(Fig. 7B). In order to establish whether the Targeted peptide interacted
withGIPC1,HA-taggedGIPC1was overexpressed inHEK293Tcells
and the cell lysate was incubated with either the Scrambled peptide or
Targeted peptide. Binding of the Targeted peptidewith GIPC1 was 3-
fold greater than that with the Scrambled peptide (Fig. 7C). In order to
evaluate whether the Targeted peptide inhibited the interaction
between GIPC1 and Syx, NRP1, GIPC1, and Syx vectors were
transfected and expressed in HEK293T cells and these cells were then
treated with the Targeted or Scrambled peptide for 16 h. After a
10 min stimulation with (+) or without (−) VEGF-A (100 ng/ml), the
cells were lysed and the indicated proteins in the cell lysates
were co-immunoprecipitated with V5-tagged Syx (left panels).

VEGF-A/NRP1 induced GIPC1/Syx complex formation in the
presence of the Scrambled peptide (Fig. 7D, asterisk). On the other
hand, the Targeted peptide abrogated the VEGF-A/NRP1 signal-
induced GIPC1/Syx interaction (Fig. 7D, asterisk). In addition, the
Targeted peptidemore strongly prevented the activation of RhoA than
the Scrambled peptide in the absence and presence of VEGF-A
(Fig. 7E). Additionally, DJM-1 cell proliferation was inhibited by the
Targeted peptide (Scramble peptide: 99%, Targeted peptide: 43%)
(Fig. 7F). These results demonstrated that, in the VEGF-A/NRP1
signaling pathway, the GIPC1 and Syx interaction was necessary for
the activation of RhoA in order to promote the proliferation of cancer
cells.

DISCUSSION
In the present study, VEGF-A induced the cancer cell proliferation
of PC3M (prostate cancer), DJM-1 (skin cancer), and U87MG
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(glioblastoma cell) in an anchorage-independent manner via the
NRP1 signaling pathway (Fig. 8). The knockdown of VEGF-A or
NRP1 abrogated the proliferation of these cancer cells. We selected
skin cancer-derived DJM-1 cells, which only express NRP1 as the

VEGF-A receptor and grow faster than other cancer cells under
anchorage-independent conditions.

The NRP1 structure governs its bioactivity. The A domain mostly
binds semaphorins, whereas the B domain binds VEGF-A (Geretti

- + - +VEGF-A 

Scrambled  Targeted

Active RhoA 
(21 kDa)

Total RhoA 
(21 kDa)

FE

BA

TAT EGFP peptideG
N C

0 

10 

20 

30 

40 

50 

60 

C
ol

on
y 

nu
m

be
r /

fie
ld

Scrambled  Targeted 

***

no addition

no addition Targeted Scrambled 

D
A

PI
EG

FP

Peptide (500 nM) 

C
IP: V5 (Syx tag)

- + - +VEGF-A 

IB: GIPC1

Scrambled  Targeted

IB: V5 (Syx)

10 % input

*50

150

kDa10% input

IB: GIPC1

Scrambled Targeted

IP: HA (GIPC1 tag)

50

37
IB: GFP

kDa

D

100 99 43

Targeted peptide: STLTASEV 
Scrambled peptide: EASTSLVT

100 308

100 193 62 58

100 167 72

100 110 104 103

73

*

Fig. 7. The oligopeptide that inhibited the GIPC1 and Syx interaction suppressed RhoA activity and the proliferation of DJM-1 cells. (A) A schematic
of the construct that contained TAT, EGFP, and the Gly insertion prior to the Targeted peptide sequence (STLTASEV; Syx C terminus sequence). The Scrambled
peptide amino acid sequence is also shown in the lower case (EASTSLVT). (B) Confirmation of the peptide incorporation into DJM-1 cells. DJM-1 cells were
treated with the Scrambled or Targeted peptide (500 nM each) for 1 h. Confocal images indicated the Scrambled or Targeted peptide in the intracellular region
of DJM-1 cells (green). Nuclei in the same position were shown in the upper panels (blue). Scale bar: 30 μm. (C) The co-immunoprecipitation assay with
the Target peptide. HA-tagged GIPC1 was overexpressed in HEK293T cells. The Scrambled or Targeted peptide was mixed with the cell lysate and
co-immunoprecipitated with GIPC1 after a 1 h rotation at 4°C. The same lysates (10% input) were immunoblotted with anti-GFP or anti-GIPC1 antibodies to
normalize the amounts of the peptide and GIPC1. Percentages from each relative to the Scrambled are shown below the graph. (D) NRP1, GIPC1, and Syx
vectors were transfected and expressed in HEK293T cells, which were subsequently treated with the Targeted or Scrambled peptide for 16 h. After a 10 min
stimulation with (+) or without (−) VEGF-A (100 ng/ml), the cells were lysed and the indicated proteins in the cell lysates were co-immunoprecipitated with V5-
tagged Syx (left panels). VEGF-A induced theGIPC1/Syx interaction in the presence of the Scrambled peptide (asterisk). On the other hand, the Targeted peptide
abrogated the GIPC1/Syx interaction (asterisk). Percentages from each protein level [GIPC1 or V5 (Syx)] compared to the lane of Scrambled (−) are indicated
below the lane. The same lysates (10% input) were immunoblotted with anti-GIPC1 or V5 antibodies to normalize the amounts of each protein. (E) The RhoA
activity assay. DJM-1 cells were treated with the Targeted or Scrambled peptide and stimulated with (+) or without (−) VEGF-A (100 ng/ml) under anchorage-
independent conditions. The same lysates (10% input) were immunoblotted with an anti-RhoA antibody to normalize the protein amounts with each treatment.
Percentages from each relative to the Scrambled (−) are shown below the graph. (F) The colony formation assay. DJM-1 cells were treated with 500 nM of
the Targeted or Scrambled peptide. The Targeted peptide inhibited DJM-1 cell proliferation, whereas the Scrambled peptide did not. These data represent the
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et al., 2008). The treatment of cancer cells with the soluble NRP1 B
domain or siNRP1 inhibited proliferation in an anchorage-
independent manner. Stable shNRP1-DJM-1 clones also
decreased proliferation. Taken together, these results indicated
that endogenous NRP1 transduced a VEGF-A proliferative signal.
PlGF, a member of the VEGF-A family, activated the MAPK
pathway via NRP1 in medulloblastoma (Snuderl et al., 2013).
NRP2, an isoform of NRP1, was previously shown to transduce the
activation of Akt in pancreatic cancer cells (Dallas et al., 2008).
However, in the present study, these pathways were not involved in
VEGF-A/NRP1 signaling in DJM-1 cells because ERK and Akt
phosphorylation levels did not change even when the expression of
VEGF-A or NRP1 was decreased by siRNA. The NRP1 C-terminal
3 amino acids (SEA), which contribute to recognition of the PDZ
domain of GIPC1, were of particular interest in the present study.
The SEA motif was previously shown to be critical for binding
GIPC1 (Wang et al., 2006). In the present study, lentiviral infection
of the two NRP1 cytoplasmic deletion mutants (NRP1ΔSEA or
NRP1ΔCyto) into the shNRP-DJM-1 clone failed to induce
anchorage-independent growth in response to VEGF-A. VEGF-A
increased the GIPC1 interaction with NRP1, indicating that the
NRP1/GIPC1 interaction is necessary for stimulating DJM-1 cell
proliferation. GIPC1 has been suggested to play an important role in
cancer cell proliferation. GIPC1 was shown to bind to IGF-1R via its
PDZ domain in order to promote pancreatic cancer cell proliferation

(Muders et al., 2009). By binding VEGF-A to NRP1, GIPC1
mediates the interaction between NRP1 and ABL1, which activates
tyrosine kinase activity and associates with integrins, leading to
induce tumor growth (Goel and Mercurio, 2013). Syx is a RhoGEF
that stimulates RhoA activity (Garnaas et al., 2008). The molecular
interaction between GIPC1 and Syx was identified using two-yeast
hybridization (Gao et al., 2000). Syx has been implicated in
tumorigenesis, brain tumors, and neuroblastoma (De Toledo et al.,
2001). siSyx inhibited the proliferation of DJM-1 cells, indicating
that Syx is involved in a signaling pathway that promotes cell
proliferation.

Previous studies reported that NRPs required an interaction with
co-receptors such as VEGFR1 or VEGFR2 to induce signals for cell
survival and migration (Kawamura et al., 2008). Favier et al.
demonstrated that NRPs associated with VEGFR2 in ligand-
dependent and ligand-independent manners in HEK293T cells
that transiently overexpressed NRPs and VEGFR2, thereby
inducing VEGFR2 phosphorylation (Favier et al., 2006).

In the present study, we showed that the VEGF-A/NRP1 signaling
pathway promoted cancer cell proliferation even though cancer cells
do not express VEGFR1 or VEGFR2 (Fig. 8). We used HEK293T
cells that expressed NRP1, but not VEGFR2 in co-
immunoprecipitation to analyze interactions between NRP1/GIPC1
or GIPC1/Syx (supplementary material Fig. S2). As a consequence,
VEGF-A induced NRP1/GIPC1 and GIPC1/Syx complex formation
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without the expression of VEGFR1 or VEGFR2. These results
indicated that VEGF-A signals viaNRP1 in aVEGFR1- orVEGFR2-
independent manner, resulting in cancer cell proliferation.
RhoA is a small GTPase that drives the cell cycle into the S-

phase with the degradation of p27. p27 protein levels were
previously reported to be reduced in many organ sites in the
majority of human malignancies (Hu et al., 1999). The activation of
RhoA is known to induce the protein degradation of p27Kip1. The
“dominant negative” effect of the Syx mutant (Syx DN) on RhoA
suggests that Syx is involved in the VEGF-A/NRP1 signaling
pathway. RhoA has been implicated in virtually all stages of cancer
progression. The treatment of DJM-1 cells with the RhoA-specific
inhibitor, C3 exoenzyme or ROCK inhibitor (Y27632) suppressed
DJM-1 cell proliferation. The knockdown of VEGF-A or NRP1
upregulated the expression of the p27 protein. In addition, the
overexpression of constitutively active RhoA in siVEGF-A-treated
cells rescued the inhibition of proliferation, indicating that
endogenous VEGF-A-binding NRP1 activated Syx RhoGEF in
order to stimulate the activation of RhoA, thereby leading to the
degradation of p27. Taken together, these results suggested that
endogenous VEGF-A/NRP1 signaling in DJM-1 cells induced the
degradation of p27 in order to constitutively stimulate progress into
the S-phase.
The importance of the molecular mechanism by which the GIPC1

interaction with Syx activates Syx GEF activity was demonstrated in
the present study. As a novel tactic, we herein generated a peptide that
contained the HIV TAT sequence, which enabled the peptide to
penetrate the cell membrane and inhibited complex formation by
GIPC1 and Syx (Fig. 8). This peptide consisted of eight amino acids
corresponding to the sequence of Syx C-terminus (STLTASEV). The
C-terminal five or six amino acids of a binding partner of GIPC1were
shown to lead to sufficient affinity for binding for the PDZ domain
(Muders et al., 2009).This studyshowed that the peptide abrogated the
complex formation necessary for Syx RhoGEF activation. Syx is
known to include an auto-inhibitory domain in the C-terminal region.
A hypothetical mechanism has been proposed by which GIPC1
binding to the auto-inhibitory domain in the C-terminal region of Syx
triggers RhoGEF activity.
In conclusion, this study provided evidence for a new pathway of

VEGF-A/NRP1 signaling leading to the proliferation of cancer
cells. Furthermore, we showed that the molecular function of GIPC1
and its interaction with Syx played a key role in the activation of
RhoA, which induced the degradation of p27. The inhibition of
VEGF-A/NRP1 signaling may represent a new strategy against
cancer and be applied in the design of new cancer drugs.

MATERIALS AND METHODS
Reagents
Recombinant human-VEGF-A165, VEGF-A121, and PlGF-2 were purchased
from R&D Systems (Minneapolis, MN, USA). The VEGFR kinase inhibitor
SU5614 was purchased from Merck (Whitehouse Station, NJ, USA). The
RhoA-specific inhibitor, C3 exoenzyme, was purchased from Cytoskeleton
(Denver, CO, USA) and Y27632 was purchased from EMD Millipore
(Billerica, MA, USA). The anti-VEGF-A antibody, Avastin® (bevacizumab),
was kindly provided by Dr Mark Kieran (Dana-Farber Cancer Institute,
Boston, MA, USA).

Animal studies
All animal experiments were performed in accordance with Kyoto Sangyo
University’s animal experiment guidelines. DJM-1 cells (4×106 cells per
100 µl HBSS) were orthotopically inoculated at the right flank of 6-week-
old female BALB/C Slc-nu/nu mice (SHIMIZU Laboratory Supplies Co.,
Ltd., Sakyo-ku Kyoto, Japan). After 2 weeks, mice were sacrificed and

tumors were isolated and embedded in OCT compound (SAKURA Tissue
Teck, Koto-ku, Tokyo, Japan).

Cell culture and transfection
The human skin cancer line, DJM-1 was kindly provided by
Dr H. Katayama (Katayama et al., 1989) (Katayama Clinic, Maebashi,
Japan) and cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) and glucose (final 4.5 mg/ml). HEK293T cells were purchased from
ATCC and cultured in DMEM supplemented with 10% FBS. PC3M cells
and U87MG cells were purchased from ATCC and cultured in RPMI-1640
supplemented with 10%FBS for PC3M cells. U87MG cells were cultured in
EMEM supplemented with 10% FBS. Human Umbilical Vein Endothelial
Cells (HUVEC) were purchased from LONZA (Gampel, Valais,
Switzerland) and maintained in endothelial cell growth medium (EGM-2).

The transfection of expression vectors into HEK293T was performed
with FuGENE6 (Promega, Madison, WI, USA). siLentFect™ reagents
(Bio-Rad, Hercules, CA, USA) were used for all siRNA treatments as
directed in the instruction manual.

Antibodies
The following primary antibodies were used: GIPC1 (N-19) goat;
neuropilin-1 (C-19) goat; neuropilin-2 (C-9) mouse; PLEKHG5 (KB-7)
mouse; Flt-1 (C-17) rabbit and Flk-1 (C-1158) rabbit antibodies (Santa
Cruz, Dallas, TX, USA); Akt (pan) (C67E7) rabbit; phospho-Akt (Ser473)
(D9E) XP™ rabbit; p44/42MAPK (Erk1/2) rabbit; phospho-p44/42MAPK
(Erk1/2) (Thr202/Tyr204) rabbit; neuropilin-1 (D62C6) rabbit and RhoA
(67B9) rabbit antibodies (Cell Signaling Technology, Danvers, MA, USA).
An anti-HA 11 clone (16B12)mouse antibody was purchased fromCovance
(Princeton, NJ, USA). An anti-V5 rabbit antibody was purchased from
Bethyl (Montgomery, TX, USA). An anti-actin rabbit antibody (Cat:
A2013) was purchased from Sigma-Aldrich (St. Louis, MO, USA).

The secondary antibodies used were: horseradish peroxidase (HRP)-
conjugated anti rabbit IgG; HRP-conjugated anti goat IgG; a HRP-
conjugated anti-mouse IgG antibody (Jackson Immuno Research, West
Grove, PA, USA). DAPI was purchased from Invitrogen (Life
Technologies, Van Allen Way, Carlsbad, CA, USA). A biotin-conjugated
rat IgG antibody was purchased from VECTOR (Burlingame, CA, USA).

Plasmids
Human NRP1WT, HA-tagged GIPC1, V5-tagged Syx, HA-tagged
constitutively active RhoA, and soluble NRP constructs were inserted
using the pcDNA 3.1 TOPO expression vector (Life Technologies). HALO-
tagged Syx was purchased from the Kazusa DNA Research Institute
(KIAA0720) and used as a template to generate the V5-tagged Syx
construct. The human NRP1ΔSEA construct was generated by PCR using
NRP1WT as a template and primers that introduced a NotI or BamHI
restriction site were inserted into the pcDNA 3.1 TOPO expression vector.

Forward primer: 5′-GGGCGGCCGCACCACCATGGAGAGGGGGC-
TGCCGCTCCTC-3′, reverse primer: 5′-GGGGATCCTCATGCCTCCG-
AATAAGTACTCT-3′.

Syx WT and a dominant negative mutant were generated by point
mutations using the following primers; Forward primer: 5′-CCAAGTAC-
CCGCTGGAGCTCAAGTCGGTGC-3′, reverse primer: 5′-GCACCGA-
CTTGAGCTCCAGCGGGTACTTGG-3′.

PCR products were digested with NotI and BamHI and inserted into the
pcDNA 3.1 expression vectors.

NRP1WT, NRP1ΔSEA, and NRP1ΔCyto lentiviruses were based on the
NRP1 pcDNA 3.1 construct and generated by PCR using the following
primers that introduced NotI and BamHI restriction sites. The same primer
for all NRP1 constructs was used as the forward primer and PCR products
were subcloned into the pHAGE lentiviral backbone vector as described
above (Shimizu et al., 2008).

Forward primer: 5′-GGGCGGCCGCGCCACCATGGAGTGGGGGC-
TGCCGCTC-3′, reverse primers; WT: 5′-CCGGATCCCTCTGTCTGCC-
TTCATGCCTC-3′, ΔSEA: 5′-AAGGATCCTCAATAAGTACTCTGTGT-
ATTCAGTTTGTC-3′ and ΔCyto: 5′-GGGGATCCTCAGTACAGCAC
GACCCCACAGAC-3′.
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Syx WT or the DN-V5 tagged lentivirus was based on each pcDNA 3.1
construct and generated by PCR using the following primers that introduced
the NotI or BamHI restriction site. PCR products were subcloned into the
pHAGE lentiviral backbone vector.

Forward primer: 5′-GCGGCCGCGCCACCATGGGTAAGCCTATCC-
CTAACCCTCTCCTCGGTCTCGATTCTACGGGTGACGAGACCAGA-
GCCCCGCT-3′, reverse primer: 5′-GGGGGATCCTCAGACCTCCGAG-
GCAGTGAGC-3′.

The following NRP1 shRNA sequences based on siNRP1 #3 were
inserted into pSilencer™ 4.1-CMV neo (Ambion; Life Technologies); sense
primer: 5′-GATCCCGGGCTGAGGATTGTACAGTTCAAGAGACTGT-
ACAATCCTCAGCCCGTCA-3′, antisense primer: 5′-AGCTTGACGGGC-
TGAGGATTGTACAGTCTCTTGAACTGTACAATCCTCAGCCCGG-3′.

Preparation of Lentivirus vectors of NRP1 WT and mutants
Each NRP1WT, NRP1ΔSEA, and NRP1ΔCyto in the pHAGE lentiviral
backbone vector was co-transfected with the helper plasmids (tat, rev, gag-
pol and VSV-G) to HEK293 cells as described previously (Shimizu et al.,
2008). Viral supernatants were assembled and concentrated at 38,000×g for
1.5 h at 4°C. The collected virus was infected with 10 µg/ml polybrene
(Millipore) to express NRP1WT and the mutants in DJM-1 cells.

siRNAs
siGENOME smart pool control siRNA (D-001206), GIPC1 siRNA
(M-019997), and Syx siRNA (M-013873) were purchased from
Dharmacon RNAi Technologies (Thermo Scientific, Waltham, MA,
USA). Human VEGF-A siRNA #1, #2, and #3 were annealed using
the following sequences, respectively; VEGF-A siRNA #1; sense primer:
5′-GCAUUGGAGCCUUGCCUUGCUTT-3′, antisense primer: 5′-AGC-
AAGGCAAGGCUCCAAUGCTT-3′. VEGF-A siRNA #2; sense primer:
5′-GGAGCCUUGCCUUGCUGCUCUTT-3′, antisense primer: 5′-AGA-
GCAGCAAGGCAAGGCUCCTT-3′. VEGF-A siRNA #3; sense primer:
5′-GGACCUAUGUCCUCACACCTT-3′, antisense primer: 5′-GGUGU-
GAGGACAUAGGUCCTT-3′.

Human NRP1 siRNA #1, #2, and #3 were annealed using the following
sequences, respectively; NRP1 siRNA #1; sense primer: 5′-AAUCAGA-
GUUUCCAACAUATT-3′, antisense primer: 5′-UAUGUUGGAAACUC-
UGAUUTT-3′. NRP1 siRNA #2; sense primer: 5′-GUGGAUGACAUU-
AGUAUUATT-3′, antisense primer: 5′-UAAUACUAAUGUCAUCCAC-
TT-3′. NRP1 siRNA #3; sense primer: 5′-GACGGGCUGAGGAUUGU-
ACTT-3′, antisense primer: 5′-GUACAAUCCUCAGCCCGUCTT-3′.

shNRP1 construction and transfection
The designed shNRP1 oligonucleotide sequences were based on siNRP1
#3. Sense oligo: 5′-GATCCCGGGCTGAGGATTGTACAGTTCAAGA-
GACTGTACAATCCTCAGCCCGTCA-3′, antisense oligo: 5′-AGCTT-
GACGGGCTGAGGATTGTACAGTCTCTTGAACTGTACAATCCTC-
AGCCCGG-3′. The sense and antisense oligonucleotides were annealed
and inserted at the BamHI and HindIII restriction sites into the pSilencer™
4.1-CMV neo plasmid (Ambion; Life Technologies). DJM-1 cells were
transfected with the shNRP1 construct or control plasmid by
electroporation with a 0.4 cm cuvette (GenePulser Xcell; Bio-Rad). The
transfectants were screened in 400 µg/ml G418-contained growth medium
to obtain stable DJM-1 cell clones (shNRP1 clone #12 and #13, shControl).

Peptides
The expression plasmids for the fusion proteins, TAT-EGFP-peptide 1
(STLTASEV) and TAT-EGFP-scramble 1 (EASTSLVT) were prepared by
the site-directed mutagenesis of DNA sequences encoding TAT-EGFP
cloned in a pGEX-6P-3 expression vector (GE Healthcare Life Sciences,
Buckinghamshire, UK) (Kizaka-Kondoh et al., 2009). DNA primers
for the amplification of plasmids were as follows: for TAT-EGFP-peptide
1, 5′-GCCAGCGAGGTGTAAATCGTGACTGACTGACGATCTGCC-3′
and 5′-GGTCAGGGTGCTGCCCTTGTACAGCTCGTCCATGGCG-3′;
for TAT-EGFP-scramble 1, 5′-AGCCTGGTGACCTAAATCGTGACTG-
ACTGACGATCTGCC-3′ and 5′-GGTGCTGGCCTCGCCCTTGTACA-
GCTCGTCCATGGCG-3′. The resultant plasmids were introduced into
BL21-CodonPlus (DE3) cells (Agilent Technologies, Santa Clara, CA,

USA). Fusion proteins were expressed as glutathione S-transferase (GST)-
tagged proteins and purified by affinity chromatography, as previously
described (Kizaka-Kondoh et al., 2009). The GST-tag was removed, and
final proteins were equilibrated in PBS.

Immunoprecipitation (IP)
HEK293T cells were transfected with NRP1WT, GIPC1, and Syx plasmids
with FuGENE6. The cells were stimulated with or without 100 ng/ml
VEGF-A for 15 min and were lysed with RIPA buffer (1% NP-40, 0.5%
Sodium deoxycholate, 0.1% SDS, NaCl 100 mM, Tris-HCl 50 mM,
pH7.4). The cell lysates were incubated with the anti-HA, anti-Syx, or
anti-V5-antibody at 4°C overnight. Protein G Sepharose beads (Protein G
Sepharose 4 Fast Flow, GE Healthcare) were added and rotated at 4°C for
1.5 h. After washing the beads with cold RIPA buffer, proteins were
removed from the beads in 40 μl 2× Laemmlli Sample buffer and analyzed
by SDS-PAGE and western blotting. In the input analysis, 1/10 volume of
the cell lysate was used.

Western blotting
Cells were lysed with cold RIPA buffer. After running SDS-PAGE, proteins
were transferred to a PVDF membrane (Millipore) and blotted with primary
antibody-diluted 4% skim milk in TBST at 4°C overnight followed by
incubation with a HRP-conjugated secondary antibody. The blots were
treated with chemiluminescent substrate solution (Thermo Fisher Scientific,
Waltham, MA, USA) and exposed to LAS-4000 mini (Fujifilm Co., Tokyo,
Japan) to reveal immunoreactive bands. Percentages from each band on
densitometry compared to the control were indicated in the lower lanes in the
figures. The western blot analysis was repeated 3 times.

VEGF-A ELISA
A human VEGF Quantikine® ELISA kit (R&D Systems) was used. DJM-1
cells were seeded at a density of 2×105 cells/well/6-well plate, followed by a
treatment with 20 nM siRNA. The medium was changed to DMEM
containing 1%BSA, and cells were incubated for 3 days at 37°C in 5%CO2.
The conditioned media were diluted to ten-fold with serum free-DMEM,
and VEGF-A levels were measured using the manufacturer’s protocol. The
measurement of VEGF-A concentrations from each sample was duplicated
and the ELISA experiment was repeated twice.

Soft agar assay
DJM-1, PC3M, or U87MG cells were treated with 20 nM siRNA or
infected with a lentivirus before being seeded in agar. Two milliliters of
growth medium containing 0.72% agar was prepared in a 35-mm dish and
solidified as bottom agar. Cells (DJM-1: 5×104 cells, PC3M and U87MG:
1×105 cells) were suspended in 2 ml of culture medium containing 0.36%
agar and, after the addition of ligands or chemicals, layered on the
bottom agar. Two weeks later, viable cells were stained with 300 µg/ml 3-
(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)
solution. Colony diameters were analyzed by Image J software and the
numbers of colonies larger than 80 µm in diameter were counted per 6 to 7
microscopic fields. The means±s.d of colony numbers are shown.
Percentages from each mean compared to the control are indicated below
the graphs in the figures. Each experiment was repeated at least two or three
times.

HUVEC migration assay
Amigration assay was performed for HUVEC using Transwell inserts with a
pore size of 8.0 μm (Corning, NY, USA). Membranes were coated with
0.1% gelatin. The conditioned medium of DJM-1 cells was prepared with a
siRNA treatment, cultured in 2% FBS-EBM-2 for 72 h, and placed into the
bottom chamber. Five thousand HUVECwere suspended in 2% FBS-EBM-
2 medium, seeded into the upper compartments, and cultured for 16 h.
Migrated cells were stained with Diff-Quick. The stained cells in 6
microscopic fields were counted.

RhoA activity assay
A RhoA activity assay was performed and quantified using the RhoA
activation assay kit according to the manufacturer’s instructions

1074

RESEARCH ARTICLE Biology Open (2015) 4, 1063-1076 doi:10.1242/bio.010918

B
io
lo
g
y
O
p
en



(Cytoskeleton, Denver, CO, USA). Cells were treated with 20 nM siRNA
before use and were seeded in 5 mg/ml polyHEMA (poly 2-hydroxyethyl
methacrylate; Sigma)-coated 100-mm dishes for cultivation under
anchorage-independent conditions overnight (Fukazawa et al., 1995).
Cells were stimulated with 100 ng/ml VEGF-A165 for 10 min or the
indicated time. Cells were lysed with Lysis buffer. The clarified cell lysate
was incubated with Rhotekin-RBD protein agarose beads and rotated at 4°C
for 90 min. The beads were washed with wash buffer and denatured. Active
RhoA was detected by western blotting.

Immunohistochemistry
DJM-1 tumors were frozen and sliced to a thickness of 10 µm using Leica
CM3050 S (Leica, Wetzlar, Germany). The frozen sections were rehydrated
with TBST and fixed with 100% methanol at −20°C for 20 min. In order to
inactivate endogenous peroxidase activity, sections were incubated in 0.3%
H2O2 solution containing 1% sodium azide overnight at room temperature.
These sectionswerewashedwith TBSTand blockedwith 3%BSA/3%house
serum and 1% sodium azide in TBST for 40 min, followed by incubation
with an anti-mouse CD31 antibody diluted with blocking buffer (1/200)
overnight. The sections were then incubated with biotin-conjugated anti-rat
IgG for 1 h and developed with an ABC kit (Vector Labs, Burlingame, CA,
USA) according to the manufacturer’s instructions. Sections were
counterstained with hematoxylin (Wako Chemicals Co., Kyoto, Japan).
Photographs were taken with NIS-Elements (Nikon, Tokyo, Japan).

Statistical analysis
Differences in means among treatments in the colony formation assay,
migration assay and ELISA were evaluated with the Student’s t-test:
**P<0.005; ***P<0.001; N.S, not significant.

Acknowledgements
The authors thank M. Anderson for support preparing the manuscript,
Prof. M. Shibuya for scientific advice, and M. Terada and N. Ueno for their
experimental support.

Competing interests
The authors declare no competing or financial interests.

Author contributions
A.Y., A.S. and M.K.S. conceived and designed the experiments. A.Y., H.A. and
A.S. performed the experiments. A.Y., A.S. and M.K.S. analyzed the data. T.K.,
S.K.K., E.G. and A.M. designed and generated peptides and molecular materials for
analysis. A.Y., A.S., M.K. and M.K.S. wrote the manuscript.

Funding
This work was partly supported by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Science, Sports and Culture of Japan.

Supplementary material
Supplementary material available online at
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.010918/-/DC1

References
Bachelder, R. E., Crago, A., Chung, J., Wendt, M. A., Shaw, L. M., Robinson, G.
and Mercurio, A. M. (2001). Vascular endothelial growth factor is an autocrine
survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res. 61,
5736-5740.

Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E. and Berger, P. (2011).
Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby
specifying signal output. Blood 118, 816-826.

Cai, H. and Reed, R. R. (1999). Cloning and characterization of neuropilin-1-
interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts
with the cytoplasmic domain of neuropilin-1. J. Neurosci. 19, 6519-6527.

Cao, Y., E, G.,Wang, E., Pal, K., Dutta, S. K., Bar-Sagi, D. andMukhopadhyay, D.
(2012). VEGF exerts an angiogenesis-independent function in cancer cells to
promote their malignant progression. Cancer Res. 72, 3912-3918.

Chittenden, T. W., Pak, J., Rubio, R., Cheng, H., Holton, K., Prendergast, N.,
Glinskii, V., Cai, Y., Culhane, A., Bentink, S. et al. (2010). Therapeutic
implications of GIPC1 silencing in cancer. PLoS ONE 5, e15581.

Croucher, D. R., Rickwood, D., Tactacan, C. M., Musgrove, E. A. and Daly,
R. J. (2010). Cortactin modulates RhoA activation and expression of Cip/Kip
cyclin-dependent kinase inhibitors to promote cell cycle progression in 11q13-

amplified head and neck squamous cell carcinoma cells. Mol. Cell. Biol. 30,
5057-5070.

Dallas, N. A., Gray, M. J., Xia, L., Fan, F., van Buren, G., II, Gaur, P., Samuel, S.,
Lim, S. J., Arumugam, T., Ramachandran, V. et al. (2008). Neuropilin-2-
mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin.
Cancer Res. 14, 8052-8060.

De Toledo, M., Coulon, V., Schmidt, S., Fort, P. and Blangy, A. (2001). The gene
for a new brain specific RhoA exchange factor maps to the highly unstable
chromosomal region 1p36.2–1p36.3. Oncogene 20, 7307-7317.

De Vries, L., Lou, X., Zhao, G., Zheng, B. and Farquhar, M. G. (1998). GIPC, a
PDZ domain containing protein, interacts specifically with the C terminus of RGS-
GAIP. Proc. Natl. Acad. Sci. USA 95, 12340-12345.

Fantin,A.,Schwarz,Q.,Davidson,K.,Normando,E.M.,Denti, L.andRuhrberg,C.
(2011). The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but
promotes the spatial separation of retinal arteries and veins. Development 138,
4185-4191.

Favier, B., Alam, A., Barron, P., Bonnin, J., Laboudie, P., Fons, P., Mandron, M.,
Herault, J.-P., Neufeld, G., Savi, P. et al. (2006). Neuropilin-2 interacts with
VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and
migration. Blood 108, 1243-1250.

Ferrara, N. (2009). Vascular endothelial growth factor. Arterioscler. Thromb. Vasc.
Biol. 29, 789-791.

Fukazawa, H., Mizuno, S. and Uehara, Y. (1995). A microplate assay for
quantitation of anchorage-independent growth of transformed cells. Anal.
Biochem. 228, 83-90.

Gao, Y., Li, M., Chen, W. and Simons, M. (2000). Synectin, syndecan-4
cytoplasmic domain binding PDZ protein, inhibits cell migration. J. Cell Physiol.
184, 373-379.

Garnaas, M. K., Moodie, K. L., Liu, M.-L., Samant, G. V., Li, K., Marx, R.,
Baraban, J. M., Horowitz, A. and Ramchandran, R. (2008). Syx, a RhoA
guanine exchange factor, is essential for angiogenesis in Vivo. Circ. Res. 103,
710-716.

Geretti, E., Shimizu, A. and Klagsbrun, M. (2008). Neuropilin structure governs
VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis 11,
31-39.

Goel, H. L. and Mercurio, A. M. (2013). VEGF targets the tumour cell. Nat. Rev.
Cancer 13, 871-882.

Herbst, R. S. and Sandler, A. (2008). Bevacizumab and erlotinib: a promising new
approach to the treatment of advanced NSCLC. Oncologist 13, 1166-1176.

Hu, W., Bellone, C. J. and Baldassare, J. J. (1999). RhoA stimulates p27(Kip)
degradation through its regulation of cyclin E/CDK2 activity. J. Biol. Chem. 274,
3396-3401.

Katayama, H., Yamane, Y., Kitajima, Y., Yaoita, H., Touzyou, Y. and Sakai, S.
(1989). Malignant trichilemmal cyst secreting a cell adhesion factor. A case report
for lymphatic metastases. Hihuka-no Rinsho 31, 1721-1724.

Kawamura, H., Li, X., Goishi, K., van Meeteren, L. A., Jakobsson, L., Cebe-
Suarez, S., Shimizu, A., Edholm, D., Ballmer-Hofer, K., Kjellen, L. et al. (2008).
Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and
endothelial cell organization. Blood 112, 3638-3649.

Kizaka-Kondoh, S., Itasaka, S., Zeng, L., Tanaka, S., Zhao, T., Takahashi, Y.,
Shibuya, K., Hirota, K., Semenza, G. L. and Hiraoka, M. (2009). Selective
killing of hypoxia-inducible factor-1-active cells improves survival in a mouse
model of invasive and metastatic pancreatic cancer. Clin. Cancer Res. 15,
3433-3441.

Liu, M. and Horowitz, A. (2006). A PDZ-binding motif as a critical determinant of
Rho guanine exchange factor function and cell phenotype. Mol. Biol. Cell 17,
1880-1887.

Mamluk, R., Gechtman, Z., Kutcher, M. E., Gasiunas, N., Gallagher, J. and
Klagsbrun, M. (2002). Neuropilin-1 binds vascular endothelial growth factor 165,
placenta growth factor-2, and heparin via its b1b2 domain. J. Biol. Chem. 277,
24818-24825.

Mammoto, A., Huang, S., Moore, K., Oh, P. and Ingber, D. E. (2004). Role of
RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1
pathway and the G1/S transition. J. Biol. Chem. 279, 26323-26330.

Marx, R., Henderson, J., Wang, J. and Baraban, J. M. (2005). Tech: a RhoA GEF
selectively expressed in hippocampal and cortical neurons. J. Neurochem. 92,
850-858.

Mountzios, G., Pentheroudakis, G. and Carmeliet, P. (2014). Bevacizumab and
micrometastases: revisiting the preclinical and clinical rollercoaster. Pharmacol.
Ther. 141, 117-124.

Muders, M. H. (2011). Neuropilin and neuropilin associated molecules as new
molecular targets in pancreatic adenocarcinoma. Anticancer Agents Med. Chem.
11, 442-447.

Muders, M. H., Vohra, P. K., Dutta, S. K., Wang, E., Ikeda, Y., Wang, L.,
Udugamasooriya, D. G., Memic, A., Rupasinghe, C. N., Baretton, G. B. et al.
(2009). Targeting GIPC/synectin in pancreatic cancer inhibits tumor growth. Clin.
Cancer Res. 15, 4095-4103.

Nessling, M., Richter, K., Schwaenen, C., Roerig, P., Wrobel, G., Wessendorf,
S., Fritz, B., Bentz, M., Sinn, H. P., Radlwimmer, B. et al. (2005). Candidate

1075

RESEARCH ARTICLE Biology Open (2015) 4, 1063-1076 doi:10.1242/bio.010918

B
io
lo
g
y
O
p
en

http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.010918/-/DC1
http://bio.biologists.org/lookup/suppl/doi:10.1242/bio.010918/-/DC1
http://dx.doi.org/10.1182/blood-2011-01-328773
http://dx.doi.org/10.1182/blood-2011-01-328773
http://dx.doi.org/10.1182/blood-2011-01-328773
http://dx.doi.org/10.1158/0008-5472.CAN-11-4058
http://dx.doi.org/10.1158/0008-5472.CAN-11-4058
http://dx.doi.org/10.1158/0008-5472.CAN-11-4058
http://dx.doi.org/10.1371/journal.pone.0015581
http://dx.doi.org/10.1371/journal.pone.0015581
http://dx.doi.org/10.1371/journal.pone.0015581
http://dx.doi.org/10.1128/MCB.00249-10
http://dx.doi.org/10.1128/MCB.00249-10
http://dx.doi.org/10.1128/MCB.00249-10
http://dx.doi.org/10.1128/MCB.00249-10
http://dx.doi.org/10.1128/MCB.00249-10
http://dx.doi.org/10.1158/1078-0432.CCR-08-1520
http://dx.doi.org/10.1158/1078-0432.CCR-08-1520
http://dx.doi.org/10.1158/1078-0432.CCR-08-1520
http://dx.doi.org/10.1158/1078-0432.CCR-08-1520
http://dx.doi.org/10.1038/sj.onc.1204921
http://dx.doi.org/10.1038/sj.onc.1204921
http://dx.doi.org/10.1038/sj.onc.1204921
http://dx.doi.org/10.1073/pnas.95.21.12340
http://dx.doi.org/10.1073/pnas.95.21.12340
http://dx.doi.org/10.1073/pnas.95.21.12340
http://dx.doi.org/10.1242/dev.070037
http://dx.doi.org/10.1242/dev.070037
http://dx.doi.org/10.1242/dev.070037
http://dx.doi.org/10.1242/dev.070037
http://dx.doi.org/10.1182/blood-2005-11-4447
http://dx.doi.org/10.1182/blood-2005-11-4447
http://dx.doi.org/10.1182/blood-2005-11-4447
http://dx.doi.org/10.1182/blood-2005-11-4447
http://dx.doi.org/10.1161/ATVBAHA.108.179663
http://dx.doi.org/10.1161/ATVBAHA.108.179663
http://dx.doi.org/10.1006/abio.1995.1318
http://dx.doi.org/10.1006/abio.1995.1318
http://dx.doi.org/10.1006/abio.1995.1318
http://dx.doi.org/10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
http://dx.doi.org/10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
http://dx.doi.org/10.1002/1097-4652(200009)184:3<373::AID-JCP12>3.0.CO;2-I
http://dx.doi.org/10.1161/CIRCRESAHA.108.181388
http://dx.doi.org/10.1161/CIRCRESAHA.108.181388
http://dx.doi.org/10.1161/CIRCRESAHA.108.181388
http://dx.doi.org/10.1161/CIRCRESAHA.108.181388
http://dx.doi.org/10.1007/s10456-008-9097-1
http://dx.doi.org/10.1007/s10456-008-9097-1
http://dx.doi.org/10.1007/s10456-008-9097-1
http://dx.doi.org/10.1038/nrc3627
http://dx.doi.org/10.1038/nrc3627
http://dx.doi.org/10.1634/theoncologist.2008-0108
http://dx.doi.org/10.1634/theoncologist.2008-0108
http://dx.doi.org/10.1074/jbc.274.6.3396
http://dx.doi.org/10.1074/jbc.274.6.3396
http://dx.doi.org/10.1074/jbc.274.6.3396
http://dx.doi.org/10.1182/blood-2007-12-125856
http://dx.doi.org/10.1182/blood-2007-12-125856
http://dx.doi.org/10.1182/blood-2007-12-125856
http://dx.doi.org/10.1182/blood-2007-12-125856
http://dx.doi.org/10.1158/1078-0432.CCR-08-2267
http://dx.doi.org/10.1158/1078-0432.CCR-08-2267
http://dx.doi.org/10.1158/1078-0432.CCR-08-2267
http://dx.doi.org/10.1158/1078-0432.CCR-08-2267
http://dx.doi.org/10.1158/1078-0432.CCR-08-2267
http://dx.doi.org/10.1091/mbc.E06-01-0002
http://dx.doi.org/10.1091/mbc.E06-01-0002
http://dx.doi.org/10.1091/mbc.E06-01-0002
http://dx.doi.org/10.1074/jbc.M200730200
http://dx.doi.org/10.1074/jbc.M200730200
http://dx.doi.org/10.1074/jbc.M200730200
http://dx.doi.org/10.1074/jbc.M200730200
http://dx.doi.org/10.1074/jbc.M402725200
http://dx.doi.org/10.1074/jbc.M402725200
http://dx.doi.org/10.1074/jbc.M402725200
http://dx.doi.org/10.1111/j.1471-4159.2004.02930.x
http://dx.doi.org/10.1111/j.1471-4159.2004.02930.x
http://dx.doi.org/10.1111/j.1471-4159.2004.02930.x
http://dx.doi.org/10.1016/j.pharmthera.2013.09.003
http://dx.doi.org/10.1016/j.pharmthera.2013.09.003
http://dx.doi.org/10.1016/j.pharmthera.2013.09.003
http://dx.doi.org/10.2174/187152011795677481
http://dx.doi.org/10.2174/187152011795677481
http://dx.doi.org/10.2174/187152011795677481
http://dx.doi.org/10.1158/1078-0432.CCR-08-2837
http://dx.doi.org/10.1158/1078-0432.CCR-08-2837
http://dx.doi.org/10.1158/1078-0432.CCR-08-2837
http://dx.doi.org/10.1158/1078-0432.CCR-08-2837


genes in breast cancer revealed by microarray-based comparative genomic
hybridization of archived tissue. Cancer Res. 65, 439-447.

Owonikoko, T. K. andKhuri, F. R. (2013). Targeting the PI3K/AKT/mTOR pathway:
biomarkers of success and tribulation. Am. Soc. Clin. Oncol. Educ. Book 2013,
395-401.

Parker, M. W., Xu, P., Li, X. and Vander Kooi, C. W. (2012). Structural basis for
selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1.
J. Biol. Chem. 287, 11082-11089.

Potente, M., Gerhardt, H. and Carmeliet, P. (2011). Basic and therapeutic aspects
of angiogenesis. Cell 146, 873-887.

Santarpia, L., Lippman, S. M. and El-Naggar, A. K. (2012). Targeting the MAPK-
RAS-RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16,
103-119.

Shimizu, A., Mammoto, A., Italiano, J. E., Jr, Pravda, E., Dudley, A. C., Ingber,
D. E. and Klagsbrun, M. (2008). ABL2/ARG tyrosine kinase mediates SEMA3F-
induced RhoA inactivation and cytoskeleton collapse in human glioma cells.
J. Biol. Chem. 283, 27230-27238.

Snuderl, M., Batista, A., Kirkpatrick, N.D., Ruiz deAlmodovar,C., Riedemann, L.,
Walsh, E. C., Anolik, R., Huang, Y., Martin, J. D., Kamoun, W. et al. (2013).
Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of
medulloblastoma. Cell 152, 1065-1076.

Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. and Klagsbrun, M. (1998).
Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific
receptor for vascular endothelial growth factor. Cell 92, 735-745.

Van Cutsem, E., de Haas, S., Kang, Y.-K., Ohtsu, A., Tebbutt, N. C., Ming Xu, J.,
Peng Yong, W., Langer, B., Delmar, P., Scherer, S. J. et al. (2012).
Bevacizumab in combination with chemotherapy as first-line therapy in
advanced gastric cancer: a biomarker evaluation from the AVAGAST
randomized phase III trial. J. Clin. Oncol. 30, 2119-2127.

Vega, F. M. and Ridley, A. J. (2008). Rho GTPases in cancer cell biology. FEBS
Lett. 582, 2093-2101.

Wang, L., Mukhopadhyay, D. and Xu, X. (2006). C terminus of RGS-GAIP-
interacting protein conveys neuropilin-1-mediated signaling during angiogenesis.
FASEB J. 20, 1513-1515.

Wang, L., Lau, J. S., Patra, C. R., Cao, Y., Bhattacharya, S., Dutta, S., Nandy, D.,
Wang, E., Rupasinghe, C. N., Vohra, P. et al. (2010). RGS-GAIP-
interacting protein controls breast cancer progression. Mol. Cancer Res. 8,
1591-1600.

Wu, D., Haruta, A. and Wei, Q. (2010). GIPC1 interacts with MyoGEF and
promotes MDA-MB-231 breast cancer cell invasion. J. Biol. Chem. 285,
28643-28650.

1076

RESEARCH ARTICLE Biology Open (2015) 4, 1063-1076 doi:10.1242/bio.010918

B
io
lo
g
y
O
p
en

http://dx.doi.org/10.1200/edbook_am.2013.33.e395
http://dx.doi.org/10.1200/edbook_am.2013.33.e395
http://dx.doi.org/10.1200/edbook_am.2013.33.e395
http://dx.doi.org/10.1074/jbc.m111.331140
http://dx.doi.org/10.1074/jbc.m111.331140
http://dx.doi.org/10.1074/jbc.m111.331140
http://dx.doi.org/10.1016/j.cell.2011.08.039
http://dx.doi.org/10.1016/j.cell.2011.08.039
http://dx.doi.org/10.1517/14728222.2011.645805
http://dx.doi.org/10.1517/14728222.2011.645805
http://dx.doi.org/10.1517/14728222.2011.645805
http://dx.doi.org/10.1074/jbc.M804520200
http://dx.doi.org/10.1074/jbc.M804520200
http://dx.doi.org/10.1074/jbc.M804520200
http://dx.doi.org/10.1074/jbc.M804520200
http://dx.doi.org/10.1016/j.cell.2013.01.036
http://dx.doi.org/10.1016/j.cell.2013.01.036
http://dx.doi.org/10.1016/j.cell.2013.01.036
http://dx.doi.org/10.1016/j.cell.2013.01.036
http://dx.doi.org/10.1016/S0092-8674(00)81402-6
http://dx.doi.org/10.1016/S0092-8674(00)81402-6
http://dx.doi.org/10.1016/S0092-8674(00)81402-6
http://dx.doi.org/10.1200/JCO.2011.39.9824
http://dx.doi.org/10.1200/JCO.2011.39.9824
http://dx.doi.org/10.1200/JCO.2011.39.9824
http://dx.doi.org/10.1200/JCO.2011.39.9824
http://dx.doi.org/10.1200/JCO.2011.39.9824
http://dx.doi.org/10.1016/j.febslet.2008.04.039
http://dx.doi.org/10.1016/j.febslet.2008.04.039
http://dx.doi.org/10.1096/fj.05-5504fje
http://dx.doi.org/10.1096/fj.05-5504fje
http://dx.doi.org/10.1096/fj.05-5504fje
http://dx.doi.org/10.1158/1541-7786.MCR-10-0209
http://dx.doi.org/10.1158/1541-7786.MCR-10-0209
http://dx.doi.org/10.1158/1541-7786.MCR-10-0209
http://dx.doi.org/10.1158/1541-7786.MCR-10-0209
http://dx.doi.org/10.1074/jbc.M110.107649
http://dx.doi.org/10.1074/jbc.M110.107649
http://dx.doi.org/10.1074/jbc.M110.107649


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.32000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.32000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    34.69606
    34.27087
    34.69606
    34.27087
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    8.50394
    8.50394
    8.50394
    8.50394
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


