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Abstract: The role of the microbiome in health and disease has gained considerable attention and
shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic
syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful
signals, understanding the functional network between the gut microbes and the host provides a
comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances
microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites
are translocated from the gut to the liver and pancreas. Considering inflammation and the gut
microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin
resistance may have common roots with IBD. In this review, we focus on the overlap between IBD
and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a
common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.

Keywords: immunometabolism; gut microbiome; microbiomics; insulin resistance; metabolism;
inflammatory bowel disease

1. Introduction

Metabolic syndrome (MetS), or its consequence type 2 diabetes mellitus (T2DM), has been believed
to be the direct result of a lack of exercise or caloric excess culminating in excess adiposity. While this
remains true, we are observing an increased emphasis on the pervasive role of inflammation in
multiple chronic health conditions, including inflammatory bowel disease (IBD) and nonalcoholic fatty
liver disease (NAFLD), showing similar metabolic adaptations and insults connected to obesity and
T2DM. This forces us to consider a common etiology of multiple chronic diseases while eliminating
organ-specific problems as the root cause. For the sake of this review, we will consider the gut
microbiome and its derived metabolites as a major common underlying driver of IBD and MetS.
The purpose is to highlight the biochemical cross-talk between the gut microbiome and gut-derived
metabolites associated with chronic inflammation to metabolic defects leading to liver and pancreas
pathologies like NAFLD and diabetes. In particular, we focus on the current knowledge unraveling
the mechanistic interaction between gut-derived metabolites in IBD and the collateral risk factors
on promoting immuno-metabolic disorders like MetS. In this review, we propose that gut-derived
metabolites shaped by the microbial ecosystem residing in the gut serve as a potential common origin
connecting IBD, MetS and associated diseases like T2DM (Figure 1).
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propose that gut-derived metabolites shaped by the microbial ecosystem residing in the gut serve as 
a potential common origin connecting IBD, MetS and associated diseases like T2DM (Figure 1). 

 
Figure 1. The host–microbial metabolites interplay in health and chronic inflammatory disorders. Gut 
microbes produce metabolites that act either at local tissue or remotely in the liver and pancreas (A). 
In inflammatory bowel disease (IBD), damage to intestinal permeability is associated with changes in 
microbiota composition (dysbiosis). Consequently, this disrupts the homeostasis of microbial-derived 
metabolites, leading to increased inflammatory potential locally and systematically (B). Ultimately, 
protective metabolites (SCFA, SBA and indoles) are decreased, whereas pre-disorder metabolites such 
as BCAA are increased. This further disrupts the energy metabolism by impairing the insulin 
signaling pathway and accumulating fat droplets in the liver, as a result of developing hepatic 
(NAFLD) and pancreatic disorders (AP, T1D and T2D). The production of two energy regulating 
hormones, GLP-1 and PYY, is triggered by the secretion of SCFA (butyrate). With decreased SCFA in 
disease state, production of GLP-1 and PYY is also limited, therefore worsening the disrupted energy 
metabolism. AP: acute pancreatitis; BA: bile acid; BCAA: branched-chain amino acid; GLP-1: 
glucagon-like peptide 1; NAFLD: non-alcoholic fatty liver disease; ROS: reactive oxygen species; PYY: 
peptide YY; SBA: secondary bile acid; SCFA: short-chain fatty acids; T1D: type 1 diabetes; T2D: type 
2 diabetes. 

2. Commonalities between Inflammatory Bowel Disease and Metabolic Syndrome 

Several parallels exist between MetS and IBD, both recognized as chronic life-long diseases. For 
two different clinically presented diseases to be related, one must consider its commonalities and co-
existence. MetS refers to the cluster of risk factors such as obesity, insulin resistance, dyslipidemia 
and hypertension, leading to increased risk of detrimental metabolic diseases such as T2DM and 
cardiovascular disease [1]. Westernized countries like the United States report more than 30% MetS 
prevalence, and globally at least 25% of the population has MetS [2]. Another “Westernized” disease, 
IBD, is a group of disorders including ulcerative colitis (UC) and Crohn’s disease (CD), characterized 
by chronic and relapsing inflammation in the gastrointestinal tract [3,4]. North America and Europe 
have the highest IBD incidence worldwide, with a prevalence of 0.5%, extrapolated to 1.5 million 
diagnosed IBD patients in North America and 2 million in Europe [5,6]. Despite IBD not being at the 
top of the list of global killers, unlike MetS and associated diseases [7], the number of deaths and 
burden may have a comparable impact in the future as the prevalence continues to rise (85.1% 
increase from 1990 to 2017) [8]. Although linked to genetic susceptibility, heritability of disease 
remains weak for MetS and IBD (<25% for MetS, <15% for UC and <50% for CD) [1,6]. Therefore, it 
has been implied that an additional ‘environmental trigger’ is a must, but this remains undefined. As 
an example, a cohort study in Canada looked at the incidence of IBD between immigrants and the 
domestic population. Offspring of immigrants from Asia, of which typically have lower incidence of 
IBD, showed significantly increased IBD cases, compared to that of children of non-immigrants [9]. 
However, immigrants who came to Canada at a later age did not have an increased incidence of IBD. 
Although the exact mechanism remains unknown, environmental change at an earlier age is most 

Figure 1. The host–microbial metabolites interplay in health and chronic inflammatory disorders.
Gut microbes produce metabolites that act either at local tissue or remotely in the liver and pancreas (A).
In inflammatory bowel disease (IBD), damage to intestinal permeability is associated with changes in
microbiota composition (dysbiosis). Consequently, this disrupts the homeostasis of microbial-derived
metabolites, leading to increased inflammatory potential locally and systematically (B). Ultimately,
protective metabolites (SCFA, SBA and indoles) are decreased, whereas pre-disorder metabolites such
as BCAA are increased. This further disrupts the energy metabolism by impairing the insulin signaling
pathway and accumulating fat droplets in the liver, as a result of developing hepatic (NAFLD) and
pancreatic disorders (AP, T1D and T2D). The production of two energy regulating hormones, GLP-1 and
PYY, is triggered by the secretion of SCFA (butyrate). With decreased SCFA in disease state, production
of GLP-1 and PYY is also limited, therefore worsening the disrupted energy metabolism. AP: acute
pancreatitis; BA: bile acid; BCAA: branched-chain amino acid; GLP-1: glucagon-like peptide 1; NAFLD:
non-alcoholic fatty liver disease; ROS: reactive oxygen species; PYY: peptide YY; SBA: secondary bile
acid; SCFA: short-chain fatty acids; T1D: type 1 diabetes; T2D: type 2 diabetes.

2. Commonalities between Inflammatory Bowel Disease and Metabolic Syndrome

Several parallels exist between MetS and IBD, both recognized as chronic life-long diseases.
For two different clinically presented diseases to be related, one must consider its commonalities and
co-existence. MetS refers to the cluster of risk factors such as obesity, insulin resistance, dyslipidemia
and hypertension, leading to increased risk of detrimental metabolic diseases such as T2DM and
cardiovascular disease [1]. Westernized countries like the United States report more than 30% MetS
prevalence, and globally at least 25% of the population has MetS [2]. Another “Westernized” disease,
IBD, is a group of disorders including ulcerative colitis (UC) and Crohn’s disease (CD), characterized
by chronic and relapsing inflammation in the gastrointestinal tract [3,4]. North America and Europe
have the highest IBD incidence worldwide, with a prevalence of 0.5%, extrapolated to 1.5 million
diagnosed IBD patients in North America and 2 million in Europe [5,6]. Despite IBD not being at the
top of the list of global killers, unlike MetS and associated diseases [7], the number of deaths and
burden may have a comparable impact in the future as the prevalence continues to rise (85.1% increase
from 1990 to 2017) [8]. Although linked to genetic susceptibility, heritability of disease remains weak
for MetS and IBD (<25% for MetS, <15% for UC and <50% for CD) [1,6]. Therefore, it has been
implied that an additional ‘environmental trigger’ is a must, but this remains undefined. As an
example, a cohort study in Canada looked at the incidence of IBD between immigrants and the
domestic population. Offspring of immigrants from Asia, of which typically have lower incidence of
IBD, showed significantly increased IBD cases, compared to that of children of non-immigrants [9].
However, immigrants who came to Canada at a later age did not have an increased incidence of IBD.
Although the exact mechanism remains unknown, environmental change at an earlier age is most
likely considered a major player in the origin of IBD. Environmental factors are well known to be a
group of driving factors in increased incidence and risk of MetS [2].
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One of the most studied shared mechanisms of chronic diseases has been inflammation. Jurjus et al.
(2016) extensively reviewed the connection between the inflammatory loops in both IBD and T2DM [10].
The authors highlighted the preponderant role of macrophages and their pro-inflammatory mediators
in causing IBD. Similar mechanisms have also been proposed for T2DM. Common mechanisms include
increased production of TNF-α, IL-6 and reactive oxygen species (ROS) [10,11]. Similar to T2DM,
this trend is also associated with the risk of obesity. Alteration of leptin [12], obesity-correlated
hormones, dietary intervention [13] and bariatric surgery [14] all attenuate symptomatic obesity
through lowering these pro-inflammatory cytokines in circulation. Blocking inflammation via specific
agents show commonalities in their effects on both MetS and IBD, at least in some studies. Anti-TNF-α
agents such as infliximab have been approved for adults and children with CD in Europe [15,16].
Infliximab therapy showed an improvement in insulin sensitivity in patients with rheumatoid arthritis,
a chronic inflammatory disorder [17,18]. However, while infliximab reduced disease activity in CD
patients, insulin sensitivity was not altered [19,20]. Given the various pro-inflammatory molecules
involved in impairment of insulin signaling as well as CD, it is highly unlikely that inhibition of one
single pro-inflammatory molecule could improve the insulin-signaling cascade and highlights the
inability of current therapy in muting the inflammation cascade in its entirety. Overall, it is clear that
pro-inflammatory factors lead a significant role in the development of these diseases. The question
remains as to what is the origin of this dysregulated chronic inflammation?

Evidence for a common origin is stronger when IBD and MetS are considered as co-morbid
conditions [15]. Although in the past IBD patients were considered lean or underweight due to
malabsorption of nutrients, more studies are reporting a considerable number of IBD patients being
obese and overweight following treatment [21–23]. A nationwide population-based cohort in Denmark
found that out of the 65,180 patients diagnosed with IBD, 50% showed an increase in risk of T2DM
compared with the general population [24]. Another nationwide population-based study in South
Korea showed a similar result, where CD patients from 8,070 IBD patients were shown to have a
higher risk of developing T2DM. Interestingly, this observation was primarily driven by younger
individuals with IBD [25]. Similarly, a small study from a German cohort demonstrated higher insulin
levels in CD patients when compared to controls (p < 0.01) [26]. Moreover, up to 32% of IBD patients
show NAFLD [27] compared to 24% in the normal population [18]. It has been observed there is
an increased risk of developing atherosclerosis and later progression to cardiovascular disease in
IBD [16,20,28,29]. Thus, recognition of NAFLD and atherosclerosis, which are well-recognized aspects
of the MetS spectrum in IBD patients, indicates a strong co-morbid relationship between IBD and MetS.
Therefore, it appears that such pro-inflammatory factors lead a significant role in the development of
diseases, but the question remains as to what the origin of these diseases is.

3. Dysbiosis as a Common Feature of IBD and MetS

In line with the clinical observations that IBD and metabolic diseases may be comorbid,
one mechanism by which these diseases might be connected, and as a common origin, is through the gut
microbiome, or rather an alteration of the normal healthy microbiome referred to as dysbiosis. In the last
decade, gut microbial dysbiosis has emerged as one of the novel mechanisms contributing to diabetes
via increased intestinal permeability leading to systemic chronic inflammation. The compromised
gut barrier function allows close contact of gut bacteria with gut epithelium and ultimately enhances
infiltration of immune cells, expression of pro-inflammatory cytokines [30] and oxidative stress [31],
leading to free lipopolysaccharide (LPS) entering into circulation causing endotoxemia [32] or high
levels of endotoxins such as LPS in blood plasma. Low subclinical inflammation can lead to the onset
and progression to T2DM by developing insulin resistance.

Fecal transplantation can either exacerbate or ameliorate IBD and metabolic diseases. Fecal
transplantation experiments in mice can influence colitis susceptibility patterns [33,34]. Some models
of colitis entirely depend on the presence of gut microbiota including IL-10−/− model of colitis [35,36].
Similarly, obesity is a phenotype controlled by the mere presence or absence of obese-associated gut
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microbiota revealed in class fecal transplant experiments in germ-free mice using both human and
rodent gut microbiota [37]. Furthermore, glucose tolerance [33] and insulin resistance [38] are similarly
controlled by the mere presence of the gut microbiome, evident by the switch in phenotypes via fecal
transplantation experiments. These experiments suggest the gut microbiome is a causal factor in IBD,
obesity and T2DM, although it is not clear if individual taxa or overlapping functional metabolites are
the major players in disease phenotypes.

The taxonomical changes of the gut microbiota and the development of metabolic diseases have
been reviewed by many [34,39,40] and will only be briefly touched upon here. The pathological
change in gut environment in both IBD and MetS affects the symbiosis between the gut and microbiota,
supporting a switch to species able to thrive in the highly inflamed and oxidized gut with a suppression
in more strictly anaerobic microbes. What is curious is that both dysbiotic states described for IBD
and MetS and their associated outcomes on species distribution are similar. Decreased richness is
a common feature between IBD, obesity, insulin resistance, T2DM and NAFLD; while an increase
in Proteobacteria and decrease in Firmicutes is a common trait for IBD [41], insulin resistance [42],
T2DM [43], NAFLD [44] and atherosclerosis [45]. Specific examples overlapping between IBD and
metabolic disorders include the decreased presence of particular Clostridium spp, Faecalibacterium and
Roseburia, and increased representation by Enterobacteriaceace, Blautia and Rumminococcus [3,41,43,45–50].
Indeed, certain microbes like Clostridium spp. exert anti-inflammatory functions, promoting regulatory
T cells through TGF-β release [32], an overlapping pathway in both IBD and MetS. Although this
area is still under active research, increase of Escherichia coli and Fusobecaterium nucleatum species,
and variations in Akkermensia muciniphila, are good examples of commonalities in IBD and MetS
dysbiosis. In summary, gut microbial dysbiosis is similarly associated with the chronic immune nature
of IBD and MetS.

High-Fat Diets and Dysbiosis

The most pervasive environmental influence that could provide a ‘trigger’ to susceptible genetic
patterns is the food we eat. Diet, known to cause dysbiosis, is one of the environmental triggers for
the onset of IBD, MetS and associated diseases. Several studies have shown that while dietary fiber
promotes the growth of bacteria that have the ability to decrease or resolve inflammation [51,52],
high-fat diets tend to promote low-grade inflammation that alters gut barrier function [53]. It is well
established that a high-fat diet exacerbates MetS or diabetes. High levels of unsaturated fatty acids can
promote production of oxidized lipid metabolites that trigger systemic inflammation [54]. High-fat
diets cause intestinal inflammation as well obesity, adiposity and insulin resistance [55]. Considerable
evidence suggests that high-fat diets contribute to endotoxemia [56,57]. This explains the similar
increase of LPS in blood observed in patients with diabetes and obesity [55]. A high-fat diet induced
colonic inflammation and increased nitric oxide synthase (iNOS) expression during LPS-induced
inflammation via toll like receptor (TLR)-4 signaling [10,11,58,59]. A similar increase in TLR-4 was
reported for intestinal and colonic samples of UC and CD patients [60]. Elevated TNF-α, IL-6 and iNOS
are important molecular links between inflammation and insulin sensitivity. TNF-α inhibits insulin
receptor substrate-1 (IRS-1), one of the first nodes of the insulin signaling pathway, by phosphorylating
it at serine residues, thus inhibiting signaling downstream of insulin receptor [61–63]. IL-6 decreases
tyrosine phosphorylation of IRS-1, and hepatic cells when treated with IL-6 experienced complete
loss of Akt activation [64]. Furthermore, iNOS promotes deactivation of downstream nodes of insulin
signaling pathways including Akt, IRS-1 and IR, inducing insulin resistance [17,18,65,66]. Inhibitors of
iNOS improve hepatic insulin resistance in genetically obese mice, demonstrating the detrimental role
of iNOS on impairing insulin signaling [67]. A study revealing high iNOS expression in pancreatic
islets from diabetic individuals supported this proposition [68], which is also observed in active IBD
patients [69].

Not all high-fat diets are similar in their ability to cause gut dysfunction, and diets rich in n-6 and
polyunsaturated fats drive compromised gut barrier function resulting in exacerbated colitis [70,71].
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In previous studies, we have shown that gut health influences the immune-metabolic system, and that
the gut microbiome is adversely affected with corn oil diets rich in omega-6 polyunsaturated fatty
acids [71–74]. In a recent study, we demonstrated that consumption of corn oil led to metabolic
dysfunction and insulin resistance in mice compared to the beneficial olive oil [75]. In parallel,
we have shown that this exact diet also promotes intestinal barrier dysfunction and systemic chronic
inflammation associated with colitis [73]. We have demonstrated that feeding a corn oil diet leads
to a pro-oxidative state, where pro-inflammatory microbes flourish, causing barrier dysfunction,
oxidative stress, inflammation and insulin resistance [71,74,76,77]. Overall, high-fat diets rich in
omega-6 polyunsaturated fatty acids may be an environmental factor that triggers dysbiosis common
to IBD and MetS.

4. Consequences of Dysbiosis: Microbiome vs. Metabolome

While current evidence suggests that the gut microbiome does dictate the origin and development
of IBD, MetS and related metabolic diseases, the question remains to as to how. There are two plausible
broad mechanisms as to how the gut microbiome can affect systemic events. Firstly, the gut being
the gateway to the entry of food as well as airborne and water borne microbes and other substances
serves as the ‘gatekeeper’, alarming the system towards either a placid or an agitated response. This,
in other words, is the immune-mediated pathway that has been well studied especially in the case
of colitis and T2DM. In this scenario, the gut microbes themselves or toxins enter through a ‘leaky’
gut into the lymphatic or the blood evoking proximal (from the gut wall) or distal (various organs)
responses via cytokines and chemokines. In support of this, several models of colitis do show a
preponderance to metabolic defects (summarized in Table 1). Indeed, chemical (DSS and TNBS) [78,79]
and genetically susceptible (IL-10−/−, Mdr1a−/− and Muc2−/−) [80–82] rodent models of IBD display
gut barrier dysfunction in which an increase in pro-inflammatory cytokines and oxidative stress are
part of the phenotype. In fact, the disturbances in IL-1β IL-6, TNF-α or ROS are described in the
colon as well as in the liver and pancreas. For example, in the chemical DSS model, increase of those
pro-inflammatory cytokines and oxidative stress evokes colon signals that reflect in metabolic defects,
including decreased plasma insulin and ROS in the pancreas [83], and higher TLR4, TLR9, MCP-1 and
TNF-α expression in the liver, resulting in liver fibrosis [78,84]. Further, in a model of dyslipidemia
with higher circulating cholesterol, ApoE−/− mice given DSS not only resulted in the expected barrier
dysfunction but also glucose tolerance impairment, liver fibrosis and exacerbated aortic plaques [85].
For the TNBS model, intestinal inflammation leads to endotoxemia, liver inflammation and increased
hepatic triglycerides and cholesterol, progressing to liver damage [79,86,87]. This outcome worsened
when rodents were exposed to a ‘second hit’ from high-fat diets augmenting fat deposition in the
colon and liver. This pathologic cross-talk includes adipose tissue, which shows dramatic increases
in inflammatory markers IL-1β, IL-6, MCP-1 and TNF-α, as well as decreased anti-inflammatory
adiponectin [88]. Spontaneous colitis models display low-grade inflammation and low glucose levels
(Muc2−/−) [82] but increased insulin levels (IL-10−/−) [80]. During high-fat diet exposure in the Mdr1a−/−

model of colitis, disease worsens in the colon and liver [81], equivalent to the proximal and distal
response proposed earlier.

In the second scenario, the gut microbiome could act as a ‘facilitator’ enhancing and protecting
against metabolic dysfunction in the liver and pancreas or instead expediting pathology. The surface
area of the human gut is approximately 300 m2 and is a hotbed for production of diverse metabolites
from various dietary substrates like proteins and digestible and indigestible carbohydrates like fibers.
The nature of the gut is emphasized by the fact that each area of the gut is specialized with specific
enterocytes with varying metabolic functions. As an example, while the small intestine is primarily
involved in the digestion of food and absorption of nutrients, the large intestine is primarily involved
in water absorption and elimination of waste. As diverse enzymatic reactions need specific pH
ranges, the gut also demonstrates variations across its length, which might indicate specific metabolite
production across these areas. Duodenal pH is raised to around 6, from 2 in the stomach, with the
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help of bicarbonate buffers from the pancreas. The pH keeps rising and eventually reaches 7.4 in the
terminal ileum. Subsequently, the pH drops to 5.7 in the cecum and ends at 6.7 in the rectum [89].
While the host-driven pH ranges might dictate a niche of various microbes, differentiating species
among a certain taxa can be challenging due to the complexity of the intestinal environment [90].
Acidic environments (pH~5.5) promote fiber fermentation and butyrate, a short-chain fatty acid (SCFA)
producing species. In addition, a low pH environment inhibits the activity and secretion of proteolytic
enzymes, therefore slowing down the protein/amino acid metabolism in the gut [91]. Intraluminal pH
in patients with IBD (UC and CD) is higher than that in healthy individuals, which inhibits colonization
of butyrate-producing bacteria and slows down fermentation of fibers [92,93]. This, in turn, promotes
a widely different microbial niche that may lead to chronic diseases. In this regard, although UC
and CD have distinct inflammatory responses and metabolic pathways, they both have increased
Firmicutes (as described for T2DM) [41]. However, Bacteroidetes have inconsistent performance in UC
and CD [94]. Clinical studies indicate that the ratio of Firmicutes to Bacteroidetes can be used as the
clinical marker of IBD incidence. Considering the shift of the intestinal environment results in bacterial
alteration, the output of metabolites may, therefore, be affected as well.

Table 1. Comparison of metabolic disturbances in chemical and genetic derived colitis rodent models.

Model Colitis Model Evidence for m 0.75
Metabolic Defects

Trigger for Exaggerated
Metabolic Defects

DSS

DSS exposure via drinking
water; low doses (e.g., <3%)
lead to mild symptoms and
high doses (>3%) to acute
disease. The ulceration is

superficial, almost restricted
to the colon [95].

DSS per se does not
cause liver damage [96]
but alters the systemic

metabolism.
LDL-C, ketone bodies

and tryptophan are
elevated, while glucose

and amino acids are
reduced in DSS-induced
colitis model [83,96–98].

HFD (60% cocoa butter or D12492
diet) [78,84], choline deficient diet

[99] or ApoE−/− [85] model
worsens pre-existing colitis scores,
and further induced endotoxemia,
glucose impairment, liver fibrosis

and steatosis.

TNBS

TNBS causes transmural
colitis, and it needs ethanol

as vehicle for enema
administrations, which also
aid in disrupting intestinal

barrier.

Cause liver damage
[79,100,101],

accompanied by
intestinal inflammation

and endotoxemia.

HFD (fat from lard) further
worsens colitis scores [87,88],

endotoxemia [86] and fat
deposition in liver and colon [87].

IL-10−/−

Spontaneous development
of chronic inflammation due
to exacerbated Th1 and Th17

response in the absence of
the anti-inflammatory IL-10

cytokine [80].

Decrease serum glucose
[80] but increases in
urine [102]. Increase
serum VLDL [103].

APN−/−, IL10−/− double knockout
mice do not exaggerate the IL-10

deficiency induced colitis [80].

Mdr1a−/−

Spontaneous development
of bowel inflammation due

to absence of P-glycoprotein,
associated [104].

Mdr1a−/− mice are
similar to their congenic
background strain FVB
[104] which are resistant
to diet induced obesity.

HFD (30.5% fat from lard)
exposure only worsen IBD disease

score, without affecting liver or
glycemic response [81].

Muc2−/−
Defective mucin secretion

leads to spontaneous
development of colitis [82].

Muc2−/− mice show less
body weight gain and

impaired glucose
homeostasis [82].

HFD (59% fat, mostly from lard)
does not worsen glucose

intolerance but induces the fat
deposition in the liver [82].

APN: adiponectin; DSS: dextran sulfate sodium; ApoE: apolipoprotein E; HFD: high-fat diet; LDL-C: low-density
lipoprotein cholesterol; Mdr: multidrug resistance protein; Muc2: mucin2; TNBS: 2,4,6-trinitrobenzene sulfonic acid.



Nutrients 2020, 12, 1434 7 of 30

Despite informative metagenomic analysis, the science of correlating pseudo-pathways with the
actual metabolic signature is still in its infancy. In addition, differentiating between host and microbial
metabolites is challenging. As an example, there is no chemical difference in NADPH or butyrate
produced by microbes or the host cell, both of which need the molecule as a reducing equivalent.
Thus, as fundamental molecules of life are common, it is even more probable that multiple microbes
instead of a single microorganism drive specific metabolic signatures. To support this, a plethora of
studies that replicate disease phenotypes from humans into mice after receiving fecal microbiome
transplants from patients [34] have shown the need of the entire microbiome, including many taxa and
their metabolites, to drive the disease. As it is difficult to relate an entire disease phenotype to only one
microbe, studying a particular metabolite, albeit produced by multiple taxa, might be more suitable to
decipher the disease process.

Moving away from microbe-centric causality of chronic diseases to a metabolite-specific pathway
sheds light on the enigma of the biome, as metabolites produced by a single species, or multiple
microbes, might signal the harbinger of chronic diseases. There are several gut-derived metabolites
shared between IBD and MetS (Table 2). As examples, Gram-negative bacterial products such as LPS,
long associated with sepsis, are now being studied in NAFLD [105]. Novel dietary choline-derived
microbial metabolites like trimethylamine N-oxide (TMAO) are being investigated as a pathological
trigger in cardiovascular disease, a direct consequence of MetS [58]. As analysis and discovery of
metabolites becomes more sophisticated with greater resolving power and clarity through advances
in analytical instrumentations like mass spectrometry, inter-connectivity of diverse chronic diseases
is becoming clearer. Such discoveries are also being facilitated by the use of germ-free mice vs.
conventionally raised mice. Now we can discern how the microbiota influences host-circulating
metabolites [106], feces metabolites [107] and certainly gut metabolites [108]. These studies help
us understand which metabolites are host derived and which are microbial derived. For example,
the amino acids tryptophan, phenylalanine and tyrosine are present at higher concentrations in the
serum of germ-free mice, whilst their metabolites serotonin and phenylacetylglycine are increased in
conventional mice [106].

5. Gut-derived Metabolites: Assessing biochemical commonality between IBD and MetS

Much research needs to be done to understand the biochemical parallels between IBD and MetS
metabolic signatures in any depth. The disturbed environmental niche in the colon also marks a higher
incidence of IBD and obesity [42]. Obesity correlates to many metabolic disorders, but typically marks
the imbalanced energy metabolism, especially lipid and glucose. In this section, we will focus on known
metabolites that shift in their abundance, which could provide a starting point in further understanding
the ‘gatekeeper’ or ‘facilitator’ role of dysbiosis in these diseases (Table 2). The connection between
the dynamic metabolites secreted by the IBD gut microbiota and the development of MetS can be
addressed by studying their impact on extra-intestinal tissues. Comprehensive reviews of the liver–gut
axis [109] are some examples of the extensive literature explaining the most recent connections found
between host physiology and microbiota.
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Table 2. Clinical and rodent studies assessing the role of gut-derived metabolites commonly involved in the pathogenesis of inflammatory bowel disease and
co-morbid metabolic defects.

Metabolites Clinical Importance Roles in IBD Roles in Metabolic Disorders

Human Rodent Human Rodent

BCAA
(Leucine, Isoleucine,

and Valine)

Maintain the protein
synthesis and muscle

growth [110].Ensure the
intestinal integrity and
immune response [111].

Increase the development and
severity of pre-existing colitis

[112].
Increase (high dose, >2.57%)
intestinal immune response

[112,113] by activating mTOR
and NF-kB [114].

Worsen DSS-induced colitis
following the diet containing
animal-based protein [115].
May increase the severity of

chemical-induced colitis
through excessive activated
colonic macrophages [116].
Promote systemic oxidative
stress and the activation of
inflammasome, leading to

extensive intestinal
inflammation [117].

Remodel lipid metabolism
(increase LDL-C and

triglycerides).
Increase the risk and
development of CVD

[118,119], obesity [120–122],
insulin resistance [122,123]

and hepatic diseases
[121,124].

Induce body weight gain,
hyperglycemia, insulin

resistance and accumulation of
hepatic lipid droplets [125].
Impair insulin sensitivity,

cardiac function (EF%) in mice
received transverse aortic

constriction [126].

Tryptophan
metabolites

Provide indirect
assistance on maintaining

intestinal permeability
and epithelial integrity

[127].

Decrease in serum of patients
with UC [128,129] and CD

[128,130].
Stronger potential of

tryptophan degradation in
active IBD cases [128].

Attenuate severity of
DSS-induced colitis by limiting
the secretion of inflammatory

markers [131,132].
Serve as a treatment (IPA) of

active IBD remission in mice by
enhancing anti-inflammatory

responses [133].
Provide intestinal antifungal
resistance by producing IL-22

[134].

Negatively correlates to
insulin deficiency and glucose
imbalance in diabetes patients

[135].
Reduce serum tryptophan

[136] and IPA [137] in patients
with obesity and

T2D.Improve overweight
correlated inflammatory

response [134].

Reduced body weight gain
(IPA), improved glucose
metabolism and insulin
resistance in obese mice

[138,139].
Ameliorate active colitis cases
by enhancing T-cell dependent

immunity and upregulating
AhR [140].

Improve insulin sensitivity,
glucose homeostasis and

energy regulatory hormones
(e.g.,: leptin and GLP-1) [141].

Protect against intestinal
permeability and systemic

immunity [142].
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Table 2. Cont.

Metabolites Clinical Importance Roles in IBD Roles in Metabolic Disorders

Human Rodent Human Rodent

SCFA

Control systemic energy
metabolism and regulate

intestinal immune
response [143].

Prevent incidence and
development of IBD (butyrate

and propionate) [144,145].
Increase risk of IBD (acetate

and pyruvic) [146].
Enhance anti-inflammatory

potential (butyrate), therefore
improving the pre-existing

IBD [147].

Improve IBD by suppressing
T-cell mediated inflammatory

responses (butyrate) [148].
Protect against colitis

susceptibility and improve
intestinal permeability in

DSS-induced colitis model
[149].

Provide protection on
developing insulin resistance,
obesity and diabetes (butyrate

and propionate) [150].
Improve severity of obese,
insulin resistance, diabetes
and glucose homeostasis

(propionate) [151,152].
Negatively correlates with

hypercholesterolemia
(butyrate) [153].

Protect against high fat-feeding
induced liver steatosis and

insulin resistance in mice and
rats [154–159].

Bile acid

Maintain enterohepatic
circulation, systemic

energy homeostasis and
the balance of gut

bacterial community
[160].

Decreased bile-acid
transforming bacteria in IBD

patients [161,162].
Negatively correlate with CD

(SBA and conjugated bile
acids), but not UC [1,4,5,163].
SBA and conjugated bile acids
can be restored by applying
anti-TNF-α treatment [164].

Protect against epithelial
permeability and goblet cell loss
by activating FXR-α [165,166].

Improve anti-inflammatory
response by maintaining

RORγ+ regulatory T cells in
IBD mice [167].

Accumulate in patients
(mostly primary bile acid)

with liver dysfunction
(hepatic steatosis, lobular and

portal inflammation) [168]
obesity [169] and diabetes
[170], with interrupted bile

acid negative feedback loops
via FXR-α [143,160].

Improve hepatic glucose
metabolism and insulin

resistance by upregulating
FXR-α [164].

Improve insulin resistance [171]
and lipid metabolism [172] via
anti-obesity receptor in mice
model with metabolic stress.

TMA/TMAO
Classic risk factor on

inducing chronic diseases
[173].

Positively correlates with
active UC and CD cases [174].

Indicate disrupted gut bacterial
ecology by overexpressing
choline associated catabolic

enzymes [175].
Accelerate the progression of

IBD in colitis mice models
[175,176].

Indicate the risk, incidence
[177–179] and mortality rate

[180] of cardiovascular
diseases

Increase platelet
responsiveness [174].Increase

the incidence of insulin
resistance [181] and T2D

[178].

Increase aortic lesion, platelets
responsiveness [165,167], and

microbiota dependent
atherosclerosis [176] in mice
supplemented with TMAO.

Increase inflammatory
biomarkers (e.g., NF-kB) [59],

hyperglycemia [182].Induce the
formation of ox-LDL [165] and

NAFLD through disrupted
choline metabolism [183].
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5.1. Bile Acid

The liver is often the entry point of various oral substances systemically, including nutrients,
which is connected anatomically to the gut through the portal vein representing the enterohepatic
circulation. Bile acid metabolism has been widely studied for decades, with the primary bile acid
(classic pathway) synthesized in the liver, whereas the secondary bile acid (SBA; alternative pathway)
is produced in the large intestine by bacteria [184]. Around 95% of the primary bile acids are recycled
back to liver through hepatic portal circulation. The remaining 5% primary bile acids move down to the
distal ileum and are absorbed by enterocytes for further processing by the gut microbiome. Numerous
clinical studies have disclosed the positive relations between SBA and gut health. Both malabsorption
of primary bile acid and hepatic disorders lead to disrupted SBA production as a result of dysbiosis.
However, bile acid metabolism and the bacterial community are mutually regulated. When compared
to healthy individuals, IBD patients had lowered SBA profile, but higher primary [185] and sulfated
bile acids in feces [186]. This observation is also accompanied by a significantly decreased ratio
of Faecalibacterium prausnitzii and E. coli, which has been widely considered to be the biomarker
of dysbiosis.

Step one of SBA metabolism is deconjugation through bile salt hydrolase (BSH). Of the microbial
community, Firmicutes is believed to have the most abundant and active form of BSH enzymes,
followed by Bacteroidetes and Actinobacteria. Firmicutes and Actinobacteria are able to degrade
all types of primary bile acids, whereas Bacteroidetes are only active regarding tauro conjugated
bile acids [187]. Gut dysbiosis impairs the microbial community, which significantly reduces the
capacity of this BA modification before entering into the large intestine. Efforts to reshape the
bacterial community of IBD patients by introducing Lactobacillus reuteri (NCIMB 30242) has been
attempted [185]. Lactobacillus reuteri is a known strain that equips bacteria-bearing BSH, which is
essential to deconjugate primary bile acid. Nine-week administration of Lactobacillus reuteri improved
SBA production of IBD patients, compared to the placebo group [185]. Unconjugated bile acids are
passively reabsorbed to synthesize SBA in the large intestine. The following transformation and
desulfation are processed by hydroxysteroid dehydrogenases (HSDs), which are largely produced by
Clostridium genera. In other words, bacterial teamwork deconjugated and transformed primary bile
acid to SBA more efficiently [162].

One other way how bile acid metabolism has shown to affect both IBD and metabolic syndrome is
through farnesoid X receptor (FXR), which is present in both the liver and the intestine. FXR regulates
glucose sensitivity, hepatic lipid homeostasis and also bile acid [188,189]. Primary bile acid binds to
hepatic FXR, stimulating the downstream response of fibroblast growth factor 19 (FGF19). FGF19
and FXR co-regulate the homeostasis of primary bile acid production. FGF19 inhibits the synthesis
of primary bile acid from cholesterol in the liver. Activated FXR is shown to inhibit lipogenesis
through regulating the expression of SREBP1. Deletion of FXR in mice altered microbiome composition,
with dramatically decreased Firmicutes in particular. Proteobacteria, instead, are dominant in the
gut [190]. This interrupted microbiome community significantly affected the production of SBA by
blocking production of Firmicutes derived BSH. As a result, FXR−/−mice had decreased weight gain but
developed hepatic inflammatory diseases such as NAFLDs and steatosis [191]. Antibiotics attenuate
hepatic inflammatory responses by inhibiting Proteobacteria colonization in FXR−/− mice exposed to a
normal chow diet [190]. Similarly, FXR agonist (INT-747) reversed and attenuated symptoms of IBD in
a chemical-induced colitis mice model. Increased FXR expression alleviated mice colitis by suppressing
inflammatory responses with decreased expression of pro-inflammatory markers such as IL-6 and
TNFα [166]. Curiously, compared to healthy individuals, patients with IBD and other metabolic
disorders such as diabetes [192] accumulate bile acid and have less active bile acid detoxifying activity
by inhibiting the FXR-associated energy metabolism [192,193]. Patients with metabolic disorders such
as diabetes, hepatic diseases and atherosclerosis all indicate decreased FXR expression in the liver
and gut [194]. FXR is the key to ensure the activity of mitochondrial function by reducing oxidative
stress and provoking the expression of AMPK and PPAR-γ [195,196]. Overall, FXR plays as the core
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energy metabolic factor to regulate systemic energy homeostasis. Its activation stimulates FGF19 in the
intestine, which regulates the bile acid pool by controlling bile acid synthesis in liver.

5.2. Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) are fatty acids with a carbon length of 10 or less. Straight-chain
SCFAs are derived from indigestible carbohydrates, amino acids and host-derived glycoproteins,
whereas branched-chain amino acids are the source of generating branched-chain SCFAs [197]. The most
abundant SCFAs include acetic acid (C2:0) followed by propionic acid (C3:0) and butyric acid (C4:0).
Various carbon-chain lengths determine the diversity of metabolic pathways that are mediated by
different genera of intestinal bacteria. It is believed that Bifidobacterium spp. primarily produce acetate,
whereas Akkermansia muciniphila can produce both acetate and propionate [198]. However, the list of
bacteria that can metabolize butyrate is much longer, with most of the species belonging to phylum
Firmicutes [198]. It is worth noting that other SCFAs such as valeric acid and caproic acid are also
closely associated with chronic disorders [199,200]. For example, valeric acid, together with butyric
acid, showed to protect against colitis and CVD by suppressing histone deacetylase, which is a risk
factor for inducing IBD and MetS [201]. Intestinal SCFAs can enter enterohepatic circulation to regulate
lipid and glucose homeostasis in gene and hormone manners. Glucagon-like peptide (GLP-1) and
peptide YY (PYY) are two major nutrient-stimulated hormones that are released from enteroendocrine
L cell in the colon, where SCFA production is at a higher level [202,203]. The production of GLP-1 and
PYY is driven by SCFA-associated G coupling protein, which will be discussed later. It has been well
studied that GLP-1 and PYY both control energy intake. Patients with metabolic syndrome such as
diabetes and heart diseases typically have reduced GLP-1 and PYY in circulation [204]. One study
showed that SCFA and GLP-1 levels remained low in hyperinsulinemic patients. These patients were
intervened with a high-fiber diet for one year to try to increase SCFA production. After one year,
dietary intervention improved insulin sensitivity, with elevated SCFA production and circulatory
GLP-1, compared to the low-fiber diet group [205]. SCFA supplementation (butyrate) also showed to
improve NAFLD and insulin resistance [156].

High-fat diet is another risk factor for provoking IBD and MetS, as we discussed earlier. Mice exposed
to either high-fat or high-sugar diets have reduced SCFA [206]. Our group [75] and many other
groups [207] have demonstrated the role of HFD on stimulating metabolic disorders such as NAFLD,
CVD and diabetes. HFD disrupts the shape of intestinal bacteria, as a result of reducing SCFA production
and increasing gut permeability [206,208]. Simultaneously, HFD also interrupts energy metabolism,
which induces systemic inflammation, insulin resistance, dyslipidemia as well as the corresponding
MetS. In summary, regardless of disease type, maintaining SCFA and its derived hormone are the central
role in ensuring energy homeostasis, therefore reducing the risk of MetS and IBD.

5.3. G protein-Coupled Receptors

Many studies have demonstrated that SCFAs improve glucose and lipid homeostasis via regulating
G protein-coupled receptors (GPCRs). GPCRs are the receptors that directly regulate SCFA metabolism
such as the production of GLP-1. Two major GPCRs, GPCR40 and GPCR43, sense the concentration of
colonic SCFAs, which further stimulate the release of GLP-1 and PYY from the L cells. GLP-1 and PYY
are hormones that control appetite. GLP-1 stimulates the production of insulin in starvation, which has
been well-studied as an anti-diabetic target. Patients with UC have decreased sensitivity of glucose
with significantly reduced GLP-1 production [209]. Hence, GLP-1 agonist has long been researched as
the therapeutic target on attenuating metabolic disorders such as diabetes. It is the FDA approved
medication for patients with T2DM to reduce blood pressure, lipid accumulation and improve insulin
resistance [210,211]. Similar to glucose, dietary fatty acid metabolism is also highly determined by the
production of intestinal SCFAs. Many studies have reported that acetate and butyrate control hepatic
lipogenesis [35]. However, patients with NAFLD and NASH have higher production of acetate and
propionate, but decreased butyrate, compared to healthy individuals [120]. This is believed to be the
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result of modification of bacterial diversity. Therefore, restoring microbial community may help to
re-establish intestinal homeostasis.

5.4. Trimethylamine N-Oxide

Trimethylamine N-oxide (TMAO) was one of the first gut-bacterial derived metabolites recognized
to be involved in the pathophysiology of cardiovascular disease (CVD). Gut bacteria catabolize
choline and L-carnitine into trimethylamine (TMA), which is further oxidized in the liver to
trimethylamine-N-oxide [176]. The seminal study by Wang and collaborators (2011) demonstrated
how TMAO plasma levels significantly correlated with CVD (three independent studies with more
than 2000 samples from different subjects, p < 0.01) [58]. More importantly, the study went from
correlation to causation when mice fed phosphatidylcholine (source of choline and precursor of TMA)
displayed increased levels of TMAO in an obligate bacterial-dependent manner and with subsequent
development of atherosclerotic lesions [58]. This approach was also used for determining L-carnitine
bacterial metabolism as a source of TMAO and, hence, another trigger of CVD [176]. Interestingly,
high levels of TMA/TMAO have been found in IBD patients [174] and in the animal models of colitis
DSS and IL-10−/− [102]. This may be enhanced by the increased levels of carnitine associated with
the oxidized environment of gut in IBD [212]. Conversely, TMAO levels appear to be lower in the
plasma of IL-10−/− mice [103], which can reflect either liver damage (necessary for TMA oxidation) or
the dependence of certain interaction between host and gut bacteria, not present in the experiment
reported. As summarized in Table 2, TMAO also correlates with glycemic response impairment [182]
and NAFLD [183].

5.5. Tryptophan Metabolites

Tryptophan is an essential amino acid, being the only with an indole structure (a benzene ring
fused to a pyrrole ring) [213]. It is acquired from the diet, and it is mainly absorbed in the small intestine,
but still, a fraction of the amino acid reaches the colon where is catabolized to indole metabolites
by the gut bacteria [213]. Tryptophan has attracted attention in recent studies due to its correlation
with disease status in animals and humans. High concentration of tryptophan has been found in
serum samples from rodent models of IBD [97], as well as in feces from patients with CD [214].
This association could be related to dysbiosis, since bacteria aid in tryptophan transformation into
important metabolites such as serotonin. However, there is more literature related to the protective role
of tryptophan on IBD development, where even oral administration of tryptophan reduced disease
severity in piglets and mice [131,132]. In fact, a large cohort study in UC and CD patients revealed a
negative correlation between serum tryptophan levels and disease activity, reporting that responders
to Infliximab show higher levels of tryptophan when compared to controls [215,216]. However, these
last two studies work in different samples (feces for the former and serum from the later). Whilst a
more recent study positively correlated increased kynurenic acid (tryptophan derived metabolite) with
IBD severity [217], meaning that the low concentration of serum tryptophan responds to an increased
gut metabolism along with inadequate absorption of tryptophan by epithelial cells.

More conclusive knowledge about the role of tryptophan metabolites in IBD relies on
indole-propionic acid (IPA). This metabolite is produced by many gut bacterial species [218], and it
has been associated with benefits in both IBD and MetS. Serum levels of IPA have been reported to
correlate with IBD and MetS. For IBD, a study in 35 patients with UC found a 60% reduction of IPA in
serum from patients with active UC when compared to healthy controls (p < 0.05) [133]. Regarding
MetS, a study in 1018 patients reported strong, negative association of IPA levels with arterial stiffness,
fasting glucose, insulin resistance and visceral fat (p < 0.05) [218]. Furthermore, indole levels also
correlated negatively with liver fat deposition [219].

Beyond these associations, experimental studies with tryptophan metabolites have shown to
enhance barrier function through goblet cell stimulation [220,221], acting on L cells and promoting
the release of the incretin GLP-1 [218,222], exerting antimicrobial effects, and further inflammatory
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attenuation through activation of aryl hydrocarbon receptor (AhR) [220,223]. AhR is a transcription
factor present in immune cells, and its stimulation via indoles leads to differentiation of CD4+ T cells into
regulatory T cells (Treg), which exert anti-inflammatory functions [213], in this scenario through IL-22
secretion. Indeed, the administration of indoles in mice exposed to HFD as model of NAFLD protected
them from liver damage and alleviated glucose parameters [219,224]. In rats, a single exposure to
indoles improved plasmatic glucose and insulin levels [138]. Furthermore, two independent studies
were able to describe the protective role of microbial-derived indoles in pre-clinical and clinical colitis
and MetS [133,222]. Lastly, the protective role of indole metabolites is closely related to the SCFA
butyrate, since the increase of IL-22 promotes butyrate-producing bacteria [220], and butyrate has been
proposed to act as an AhR ligand too [225].

5.6. Branched-Chain Amino Acids

Another important set of metabolites connecting the gut microbiome with IBD and MetS is
branched-chain amino acids (BCAAs), which are amino acids that have an aliphatic side-chain with a
branch including leucine, isoleucine, valine and 2-aminoisobutyric acid. Interestingly, a study in pigs
fed inulin, a non-digestible carbohydrate, improved cholesterol and glucose levels. Also, metabolomics
analysis revealed significantly lower plasma levels of BCAAs, indicating a positive correlation with
increased cecal beta-diversity [226]. In T2DM patients, a short-term dietary reduction of BCAAs
modified the fecal microbiome, resulting in enriched Bacteroidetes and decreased Firmicutes [227].
This finding may correlate with changes in amino acid fermentative microbe genera such Clostridium,
which disturbances have been reported for both T2DM [228] and IBD [105]. Analysis of normal,
inflamed and dysplastic human colon tissue revealed differences related to BCAA in inflamed
tissue [229]. In another study comprising fecal samples from pediatric patients recently diagnosed
with IBD, differences in BCAAs (only valine and leucine), aromatic amino acids (phenylalanine and
tryptophan), serine and histidine were significantly increased [230]. These clinical findings could be
related to the importance of BCAAs in gut barrier integrity, since an increase in BCAA metabolism
pathway (specifically leucine and valine enriched levels) has been associated with increased expression
of mucins and tight junctions proteins in piglets [231]. Trying to merge these findings with MetS seems
contradictory, since increased levels of circulating BCAAs are correlated to insulin resistance. In fact,
patients undergoing bariatric surgery, which improves insulin resistance, show decreased circulating
levels of BCAAs [232]. However, when BCAAs are administered to rats, they need to be on HFD in
order to reproduce the insulin resistance phenotype [123]. An explanation to this lies in the fact that
BCAAs can interfere with insulin signaling via phosphorylation of IRS1 [233]. Serine phosphorylation
of IRS1 can minimize its activity and weaken insulin signal transduction [234]. Taken together,
BCAA metabolism seems to be protective for IBD whilst is strongly associated with insulin resistance.
The connection between these contradictory functions may be related to the inflamed gut, trying to
sustain the gut barrier and meanwhile causing the oxidative stress behind insulin resistance onset.

6. Insulin Synthesis and Action

One of the cornerstones of MetS and the diabetic state is deficient insulin action, which arises
due to a lack of insulin itself (type 1 and late type 2) or its effectiveness (early type 2). The most
studied role of the gut microbiome is the “leaky gut” hypothesis. This suggests that microbial
dysbiosis, a common finding in MetS [235], mediates a disrupted intestinal barrier function, which
can lead to the translocation of pathogens and can eventually result in inflammation and insulin
resistance. Gut dysfunction allows leakage of LPS into the circulatory system and leads to a chronic
state of inflammation and endotoxemia [236], which results in impaired insulin secretion in pancreatic
β-cells [237], pancreatitis and pancreatic cancer [238].

As both of these types of diabetes lead to glucose insensitivity, many metabolic signatures are
similar as well as dissimilar [239]. The first factor that connects the gut to insulin secretion is the
gut-derived metabolite-driven secretion of regulatory hormones like GLP-1 and gastric inhibitory



Nutrients 2020, 12, 1434 14 of 30

peptide [135], collectively known as incretins [240]. An interesting study demonstrated that when
germ-free mice were administered microbes from two different strains of mice showing varying insulin
responses to glucose, the insulin release patterns of these two strains were transferred to the germ-free
mice, signifying the critical role of the microbiome in insulin release [241]. Besides release, insulin
synthesis is also influenced by microbial metabolism. As an example, increased acetate production
induced by a HFD modulated the microbiome and promoted increased glucose stimulated insulin
secretion in rodents [242]. Also, the production of cathelicidin-related antimicrobial peptide (CRAMP),
a factor that protectsβ-cells of non-obese diabetic mice (NOD) from autoimmune diabetes and decreases
expression of pro-inflammatory cytokines [243], is regulated by microbial metabolism.

Acute pancreatitis represents inflammation of the pancreas that often leads to β-cell failure
and precedes the development of type 1 mellitus (T1DM) and T2DM. A multihospital clinical
trial revealed drastically different gut microbiomes in both mild and severe acute pancreatitis
patients [244]. In experimental models, such findings are confirmed, as decreased microbiome
diversity is noted in surgically induced acute necrotizing pancreatitis as compared to sham operated
rats [245]. Acute pancreatitis has also been associated with lower diversity of the gut microbiome with
an increase in Bacteroidetes and fewer Firmicutes in another study [246]. A dysfunctional gut barrier
can propagate acute pancreatitis further as well. In this regard, patients with acute pancreatitis have
higher plasma endotoxin and pro-inflammatory cytokines such as TNFα, IL-6, IL-10 and IL-8, along
with increased intestinal permeability as compared to healthy volunteers, further strengthening results
observed in murine models [247].

Insulin signaling in MetS can also be altered with dysbiosis. Heightened circulating LPS induces
iNOS expression which promotes S-nitrosylation of Akt, IRS-1 and insulin resistance, deactivating
nodes crucial to insulin signaling [65,66]. A study conducted on isolated human pancreatic islets from
diabetic subjects and non-diabetics revealed significantly higher iNOS expression in the former [68].
Similarly, active IBD patients and healthy controls recapitulated this with higher iNOS expression in
the former group [69]. Parallel increased iNOS expression has also been reported in rat models of
IBD [248], pancreatic cancer [249] and acute pancreatitis [250,251]. Thus, it is obvious that enhanced
iNOS expression represents a common critical point in the development of both IBD and MetS.

Along with T2DM, microbiome studies in T1DM are constantly emerging. Clinically, T1DM has
been associated with dysbiosis in children [252] as well as excessive antibiotic exposure in infants,
which disrupts gut microbes [253]. A study done in infants concluded that communal diversity
decreases and inflammatory metabolites and pathways increase even before the onset of T1DM [254].
In animals, antibiotic administration to NOD mice early in ontogeny during fetal and postnatal life
increased incidence and progression of T1DM along with disruption of gut microbiota composition [255].
This outcome is somewhat expected, since the microbiome is involved in shaping and maintaining
a balanced immune response since early in life [41]. In another study, fecal oral transplantation of
NOD microbiome, a diabetogenic microbiome accelerated insulitis in non-obese resistant (NOR) mice,
and antibiotic treatment further increased T1DM incidence in NOD mice. Antibiotic-induced diabetes
was not only associated with microbial dysbiosis but also with altered SCFA production [33]. These two
events are an excellent example of the preponderant protective role of the microbiota not only by its
mere presence but further by its metabolites.

7. Microbiome-based Therapeutics as a Potential Intervention for IBD and Comorbid MetS

Gut-derived metabolites, shaped by the microbial ecosystem residing in the gut, serve as a
potential common origin connecting IBD, MetS and associated diseases like T2DM. When treating IBD,
targeting comorbidities via shared pathways should be a consideration for therapeutic interventions.
The microbiome-derived metabolites comprise the main focus here, and modulating the microbiome
composition using various therapies including antibiotics might be a potential solution. However,
as highlighted by Kostic and collaborators (2014), even when antibiotics aid in IBD remission (specifically
for pouchitis), this is not a ‘one-size fits all’ approach, since it may backfire by promoting enrichment
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of harmful or antibiotic-resistant species, and more importantly it may affect metabolic signatures
in still unknown ways. From this perspective, the addition of beneficial microorganisms through
the development of microbiome-based interventions, like fecal transplantation and well rationalized
and designed oral probiotics, is promising [256]. Whilst fecal transplants are actively being studied
as a clinical option for the treatment of UC as well as obesity and T2DM, it is still controversial and
challenging since identifying appropriate donors is difficult. On the other hand, probiotic therapy
represents a widely accepted way to restore gut health [257]. Some of the benefits reported for probiotic
intake rely on its ability to promote a direct increase in beneficial gut microbiota metabolites [257],
whilst others promote the secretion of antimicrobial compounds [258], thus protecting against pathogens.
Furthermore, certain probiotic strains can enhance or suppress [259,260] the immune response in
favor of the host. Overall, however, a somewhat narrow range of probiotics are commercially
available and viewed as a one-size fits all model. Despite the potential health benefits of probiotics,
there are limitations. Although many probiotics have been isolated from stool samples of healthy
individuals, their consumption does not result in stable gut colonization [261]. Colonization resistance
is the mechanism by which the native microbiome protects itself from invasive microbes [262] or
probiotics [263]. This resistance may be the primary reason why most probiotics cannot readily occupy
space in the gut [264]. Indeed, currently available probiotics are not clinically effective for IBD [265,266]
or produce conflicting results [267–269]. Similarly, while it has also been proposed that probiotics can
be of benefit to reduce insulin resistance [270] and help weight control [271], this has not been clinically
proven. A focus on probiotic benefits that are metabolite derived could also be effective, considering
Lactobacillus reuteri has been reported to secrete AhR ligands and aid in the metabolism of SBA. For most
of these protective effects to occur, probiotics must effectively colonize and persist in the gut [272],
which may be unlikely given that gut inflammation is so pervasive in these conditions [185,213].
Given the prominent role the gut microbiota plays in IBD and insulin resistance, discovering new
strains of beneficial bacteria targeting gut inflammation or genetically engineering probiotics as bugs
as drugs, targeting common metabolites may revolutionize IBD treatments that decrease symptoms in
the gut but also the associated metabolic diseases.

8. Conclusions

Classically, the relationship between MetS and IBD has not been investigated, as lack of proper
gut function in IBD hampers nutrient absorption and, hence, presents an unlikely view of developing
MetS, commonly associated with nutrient overexposure. This conundrum exists definitely among
untreated/undiagnosed IBD patients that often present with a low BMI and, thus, might not present
classic symptoms of MetS. However, as recognition of IBD has increased and most patients in North
America are being treated, being underweight has become less of an issue. Similarly, as MetS moves
away from chronic nutrient overexposure to inflammation as being the root cause, comorbid experiences
with other inflammatory diseases like IBD are being increasingly recognized. In light of the aberrant
microbiome being a key culprit between both diseases, it is time to perhaps consider these two very
different diseases as being two sides of the same coin. The connections between IBD and MetS are
multiple, and further studies directed towards understanding the role of microbial dysbiosis, one of
the root causes of bacterial infiltration induced inflammation connecting IBD and MetS, are needed. So
far, the dysbiotic gut appears to sculpt the inflammatory environment in the gut through decrease
in the anti-inflammatory metabolites such as butyrate, IPA and SBA and constitute increase in the
pro-inflammatory BCAAs and TMAO. As described in the text, this combination may have a powerful
and detrimental effect on the gut barrier, extending the wave of adverse events to induce metabolic
defects in the liver and pancreas, including increased liver lipogenesis and insulin impairment in the
pancreas. These may not stop there, as both organs communicate back to the gut, setting detrimental
loops for the host. Experimental data supporting this includes mice models where oral insults lead to
gut and liver defects. In humans, these observations are increasing, and as omics studies continue
to generate data, the connections between IBD and metabolic disturbances will be clearer and easier
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to address. Lastly, we would like to stress the burden and importance of IBD and MetS as life-long
diseases. Although a long-term cure with no detrimental aftermath is the ultimate goal, no rationale
advance can be developed until we include the microbiome and its metabolites as major players of our
healthy or diseased status.
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