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A B S T R A C T

The widespread adoption of Artificial Intelligence (AI) and machine learning (ML) tools across various domains 
has showcased their remarkable capabilities and performance. Black-box AI models raise concerns about decision 
transparency and user confidence. Therefore, explainable AI (XAI) and explainability techniques have rapidly 
emerged in recent years. This paper aims to review existing works on explainability techniques in bioinformatics, 
with a particular focus on omics and imaging. We seek to analyze the growing demand for XAI in bioinformatics, 
identify current XAI approaches, and highlight their limitations. Our survey emphasizes the specific needs of 
both bioinformatics applications and users when developing XAI methods and we particularly focus on omics and 
imaging data. Our analysis reveals a significant demand for XAI in bioinformatics, driven by the need for 
transparency and user confidence in decision-making processes. At the end of the survey, we provided practical 
guidelines for system developers.

1. Introduction

In the biomedical field, particularly in omics and imaging, AI has 
proven to be highly effective in a wide range of applications, such as 
gene expression analysis [1], protein structure prediction [2], disease 
diagnosis through medical imaging [3], personalized treatment plan
ning [4,5], and integrative multi-omics analysis [6]. The analysis of 
omics data aims to understand the molecular mechanisms and micro
environment of the diseases, and provide targeted treatments [7,8]. 
However, the high-dimensional nature of omics data makes visual 
analysis challenging, necessitating the use of complex deep learning 
models to extract insights. Techniques such as autoencoder models help 
reduce data dimensionality, allowing the learning of low-dimensional 
feature representations to study different biological phenomena [9]. In 
addition to making predictions based on omics, researchers are inter
ested in uncovering underlying biological mechanisms and processes for 
knowledge discovery [10]. However, the black-box nature of complex 
models, such as models based on neural networks with multiple layers, 
makes it challenging to understand the reasons behind the model de
cisions. This lack of interpretability raises concerns about trust, 
accountability, and security, limiting the application of deep learning 

models in bioinformatics area [8,11].
Several AI models have been developed to gain novel insights from 

biological datasets [7]. These models are used to uncover novel mo
lecular pathways or biomarkers, which often requires additional refer
ences from the biology literature, molecular databases, pathway 
analysis tools, or inputs from physicians, clinicians, biologists, and other 
professionals. However, in bioinformatics applications, it is essential to 
consider the needs of various stakeholders involved, including AI ex
perts, biologists, and bioinformaticians [7,12,13]. AI experts aim to 
develop models that minimize prediction errors and ensure high preci
sion, while bioinformaticians and biologists require detailed explana
tions of the underlying rationales [7,12,14,15]. Therefore, the diverse 
needs of the bioinformatics field must be given special consideration in 
the development of AI models. Employing XAI techniques to elucidate 
model decisions can help understand model limitations and ensure 
satisfaction of various user and application needs.

There are some common open problems in the field of XAI for the 
biomedical field. First, there is a lack of consensus on the definitions of 
interpretability, transparency, and explainability in the literature, 
leading to confusion and hindering clear communication in the field 
[14]. Second, different domains have different interpretability 
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requirements, and current work on model development and evaluation 
criteria often fails to accommodate these differences [12]. Third, users 
may have varying levels of understanding about the system and may 
require explanations tailored to their specific needs and knowledge 
levels [12]. But still, it is both possible and valuable to establish working 
definitions of these terms for the purpose of this review, thereby pro
moting clearer communication and a more cohesive understanding 

within the field. In addition, we provide general guidelines for choosing 
XAI algorithms and evaluation methods tailored to address the diverse 
needs of end users, and develop algorithm categorization considering 
the unique requirements of users and applications.

In this survey, we reviewed existing XAI methods in various sub
domains, such as genomic, proteomics, particularly transcriptomics, and 
pathology imaging data, providing guidelines for system developers, 
ensuring a broad coverage of the needs of various stakeholders, 
including system developers with ML expertise, biologists, and other 
professionals. The motivation is to offer a foundational framework that 
developers can adapt to their particular biomedical niche. Here omics 
refers to high-throughput technologies and data-driven approaches 
aimed at comprehensively characterizing biological molecules within 
cells, tissues, or organisms. Among these, transcriptomics focuses on the 
complete set of RNA transcripts (the transcriptome) present at a given 
time, often measured through next-generation sequencing methods such 
as RNA-seq [16,17], providing insights into gene expression patterns 
and regulatory mechanisms. In parallel, imaging data such as medical 
images derived from modalities like MRI, CT, or microscopy capture 
structural or functional characteristics of tissues and organs, enabling 
detailed visualization of biological processes and disease states. 
Together these data types form complementary pillars of biomedical 
research: omics data reveal molecular-level complexity, while imaging 
offers anatomical and physiological perspectives, making them both 
prime candidates for the application of explainable AI techniques.

Although this review is more focused on transcriptomics and imag
ing, there are many related studies exploring other layers of biological 
data. For instance, epigenomics research delves into modifications that 
influence gene regulation without altering the DNA sequence itself, 
while metabolomics examines the small molecules and metabolites that 
reflect cellular processes. Additionally, multi-omics integration brings 
together these various data types-encompassing transcriptomics, epi
genomics, metabolomics, etc. and their integration to provide a more 
holistic view of complex biological systems [18–22]. The differences 
between our work and the existing review articles, which motivated us 
for this survey, are summarized in Table A.1, and additionally, we 
organized the published frameworks at: https://github.com/asbudhkar/ 
XAI-in-Bioinformatics/tree/main.

2. Terminology in explainable AI

XAI encompasses a wide range of methods aimed at building trust in 
model decisions. Terms such as transparency, interpretability, and 
explainability are often used interchangeably [28], but there is no 
widely accepted distinction yet. Among these terms, explainability and 
interpretability are more often used than others. Antoniadi et al. [7]
state that interpretability refers to “how much a model is understood”, 
transparency provides a “holistic view of how the model works, its 
training data, methods, and feature explanations”, and explainability 
helps stakeholders “understand the reasoning behind AI decisions”. 
Adadi [29] stated that interpretable systems are explainable if their 
operations can be understood by humans, which shows explainability is 
closely related to the concept of interpretability. Tjoa et al. [14] used the 
terms “interpretability” and “explainability” interchangeably, consid
ering research related to explainability if it attempts to “explain model 
decisions”, “explain the model’s workings”, or “enhance user trust in the 
model”. Markus et al. [24] provided a formal definition stating that an 
“AI system is explainable if the model is inherently interpretable” or “an 
interpretable model is provided additionally to explain the model out
comes”. Gilpin et al. [30] stated that interpretability and fidelity are 
both necessary components for explainability. They argued that a good 
explanation should be understandable to humans (interpretability) and 
accurately describe model behavior in the entire feature space (fidelity) 
[24]. From this sense, interpretability and fidelity are deemed necessary 
for explainability, with an explanation being interpretable faithful if it is 
unambiguous and not overly complex and faithful and if it is correct and 

Table A.1 
Summary of differences of existing works from our work.

Paper Summary

Gerlings, et al. (2020) 
[23]

The article conducts a systematic survey analyzing the 
major debates within XAI and advocates for a holistic and 
stakeholder-driven approach for XAI. The work highlights 
the need of XAI for diverse AI applications without any 
specific focus. Inspired by their work, we provide 
application and stakeholder-driven categorization of 
methods, and present guidelines to choose suitable XAI 
methods with a focus on bioinformatics applications.

Tjoa, et al. (2020) [14] The survey provides a broad categorization of XAI 
methods for the medical field. Our work has a narrow 
focus on bioinformatics to develop categorization 
considering the unique needs of bioinformatics.

Talukder, et al. (2020) 
[20]

The paper summarizes the DNN interpretation methods in 
recent studies on genomics and epigenomics, focusing on 
current data and computing-intensive topics such as 
sequence motif identification, genetic variations, gene 
expression, chromatin interactions and non-coding RNAs.

Mohseni, et al. (2021) 
[12]

The survey provides a hierarchical framework for the 
design and evaluation of XAI systems. Similarly, our work 
aims to provide a granular view of XAI system design 
considering the distinctive needs of bioinformatics 
applications. Our work also presents detailed guidelines 
for selecting interpretable models.

Antoniadi, et al. (2021) 
[7]

The paper provides a comprehensive review of existing 
XAI systems in Clinical Decision Support Systems (CDSS) 
along with their benefits and limitations. The focus of the 
work is explainable ML-based CDSS. Our categorization of 
the XAI works is done in consideration of the unique needs 
of bioinformatics field.

Markus, et al. (2021) 
[24]

The work provides general guidelines for users to choose 
XAI methods and evaluation metrics. Unlike ours, it is 
directed towards a broader audience lacking consideration 
of specific requirements of bioinformatics applications and 
stakeholders.

Sidak, et al. (2022) 
[10]

The paper presents a detailed review of interpretability 
methods for omics data. In contrast to ours, the review is 
targeted towards biologists and not system developers. 
Our survey focuses on challenges for XAI techniques from 
software and algorithmic perspective while accounting for 
unique needs of bioinformatics.

Toussaint et al. (2024) 
[19]

The paper provides insights into the isolated advances in 
the omics sciences. Our survey also includes how XAI 
advances in bioimaging field.

Novakovsky et al. 
(2023) [25]

In this survey, the authors present an organized overview 
of the key interpretation approaches with the intention of 
empowering researchers working across topics in 
genomics to incorporate xAI into their studies, and their 
focus on the task of post-hoc interpretation. Our review 
contains more broader topics in biomedical field and 
examined different XAI models, including post-hoc ones.

Karim et al. (2023) 
[26]

This review provides a brief overview of interpretable ML 
tools and libraries for diverse data types (e.g. from tabular 
data, texts and knowledge graphs (KGs) to bioimaging). It 
also shows, through several case studies in bioimaging, 
cancer genomics and biomedical text mining, how 
bioinformatics research can benefit from XAI methods and 
improve decision fairness. Our survey is more focused on 
different data formats and types like multi-omics.

Zhou, et al. (2023) 
[27]

The paper provides a review of some model-agnostic and 
model-specific methods used in different bioinformatics 
areas. Our survey extends their review by including 
additional XAI methods and works in bioinformatics. In 
addition, we provide guidelines for the efficient choice of 
XAI methods highlighting the need to consider system 
goals and collaboration between different stakeholders.
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sufficient to compute output from input. In this work, we use the terms 
explainable, interpretable, and transparent interchangeably, consid
ering a model to be explainable if any attempt is made to provide in
sights into how the model arrived at its decision. Fig. B.1 demonstrates 
the related concepts for explainability and interpretability.

Another concept is trustworthy AI, which is closely related to XAI, 
yet they address different aspects of how artificial intelligence systems 
are developed, evaluated, and accepted by users: XAI focuses primarily 
on making the inner workings of AI models more transparent, inter
pretable, and understandable to humans. Trustworthy AI, on the other 
hand, encompasses a broader set of attributes that ensure the AI system’s 
overall reliability and ethical alignment. While explainability may be 
one part of it, trustworthiness also includes dimensions such as fairness, 
safety, privacy, accountability, robustness, and compliance with regu
lations, according to the EU regulations on AI usage (Regulation (EU) 
2024/1689 or AI Act [31]).

2.1. Key dimensions of XAI methodologies

The algorithms are categorized from three different perspectives: 
post-hoc vs. ante hoc; model agnostic or specific, and their interpret
ability level.

2.1.1. Ante hoc versus post hoc
In the context of XAI, ante-hoc and post-hoc methods represent two 

distinct approaches to achieve interpretability. Ante-hoc methods 
involve building models that are inherently transparent and interpret
able from the start, thus reducing the need for separate explanatory 
tools. In contrast, post-hoc approaches are applied after a non- 
transparent model (such as deep neural network) has been trained. 
These explanations typically use techniques like feature importance 
measures, surrogate models, or counter-factual examples to clarify how 
the model arrives at its predictions. While ante-hoc models offer inter
pretability by design, they are not explanations in themselves; rather, 
their makes it easier for human users to understand and reason about the 
model’s behavior without relying on additional explanation methods.

Ante hoc explanation models are inherently explainable, meaning 
they are simple enough to understand and able to model relationships 
between input and output data. Examples of these models include linear 
regression, decision tree models, k-nearest neighbors, and rule-based 
learners, which are also referred to as white box models [7,15]. A 
trained neural network can be complemented with an interpretable 
model or analyzed post-training to gain insights into its decisions 
through post hoc explanation [32]. For instance, Local Interpretable 
Model-Agnostic Explanations (LIME) [33] provides feature-level expla
nations by training an interpretable model to approximate the behavior 

of a complex model. Gradient-based methods like Grad-CAM [34] esti
mate feature importance by analyzing the gradients of a trained neural 
network to provide explanations [7,15]. In [21], SHAP (SHapley Addi
tive exPlanations) explainers are used to calculate feature contributions 
for each prediction on genomics and epigenomics data for insulin 
resistance early diagnosis.

2.1.2. Model agnostic versus model specific
Model-agnostic explanations are independent of the type of ML 

model used and can be applied to any ML algorithm [7,15]. They 
operate by understanding the change in input that influence the output 
to identify the regions or features in the input that most significantly 
impact the model’s decision. These explanations do not impose strict 
requirements on the model’s structure or design. In contrast, 
model-specific explanations can be applied to only a set of ML algo
rithms due to their reliance on structure or attributes of the model. For 
example, Grad-CAM, which requires a neural network with differen
tiable layers to provide explanations [7,15].

2.1.3. Global versus local
Global explanation offers a comprehensive understanding of a 

model’s overall behavior, providing insights at the dataset level [7,15]. 
Local explanation focuses on the reasoning behind the prediction of a 
single instance in the dataset, providing instance-level explanations. For 
example, a local explanation might clarify why a loan application was 
rejected citing specific reasons for the individual applicant, such as low 
income or being a defaulter.

3. Study selection

For this review, we opted for a broad literature survey for works 
published after 2017, rather than conducting a fully systematic review. 
We consulted a diverse range of sources encompassing both computer 
science and bioinformatics, including arXiv, bioRxiv, Nature, Briefings 
in Bioinformatics, the IEEE Digital Library, the ACM Digital Library, 
ScienceDirect, Google Scholar, Frontiers, and MDPI. In particular, arXiv 
and bioRxiv facilitated timely access to emerging research prior to 
formal publication. We employed a variety of search terms—such as 
“explainable AI”, “interpretable”, “transparent”, “bioinformatics”, “pa
thology imaging”, “histopathology”, “genomics”, “transcriptomics”, 
“proteomics”, “omics” and “XAI” to identify relevant studies. Articles 
were initially screened based on their titles and abstracts, and those 
deemed relevant were then examined in full. Selection criteria included 
thematic relevance, methodological rigor, clarity, and the use of 
appropriate interpretability techniques. We also incorporated additional 
references identified through the citations of key papers. Ultimately, this 

Fig. B.1. Definition of machine learning (ML) explainability and related properties. Concepts adopted from [24]: a good explanation should be understandable to 
humans (interpretability) and accurately describe model behavior in the entire feature space (fidelity). Interpretability can have properties of clarity and parsimony. 
Clarity implies that the explanation is unambiguous, while parsimony means that the explanation is presented in a simple and compact form. Fidelity has properties 
of completeness and soundness, and completeness implies that the explanation describes the entire dynamic of the ML model, while soundness concerns how correct 
and truthful the explanation is.
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process yielded a set of 55 core articles on explainable methods in bio
informatics, supplemented by further literature to address our specific 
research questions, with topics cover imaging (33), transcriptomics (14), 
proteomics (3), metabolomics (1) and genomics (4); post-hoc (48), ante- 
hoc (7), global (14), local (45), model specific (38), model agnostic (17).

4. Categorization of XAI models in bioinformatics

Based on the review of XAI models, we categorize the works into self- 
explainable and supplemental explainable models which can help re
searchers select the most suitable XAI model for their research. Here self- 
explainable models refer to inherently transparent or interpretable 

models, where the reasoning behind their predictions is clear from the 
model’s structure and parameters. The working of a self-explainable 
model is easy to understand with well-defined model design, mathe
matical formulae, constraints, or hypotheses. On the other hand, a 
supplemental explainable model are non-transparent models that do not 
naturally reveal how their outputs are generated. For complex models 
whose functioning is difficult to explain, a supplemental explainable 
model can be provided which uses a comparatively simpler model to 
explain the complex model’s decisions. It can be done by providing local 
explanations which are less complex and easy to understand or by using 
complementary measures to elucidate the decision-making of the com
plex model. As a result, these complex models rely on additional 

Fig. B.2. A conceptual overview categorizing XAI models into self-explainable models and supplemental explainable models. Self-explainable models offer inherent 
transparency and do not require additional explanation techniques. In contrast, supplemental explainable models depend on external methods after training such as 
LIME, SHAP, or saliency maps to reveal their decision-making processes. Representative examples within each category are listed to illustrate this fundamental 
distinction in model interpretability.

Fig. B.3. A visual summary of common XAI techniques and their applications within the bioinformatics domain. The figure highlights a range of methods and 
demonstrates how they can be applied to different types of biological data and analytical tasks.
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explanation techniques applied after training to shed light on their 
decision-making processes. Fig. B.2 illustrates the categorization 
scheme.

The categorization into self-explainable and supplemental explain
able models serves as a conceptual overlay to the key dimensions of XAI 
discussed previously (e.g., Ante Hoc vs. Post Hoc, Model Agnostic vs. 
Model Specific, and Global vs. Local). Self-explainable models generally 
align with ante-hoc approaches, as their transparency is built directly 
into the model’s structure, often making them more globally interpret
able. In contrast, supplemental explainable models typically require 
post-hoc techniques that can be either model-agnostic or model-specific, 
and may provide either global or local insights.

Note that since our work is focused on bioinformatics, there are 
foundational efforts in XAI that have been explored in much broader 
contexts. Historically, the field of XAI has seen a surge in methods and 
frameworks designed to make complex models more interpretable, from 
computer vision and natural language processing to high-stakes domains 
like healthcare and finance. A more comprehensive overview of the 
broader landscape of XAI can be found in seminal works such as [32,35]. 
We also summarize the different XAI techniques and their applications 
in bioinformatics in Fig. B.3.

4.1. Self-explainable models

These models are designed to ensure transparent explanations for 
end-users using methods such as mathematical formulas, hypotheses 
about inputs or data modeling, or constraints that make decisions easy to 
interpret. For example, linear models, decision trees, and rule-based 
systems are inherently interpretable [7]. However, these models may 
not always deliver the desired performance, prompting developers to 
use more complex models to achieve better outcomes.

Some models integrate interpretability directly into their design or 
leverage domain knowledge to enhance interpretability. For instance, 
Deep GoNet [36], a self-interpretable model incorporates ontology in
formation into its layers to simplify interpretation. This model, 
demonstrated for cancer diagnosis, provides explanations at the disease, 
subdisease, and patient levels. Each neuron is associated with a bio
logical concept and explanations are generated using the Layer-wise 

Table A.2 
Comparison of supplemental XAI methods.

Method Complexity and 
efficiency

Applicability Limitations

Saliency, 
Simonyan et al. 
(2013)[57]

Computationally 
efficient since it 
involves gradient 
computations

Efficient 
performance 
for imaging 
applications

Can be prone to 
noisy gradients. 
Requires in-depth 
evaluations to 
ensure faithful 
explanations

Deconvolution, 
Zeiler and Fergus 
et al. (2014)[55]

Computationally 
challenging for 
deep networks

Traditionally 
used in signal 
processing

Demonstrated high 
performance on 
images but may 
lead to noisy 
explanations due 
to approximations 
involved

Guided 
backpropagation, 
Springenberg et al. 
(2014)[60]

Computationally 
efficient since it 
involves gradient 
computations

Efficient 
performance 
for imaging 
applications

Can lead to noisy 
explanations. 
Requires in-depth 
evaluations to 
ensure faithful 
explanations

LIME, Ribeiro et al. 
(2016)[33]

Relatively efficient 
due to local 
interpretability. 
Complex input 
perturbations can 
make it inefficient 
for certain 
problems

Model agnostic, 
simple, easy to 
implement

Wrong 
assumptions about 
data and 
underlying model 
may lead to poor 
performance. 
Choice of 
surrogate model 
and neighborhood 
function if 
incorrect may lead 
to wrong 
explanations

Guided Grad-CAM, 
Selvaraju et al. 
(2016)[66]

Computationally 
efficient since it 
involves gradient 
computations

Provides 
detailed high- 
resolution and 
class 
contrastive 
explanations 
compared to 
Grad-CAM

May lead to noisy 
results. Requires 
in-depth 
evaluations to 
ensure faithful 
explanations

LRP, Binder et al. 
(2016)[37]

Computationally 
expensive for deep 
neural networks

Provides 
detailed feature 
attributions at 
each layer in 
network to 
explain how 
input features 
contribute to 
model’s output

Computationally 
expensive and 
unsuitable for 
models with 
several layers

CAM, Zhou et al. 
(2016)[63]

Computationally 
expensive for 
complex networks 
since several linear 
models need to be 
trained

Efficient 
performance 
for imaging 
applications. 
Provides class 
contrastive 
explanation

Model specific and 
applicable to a 
certain set of 
model 
architectures

SHAP, Lundberg 
and Lee (2017)
[46]

Computationally 
expensive due to 
the requirement of 
multiple subset 
computations for 
feature 
importance. 
Approximation 
measures may be 
required for 
efficient 
processing for 
high-dimensional 
data

Model agnostic. 
Provides both 
local and global 
explanations. 
Captures 
interactions 
among 
different 
features

Computationally 
inefficient for large 
datasets. 
Approximation 
measures to speed 
up performance 
may not be 
applicable to all 
datasets

Integrated 
gradients, 

Computationally 
moderate since it 

Capture 
interactions 
among 

Performance is 
influenced by 
baseline chosen  

Table A.2 (continued )

Method Complexity and 
efficiency 

Applicability Limitations

Sundararajan et al. 
(2017)[51]

performs integral 
along a direct path

features. 
Applicable to a 
large set of 
models

and may lead to 
incorrect 
explanations for 
complex models 
due to 
approximations

Grad-CAM, 
Selvaraju et al. 
(2017)[34]

Computationally 
efficient since it 
involves gradient 
computations

Provides fine- 
grained visual 
explanations. 
Improved 
localization 
accuracy 
compared to 
CAM. Faster 
than CAM due 
to reliance on 
gradients

May provide low- 
resolution 
explanations. 
Requires in-depth 
evaluations to 
ensure faithful 
explanations

Attention-based 
methods, Saihood 
(2023)[78], 
Raghavan (2023)
[79]

Complexity 
depends on the 
employed 
attention- 
mechanism

Utilize 
attention- 
mechanism to 
improve 
explanations 
for certain 
applications

Applicable to a 
limited set of 
models having 
attention 
mechanisms. 
Complex to 
understand due to 
the varied 
attention 
mechanisms used
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Relevance Propagation (LRP) technique [37] and domain-specific bio
logical knowledge. FLAN [38] is a structurally constrained deep neural 
network model designed to explain the relevance of input features to its 
decisions. Like general additive models, FLAN processes each input 
feature separately generating distinct latent representations, which are 
then summed to provide the model output. By predicting on individual 
features, their importance to the decision can be computed similarly to 
linear models. The authors have demonstrated that FLAN achieves high 
performance in several biological tasks while maintaining 
self-interpretability. Patrício et al. [39] proposed a self-interpretable 
model for diagnosing skin lesions which provides both natural lan
guage explanations and visual explanations. The model uses concept 
vectors and segmentation masks along with a coherent loss to capture 
different concepts of skin lesions. Detected features are encoded by the 
GloVe model [40] to generate vector representations that facilitate 
human-like explanations. The authors have shown that the model’s 
performance is comparable to existing black-box approaches, however, 
it can be challenging to obtain concept annotations for its broader 
application.

4.2. Supplemental explainable model

Complex algorithms are often favored for their superior performance 
over self-explainable models. However, they often lack transparency in 
their decision-making process due to their intricate nature, making it 
challenging to explain their behavior using formulae or system con
straints. To address this, post-hoc techniques are employed, which uti
lize simpler interpretable models to explain the behavior of the complex 
ones. These techniques can approximate the model’s performance 
providing local explanations with reduced complexity or quantify the 
impact of different inputs on the output. However, it is crucial to strike a 
balance between interpretability and performance. Table A.2 compares 
the commonly used supplemental models.

4.2.1. LIME
LIME (Local Interpretable Model-Agnostic Explanations) [33] offers 

local explanations for complex models by approximating their pre
dictions using interpretable models. Let f be the complex model to be 
explained, and g ∈ G be a potentially interpretable model, such as linear 
or decision tree models. The complexity of the interpretable model’s 
explanation is denoted by Ω(g), which could be, for example, the depth 
for decision trees or the number of non-zero weights for linear models. 
The first step is to select an instance x and then consider a proximity 
measure πx to compute the similarity between x and its n neighbors. 
Then a local interpretable model is trained to minimize the loss based on 
locality denoted as L(f,g,πx). The interpretable model’s coefficients are 
utilized to explain the decisions made by the complex model. LIME 
generates the explanations using the following equation: 

ξ(x) = argmingϵGL(f , g, πx)+Ω(g) (1) 

For bioinformatics studies, Yagin et al. [41] used LIME to identify 
biomarkers associated with COVID-19 to provide valuable information 
for clinicians for combating the disease. Similarly, Yilmaz et al. [42]
used LIME to explore metabolites for the identification of acute 
myocardial infarction using metabolomics data. LIME is used to identify 
important genes for the prognosis and treatment of bladder cancer using 
gene expression data [43]. Park et al. [44] utilized LIME to highlight key 
genomic factors in predicting drug responses based on cancer gene 
expression and mutation maps data.

The advantages of this model include its model-agnostic nature and 
its ability to explain decisions for different modalities, such as text and 
image. Slack et al. [45] demonstrated several drawbacks of the method 
including sensitivity to the choice of proximity measure, high compu
tational demands due to input perturbation, and vulnerability to 
adversarial attacks. The memory usage and speed of LIME depends on 
factors like the number of neighbors, the chosen proximity measure and 

the interpretable model used.

4.2.2. SHAP
SHAP (SHapley Additive exPlanations) [46] provides both local and 

global model-agnostic explanations by calculating the contribution of 
each feature, known as Shapley values. These values are computed by 
evaluating the difference in model outputs with and without each 
feature included, across all potential subsets. For a complex model with 
a prediction function f(x) and total features T, the Shapley values can be 
obtained using the following equation: 

∅i =
∑

S⊆T\{i}

|S|!(|T| − |S| − 1 )!

|T|!
(fS∪i

(
xS∪{i}

)
− fs(xs)) (2) 

where S represents any subset which does not include the ith feature. 
Computing Shapley values exactly is challenging due to the vast number 
of feature subsets involved, leading to the development of approxima
tion methods. These methods often assume feature independence and 
linearity to simplify computation. Global explanations are obtained by 
averaging the Shapley values in all instances.

Ramírez-Mena et al. [47] applied SHAP to elucidate predictions of a 
random forest model for prostate cancer detection. SHAP provides 
global explanations to identify crucial genes for patient screening and 
local explanations for personalized treatments. Sobhan et al. [48] used 
variants of SHAP, including gradient SHAP and tree explainer SHAP to 
develop novel therapies for lung cancer by identifying biomarker genes 
for individual patients. Additionally, the XAI-CNVMarker [49] frame
work leveraged SHAP to discover potential biomarkers for breast cancer, 
which aids in drug development. Dwivedi et al. [50] employed gradient 
SHAP to identify relevant biomarkers for non-small cell lung cancer that 
aid in the development of targeted therapy.

SHAP has several advantages such as easy integration with any 
model and the ability to provide both local and global explanations. 
However, it has been shown to be vulnerable to adversarial attacks [45]. 
The speed and memory requirement of SHAP depends on the complexity 
of the model, the approximation methods used, and the number of 
features. Exact computation can be resource intensive potentially 
requiring exponential time O

(
2T) for the computation and storage of 

multiple subsets.

4.2.3. Integrated gradients
Integrated Gradients (IG) offer both global and local explanations by 

computing gradients along a path from a chosen baseline to the original 
input. It is based on two axioms, namely sensitivity and implementation 
irrelevance. Based on [51], considering a complex model function as f 
with input x and reference x′, a straight-line path is assumed between x′ 
and x, and gradients are computed along the path. The integrated 
gradient along dimension i is: 

IGi(x) =
(
xi − xʹ

i
)
∫ 1

α=0

∂F(xʹ + α × (x − xʹ))
∂xi

dα (3) 

The integral is approximated with a summation: 

IGapprox
i (x) =

(
xi − xʹ

i
)∑m

k=1

∂F
(

xʹ + k
m × (x − xʹ)

)

∂xi
×

1
m

(4) 

where m represents the number of steps for the approximation, typically 
ranging between 20 and 300. Gao et al. [52] used IG to identify 
important amino acids for the prediction of transcription factors in gene 
regulation. Li et al. [13] utilized IG to attribute importance to genomic 
features for cancer diagnosis using multimodal data such as histopa
thology images and genomic sequences. Dwivedi et al. [50] employed IG 
to identify relevant biomarkers for non-small cell lung cancer identifi
cation to aid for development of targeted treatments. Li et al. [53] used 
IG to reveal importance of radiological features used by their model for 
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survival prediction of cancer patients.
IG can explain any differentiable model without specific architecture 

requirements, but the choice of reference baseline can influence feature 
attributions. Although it can be applied to any model with differentiable 
functions, its reliability has been questioned in certain contexts [54]. 
The speed depends on the number of integration steps, the number of 
dimensions, and the complexity of explanation generation. Memory 
requirement is influenced by both the input and reference dimensions.

4.2.4. Deconvolution
Zeiler et al. [55] introduced deconvolutional networks to visualize 

feature activity in intermediate layers by reversing convolutional 
network operations. This method approximates inverse pooling opera
tions and applies transposed convolutional filters to understand the 
workings of each layer. By reconstructing original inputs, important 
regions are revealed. Gao et al. [56] used deconvolution in signal pro
cessing to visualize learned features for decoding brain activity, yielding 
relevant explanations. The explanations were validated using known 
brain region knowledge. The speed and memory requirements of 
deconvolution method depends on the complex model used and how 
much temporary data needs to be stored.

4.2.5. Saliency
Simonyan et al. [57] proposed Saliency method that visualizes 

Convolutional Neural Network (CNN) models by using gradients to 
highlight input pixel relevance to the predicted class. For example, de 
Souza Jr et al. [58] used the saliency method to emphasize relevant 
image regions for esophagus cancer classification using trained CNN 
models. Comparison with annotations from different XAI techniques 
demonstrated promising results, with saliency performing the best and 
closely matching expert annotations.

Saliency is easy to compute but it can produce noisy or vanishing 
gradients with deep networks. Its speed depends on the size of complex 
model, requiring only a single backpropagation pass for gradient 
computation. The requirement to store feature maps dominates memory 
usage of the method. Shrikumar et al. [59] demonstrated that multi
plying gradients with the input improved saliency results.

4.2.6. Guided backpropagation
Springenberg et al. [60] presented guided backpropagation method 

which improves deconvolution results by backpropagating only positive 
gradients, resulting in sharper saliency maps compared to deconvolu
tion. Badea et al. [61] adopted it to visualize histology features with 
significant gene correlations, offering biological interpretability. 

Similarly, Wickstrøm et al. [62] used it for colorectal polyp segmenta
tion, enhancing trust among users and facilitating comparison of 
different models.

While it provides detailed explanations, guided backpropagation 
may suffer from vanishing gradients, requiring careful evaluation for 
accuracy. Its speed is constrained by forward and backward passes 
through the network, and its memory requirement depends on the 
storage of feature maps and intermediate results.

4.2.7. CAM
Class Activation Mapping (CAM) [63] is a model-specific technique 

that identifies important parts of an image for a particular class. CAM 
utilizes the global average pooling layer (GAP) after the last convolu
tional layer in CNN models to generate explanations. For a feature map k 
in the last convolutional layer, denoted fk(x,y) for any image at spatial 
location x,y, the global average pooling is performed as follows: 

Fk =
∑

x,y
fk(x, y) (5) 

For a class c, the input to softmax function is given as 
∑

k
wc

kFk (6) 

where wk
c indicates the importance of Fk for class c. Therefore, the 

important regions for a particular class in the image are represented as a 
linear combination of weighted feature maps. CAM calculates the global 
average of each feature map, resulting in n scalars if the last convolu
tional layer has n feature maps. Subsequently, a linear model is learned 
for each class. The combination of different weights learned for different 
classes is then applied to weight the pixels in the image, generating 
saliency maps that highlight the spatial regions of the image used by the 
model to make class predictions. Following CAM, there are several 
variant versions proposed, including iCAM [64], Broad-CAM [65], 
Grad-CAM [34], and Guided Grad-CAM [66].

Civit-Masot et al. [67] provided human-like explanations by gener
ating a report containing relevant image region generated by Grad-CAM 
along with the model’s confidence in classification, to enhance trust in 
the model for both doctors and patients. The authors also included ac
curacy information along with the top few features used by the model for 
prediction and their relevance scores computed using SHAP. Yin et al. 
[68] demonstrated that Grad-CAM highlights essential genes for survival 
prediction. Shovon et al. [69] used Grad-CAM to reveal the image re
gions that the trained neural network model relies on for breast cancer 
classification using histology images. Altini et al. [70] utilized 
Grad-CAM along with Mask-RCNN for instance segmentation, 
enhancing nuclei detection by distinguishing individual nuclei in
stances. The authors claim that by integrating Grad-CAM with 
Mask-RCNN they achieved state-of-the-art performance in nuclei 
detection. Kallipolitis et al. [71] used Guided Grad-CAM to explain 
ensemble models predictions by highlighting the key regions of histo
pathology images used by the model for cancer classification. Similarly, 
Korbar et al. [72] used Guided Grad-CAM to assign contribution scores 
to image pixels, highlighting areas that the trained ResNet model used to 
detect different colorectal polyps in histopathology images. Grad-CAM 
and Guided Grad-CAM are popular for elucidating imaging models, 
and attention-based models offer detailed visual explanations [68,73, 
74]. Cai et al. [64] introduced improved CAM (iCAM), a variant of CAM, 
to identify critical regions in images for predicting muscular dystrophy. 
iCAM combines activation maps from both high and low-level CNN 
layers leveraging the semantic information from top and bottom layers 
to generate fine-grained class discriminatory explanations. Lin et al. 
[65] developed Broad-CAM to enhance performance on small-scale data 
using broad learning system (BLS) demonstrating its effectiveness in 
breast cancer image classification. Several studies have used diverse 
datasets together for XAI techniques to elucidate model operations. For 

Table A.3 
Comparison of CAM-based methods.

Method Applicability Comparison with CAM

iCAM, Cai et al. 
(2019)[64]

Uses activation maps of CNN 
layers at both high and low 
level. Generates fine-grained 
class discriminatory 
explanations by using top and 
bottom layers

Improved region localization 
without performance 
degradation. 
Computationally expensive 
due to the requirement of 
learning weights at multiple 
layers.

BroadCAM, Lin 
et al. 
(2023)[65]

Broad learning system is 
utilized to improve 
performance on small-scale 
data

Robust for small-scale data. 
Computationally expensive 
due to overhead of additional 
using broad learning system.

Grad-CAM, 
Selvaraju et al. 
(2017)[34]

Generalization of CAM. 
Instead of training linear 
models to learn class 
discriminative feature map 
weights, gradients are used

Computationally efficient. 
Applicable to a wider set of 
models.

Guided Grad- 
CAM, Selvaraju 
et al. (2016)[66]

Improvement over Grad- 
CAM. Utilizes guided 
backpropagation to improve 
explanation quality

Provides class discriminative 
as well as detailed 
explanations.
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example, Li et al. [13] performed cancer diagnosis and prognosis using 
both gene expression and image data. Similarly, Kayser et al. [75] used 
Grad-CAM and Integrated Gradients to reveal important genes and 
provide visual explanations simultaneously. The authors used radiology 
reports along with imaging data to provide human-like explanations 
[75]. Li et al. [53] used Grad-CAM to reveal the significant regions in 
histological images used by the model for survival prediction of cancer 
patients. Aryal et al. [76] used whole slide images and graph modeling 
for cancer classification. They used Graph Grad-CAM to highlight 
important image areas for classification, showing that these areas 
closely matched pathologists’ annotations.

The disadvantages of using CAM include its dependency on specific 
architectures with a global average pooling layer, as well as the over
head of training linear models over the GAP outputs to generate ex
planations. Furthermore, CAM may not provide reliable explanations 
with weakly labeled data due to unstable training from insufficient data, 
as noted by Lin et al. [65]. The speed is primarily determined by the 
forward pass and the computations required to learn linear models for 
generating saliency maps. Storage of feature maps from the last con
volutional layers and any intermediate outputs dominate the memory 
usage. See Table A.3 for more details.

4.2.8. Layer-wise relevance propagation
Layer-wise relevance propagation (LRP) [37] is a model-agnostic 

technique that explains the contribution of input features to the 
output by assigning a relevance score for each feature through decom
position techniques. It propagates relevance scores from the output layer 
back to the input layer, layer by layer. While several versions of the 

algorithm exist, the general strategy of LRP is explained in Binder et al. 
[37] as follows: Consider a complex model function f with multiple 
neural network layers. Each neuron in layer l contributes to the acti
vation of neuron j in layer l+ 1. The algorithm ensures that the total 
relevance is conserved in each layer, assuming that there is a known 
relevance in the output layer l + 1. The relevance score R of each neuron 
is propagated backward through the network maintaining the total 
relevance across all layers. Therefore, 
∑

i
Ri→j

l,l+1 = Rj
l+1 (7) 

The relevance of I is calculated using the β rule as follows: 

Ri→j
l,l+1 =

(

(1+ β)
z+ij
z+j

− β
z−ij
z−j

)

Rj
l+1 (8) 

where zij =
(
wijxi

)p such that p is the pixel and output of neuron j is given 
as xj = g

( ∑
iwij +b

)
with g is non-linear activation function and b is 

bias term. Here, zij
+ and zij

− denote the positive and negative contribution 
of neuron I to the activation of neuron j. The relevance score is conserved 
from layer l + 1 to l by dividing the individual contributions by total 
contribution of all nodes. В is used to control the relevance distribution 
so that a larger β will provide sharper heatmaps. LRP can be applied to 
any differentiable model, but the initialization of relevance at the output 
layer will affect the interpretation of relevance scores.

Bourgeais et al. [36] used LRP to compare the explanations of their 
Deep Go-Net model. Springenberg et al. [77] combined LRP with 
attention maps to highlight important image areas for cancer 

Fig. B.4. Overview of evaluation techniques for XAI and the associated challenges. The subFig. a illustrates various evaluation strategies—ranging from human- 
centered assessments, application-based and function-based. SubFig. b shows factors need to be consider for qualitative, quantitative and application-specific 
evaluations. Subfigure c shows some common challenges. Together, these elements underscore the need for careful, context-dependent evaluation frameworks 
that ensure XAI methods meet their intended goals in practice.
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classification. The speed for LRP depends on the network parameters, 
including the number of layers and operations performed at each layer. 
The size of complex model and the parameters to be stored at each layer 
for relevance propagation need to be considered to calculate the mem
ory usage of the method.

4.2.9. Attention-based
Recently, attention-based methods have been employed to enhance 

model transparency. A multi-orientation-based guided attention module 
(MOGAM) framework is proposed by Saihood et al. [78]. The framework 
aims to leverage the varying texture distribution in lung nodules from 
CT scan images for lung cancer classification. MOGAM fuses several 
texture feature descriptors (TFDs) such as contrast, dissimilarity, and 
homogeneity and inputs using CNN models to generate attention maps. 

Saihood et al. [78] demonstrated enhanced interpretability on CT scan 
images using Grad-CAM and Guided Grad-CAM.

Raghavan et al. [74] presented attention-guided Grad-CAM for 
identifying important regions in infrared breast cancer images. Channel 
and spatial attention are computed to assign weights to channels and 
image regions, respectively, using CNN features. These attentions are 
combined to focus on critical regions, resulting in a more robust and 
interpretable heatmap. Causal attention is utilized by Chen et al. [73] for 
classifying lymphoma ultrasound images, employing both channel and 
spatial attention aiding model generalization. The authors also used a 
counterfactual explanation method using image perturbation for inter
pretability. While attention-based methods offer promising advance
ments for interpretability, their choice, effectiveness, and complexity 
depend on the dataset and problem domain.

Fig. B.5. A decision-making flow chart for implementing XAI solutions in practice. The process consists multiple steps guide practitioners through selecting the 
appropriate XAI techniques—such as choosing between self-explainable models or post-hoc explanatory methods—based on data characteristics, desired inter
pretability, and evaluation criteria. The chart culminates in an iterative refinement stage, ensuring that chosen XAI strategies align with stakeholder needs, ethical 
considerations, and real-world constraints.
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Table A.2 provides a comparison among different supplemental XAI 
methods.

5. Opportunities and challenges of XAI in bioinformatics

5.1. Resource-constrained environments

Resource constraints, such as storage, and computational time, are 
crucial factors in selecting XAI techniques. Some techniques are 
resource-intensive, making them impractical for embedded devices with 
limited memory. Research has focused on developing suitable solutions 
for embedded and mobile devices with limitations on space and 
computation and that require real-time responses. For example, Chen 
et al. [80] presented an AI system for detecting monkeypox from 
smartphone-captured skin images utilizing CNN models VGG-16 [81]
and MobileNetV3 [82], trained on ImageNet [83]. By employing 
quantization techniques to reduce operation precision from 32-bit to 
16-bit floats, MobileNetV3 optimizes model performance reducing its 
size by 4 × . The best-performing model uses Grad-CAM to identify 
class-discriminative features providing responses within seconds that 
are suitable for mobile devices. Another study [84] presents a light
weight CNN model consisting of only three layers for retinal disease 
diagnosis, delivering comparable performance to complex models with 
several layers. Predictions are explained using visualization maps 
generated by gradient activations. The authors claim that their model 
provides accurate predictions for embedded devices, mobile systems, 
and IoT devices. AgileNN [85] designed for real-time performance on 
embedded devices employ light-weight neural networks and utilize 
backpropagation-based techniques, which require a single pass to 
compute input feature importance, resulting in real-time decisions. Ex
periments on popular datasets demonstrated a 6 × reduction in output 
latency. Self-interpretable models, that integrate explanations directly 
into their design, can be computationally expensive depending on the 
model’s complexity [86]. Techniques that use interpretable models to 
approximate the workings of complex models through different 
approximation techniques and input perturbations may also require 
substantial computational resources. Backpropagation-based tech
niques, which require a single pass to compute input feature importance, 
are comparatively faster [15]. Example-based techniques, which rely on 
clustering and similarity measures, have resource requirements that 
vary based on their specific implementation.

5.2. Data challenges and security in XAI

When applying XAI techniques in bioinformatics, proper data pre
processing and rigorous quality control procedures are essential for 
ensuring that subsequent interpretations and insights are both reliable 
and meaningful. Factors, such as normalization, outlier handling, and 
batch effect removal can significantly influence the outcomes of model 
training and the generation of explanations. Equally important is the 
recognition that different types of biological data be it gene expression 
profiles, epigenetic marks, metabolite concentrations, or imaging data, 
each have their own characteristics and noise patterns, necessitating 
tailored preprocessing strategies. For example, epigenomic and metab
olomic technologies are highly sensitive to batch effects and outliers, 
necessitating careful normalization. In the context of genomics, partic
ularly for complex diseases, relying on single nucleotide polymorphisms 
may not sufficiently predict outcomes, prompting the use of polygenic 
risk scores as a more suitable approach. Furthermore, the inherent 
heterogeneity among both healthy individuals and within diseased 
populations can complicate the identification of meaningful patterns. By 
carefully considering the nature of the data and applying appropriate 
quality control measures, researchers can better ensure that the expla
nations produced by XAI methods faithfully represent the underlying 
biological processes rather than technical artifacts [87–89].

Weakly labeled or unlabeled data pose significant challenges when 

applying existing XAI methods. Data preprocessing may be necessary to 
address these challenges. For instance, BroadCAM [65] enhances per
formance with weakly labeled data using a broad learning system. The 
authors utilize a broad learning system to improve CAM performance 
since CAM’s performance suffer from unstable training with 
weakly-labeled data.

To comply with AI regulations and safeguard user data privacy and 
security, it is crucial to moderate the techniques used. Perturbation- 
based explainability techniques, such as LIME and SHAP, can conceal 
biases in the training data [45]. Adversarial classifiers can successfully 
hide biases by manipulating input perturbations during training. To 
address these concerns and identify disparities in explanations metrics 
like fidelity, stability, sparsity, and consistency are introduced [54]. 
Fidelity assesses explanation accuracy, stability measures consistency 
across similar data, sparsity gauges explanation complexity, and con
sistency evaluates repeatability of explanations.

5.3. Recent advances in generative AI for XAI

Generative large language models are making significant strides 
across various fields due to their superior performance on a range of 
tasks [86]. ThyGPT [86], a computer-aided diagnosis model for thyroid 
nodules, leverages annotated ultrasound images and diagnostic reports 
to generate human-interpretable diagnosis explanations. However, 
obtaining annotated multimodal datasets can be challenging. Codon
BERT [90] predicts gene expressions using codon patterns. It uses 
fine-tuned pre-trained BERT models and SHAP to explain predictions, 
thereby elucidating the model’s function. HistoGPT [91] generates 
human-like histopathology reports from whole slide images, enabling 
user interaction. The model explains its decisions using saliency maps, 
indicating image regions that lead to specific findings. Keyword overlap 
and semantic similarity metrics are used for evaluation. While this 
research found limited examples of generative AI models explaining 
bioinformatics works, they hold great potential for advancing explain
able solutions in the field and represent a promising avenue for future 
research.

6. The limitations of current XAI techniques in bioinformatics

Recent evaluations have uncovered limitations of existing XAI 
techniques through experiments. Graziani et al. [92] assessed the ex
planations of CAM, Grad-CAM, GradCAM+ +, and LIME on breast tissue 
datasets. They found that the explanations generated by XAI algorithms 
were similar for both a trained CNN model and a randomly initialized 
one. Particularly, LIME provided inconsistent and non-repeatable ex
planations across different hyperparameters. They suggested the 
development of quantitative evaluation methods instead of relying 
solely on visualizations. Rudin et al. [93] advocate for the use of 
self-interpretable models, citing issues like incompleteness and low ac
curacy of post-hoc explanations, their complexity and mismatch be
tween model design and domain knowledge. For instance, FLAN [38], a 
constrained neural network model is introduced for ease of interpreta
tion, demonstrated good performance on various datasets containing 
gene expression and imaging data. Chanda et al. [94] presented an 
interpretable model which utilizes dermoscopic images to predict 
ontology-based concepts using ResNet and Grad-CAM. Patrício et al.
[39] proposed a self-explanatory model involving segmentation and 
feature extraction, trained to predict concept-based explanations using 
ground truth annotations. Similarly, Kayser et al. [75] developed an 
interpretable model that uses annotations from radiology reports 
capable of explaining predictions using radiology concepts.

To achieve optimal performance and reliable explanations, re
searchers advocate for developing algorithms tailored for the unique 
needs of applications and datasets. Current XAI methods often fail to 
provide satisfactory explanations due to their lack of consideration of 
the specific requirements of different bioinformatics data [27]. Sidak 

A. Budhkar et al.                                                                                                                                                                                                                               Computational and Structural Biotechnology Journal 27 (2025) 346–359 

355 



et al. [10] state that the classification of different XAI techniques is 
complex due to vague terminology and suggest that customization of 
techniques for different scientific problems may be necessary due to the 
varied requirements of the system and the characteristics of the data. 
The review by Li et al. [95] demonstrates how XAI models developed 
specifically considering the graph structure for GNN models provide 
better explanations for some applications, emphasizing the importance 
of considering the model architecture in developing better explainability 
techniques. Furthermore, Patrício et al. [9] mention that the application 
requirements dictate the choice of algorithms and explainability tech
niques. They highlight the limitation of Recurrent Neural Network 
(RNN) models in generating long reports, which has led to the adoption 
of transformer-based models for textual explanations.

Studies have emphasized the need to investigate data for biases or 
misrepresentations and to ensure there are no security loopholes 
compromising user privacy. For example, Tjoa et al. [14] stress the 
importance of developing robust algorithms, as explanations can be 
manipulated by input changes or noise, potentially leading to erroneous 
decisions and interpretation. Markus et al. [24] recommend publicly 
reporting data quality to provide transparency about system limitations, 
and developing standards and regulations to safeguard user information 
and ensure safe data usage. The authors address challenges associated 
with medical data, such as expensive and time-consuming collection, 
highly imbalanced and noisy data sets and note that labeling of data is 
expensive due to the need for experts and conflicting opinions among 
them. Thus, it is imperative to develop XAI algorithms that consider both 
the characteristics and limitations of the data.

In a more general perspective, counterfactual and pro-hoc explana
tions provide two complementary avenues for enhancing the effective
ness of XAI [96]. Counterfactual explanations focus on illustrating how 
changing certain input features might alter the model’s outcome, 
thereby illuminating decision boundaries and making it easier to iden
tify and address underlying biases. Pro-hoc explanations, on the other 
hand, offer a set of alternative explanations for each possible outcome, 
rather than a single, post-hoc rationale. By leveraging example-based 
reasoning, this pro-hoc approach fosters what has been termed “fric
tional AI”, a deliberate introduction of interpretive friction that en
courages users to consider multiple plausible scenarios. In doing so, it 
can mitigate cognitive pitfalls like automation bias and over-reliance, 
ultimately promoting a more thoughtful engagement with AI recom
mendations. Together, counterfactual and pro-hoc explanations not only 
deepen our understanding of the relationships between inputs and 
outputs but also contribute to more trustworthy, user-aligned, and 
context-sensitive decision support systems [97].

Current algorithms may require modification to accommodate 
application resource limitations. Real-time systems, for example, require 
quick responses, while some mobile operating systems have very limited 
memory and processing capabilities, restricting them to run only 
resource-constrained applications. Thus, XAI algorithms should be 
developed with these computational constraints in mind. It is suggested 
that resource-intensive explanation methods should be used carefully, 
and alternative techniques should be considered if the application 
cannot afford high computational capabilities [98]. The use of Large AI 
(LAI) models to process large datasets has increased, showing significant 
performance improvements for several tasks [99]. While they demon
strate considerable potential for applications in several bioinformatics 
use cases but require further development to address challenges like 
limited interpretability and high computational demands. Therefore, the 
development of XAI algorithms that align with application and stake
holder requirements, consider unique data characteristics, and incor
porate domain knowledge for model design or result validation 
represents promising future directions for further progress in the bio
informatics field.

We also notice that it would be valuable to include a reflection on the 
potential misuse of XAI techniques, acknowledging that even well- 
intentioned attempts to make AI decisions more interpretable can be 

misapplied or misunderstood. For example, post-hoc XAI methods may 
rely on simplified surrogate models or heuristic explanations that do not 
fully capture the underlying complexity of the decision process, poten
tially introducing inaccuracies or misleading conclusions. In such sce
narios, stakeholders could be misled into believing they fully understand 
the model’s reasoning, when in fact the provided explanations might 
only scratch the surface. To mitigate these risks, one strategy is to 
consider self-explainable models i.e., models inherently designed with 
transparency in mind so that interpretability is not an afterthought but a 
fundamental characteristic of the approach. This shift can reduce the 
danger of oversimplified explanations and offer more robust, faithful 
insights into the model’s true decision-making criteria. Ultimately, 
careful consideration of when and how to apply XAI, along with ongoing 
dialog about its limitations, is critical to ensuring that interpretability 
efforts do not inadvertently compromise the integrity or trustworthiness 
of AI-driven decisions [100].

7. Validation and evaluation for XAI algorithms in 
bioinformatics

Several evaluation metrics for XAI have been proposed in the liter
ature; however, no standard evaluation measures have yet been uni
versally adopted across applications [12,15,24].

7.1. Human-based evaluation

Humans are involved in analyzing the quality of the explanation. 
Humans are hired to provide generic evaluation of explanations through 
crowdsourcing [14,15]. Although involving lay people is cost effective 
compared to expert evaluations, the evaluation of explanations may be 
less reliable due to their limited knowledge [15]. It can also be 
time-consuming due to the dependence on human evaluators [24]. 
Mental model, user satisfaction, user trust and human-AI task perfor
mance are some of the measures to evaluate explanations for AI novices 
[12].

Experts with domain-specific experience are involved in analyzing 
the quality of explanations. For instance, doctors with significant 
experience in the field are hired to assess the quality of AI-provided 
explanations [14,15]. Using expert evaluations is costly and 
time-consuming but more trustworthy than laypersons owing to the 
application specific experience of experts [15]. Although it can be more 
reliable than non-experts, it is not feasible for all scenarios due to 
resource-constraints.

7.2. Function-based evaluation

In function-based evaluation, proxy models are used to measure the 
quality of the explanation [14] with existing annotations are used to 
evaluate the explanations [15]. Correctness, completeness, and consis
tency of explanations are computational measures for evaluating XAI 
techniques [12]. Fidelity, contrastivity, stability, consistency, sparsity 
are some existing functional evaluation metrics [54,95]. The evaluation 
of XAI algorithms for bioinformatics applications involve several ap
proaches. One common method is to validate explanations using the 
known literature on gene biomarkers for specific diseases or using 
pathway discovery tools together with the existing literature on the 
identified pathways [36,41–43,47–49,68,101–103]. However, valida
tion of novel biomarker discoveries that are not widely recognized is 
often lacking [68]. Although some studies provide visual explanations 
by highlighting relevant regions of pathological images used for model 
predictions, these works lack quantitative measures [53,69,71,73,78, 
104–106]. Domain experts are involved in the validation process in 
several studies like [107–109]. Their expertise can help ensure the ac
curacy and relevance of the explanations provided by XAI algorithms. 
Some studies have introduced quantitative measures for evaluating ex
planations. For example, Lombardi et al. [110] involve experts at 
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different stages of model development, providing accuracy information 
and top features used for prediction based on user feedback. Krzyziński 
et al. introduced the Brier score [111,112] was introduced as a measure 
to assess the quality of the explanations. Korbar et al. [72] used the 
intersection over union between important regions of the image pro
vided by the XAI algorithm and the reference regions as an evaluation 
measure, although such references may not be available in all datasets. 
The most relevant first curve (MoRF) and Area over Perturbation Curve 
(AOPC) were used as quantitative evaluation measures by Kallipolitis 
et al. [79]. The authors assumed that randomly distorting the important 
regions should lead to a greater decrease in classification performance 
compared to non-important regions for design of evaluation measures. 
Macedo et al. [113] developed a novel metric for the evaluation of ex
planations to measure the tumor nuclei present in the important regions 
identified by Grad-CAM for the classification of breast cancer. The au
thors emphasized that the choice of evaluation metric is largely 
dependent on the problem requirements and suggested that users pri
oritize models with higher values for both classification accuracy and 
explanation evaluation metrics. Civit-Masot et al. [67] provide a report 
consisting of classification accuracy along with the pathology image, 
with highlighted regions identified by the algorithm as most important 
for prediction to aid doctors in explaining the results to patients. 
Springenberg et al. [77] used correlation with segmentation masks as a 
quantitative metric while Lamy et al. [108] used quantitative similarity 
between images as the evaluation metric.

Moreover, while lot of applications have focused on applications and 
evaluations primarily in supervised learning contexts, unsupervised 
scenarios which are integral to many biomedical research endeavors, 
pose distinct challenges for XAI evaluation, such as clustering, pattern 
recognition and association rules [114–116]. Without ground-truth la
bels, conventional metrics such as accuracy or F1-score are not directly 
applicable. Instead, evaluation often relies on human-centered methods, 
where domain experts assess the utility and interpretability of expla
nations, as well as concept-based approaches that examine whether 
inferred clusters or latent factors align with known biomedical concepts 
or structures. Surrogate models and prototype-based explanations can 
be used to approximate the underlying decision boundaries, enabling 
researchers to assess factors like fidelity and stability. Ultimately, 
evaluating XAI in unsupervised learning settings requires a more 
context-specific blend of expert input, conceptual relevance, and model 
fidelity to ensure that explanations are both meaningful and credible.

The choice of evaluation methods largely depends on the specific 
requirements of the application. Researchers commonly advocate for the 
development of standards for the validation of XAI explanations to 
ensure a comprehensive evaluation. Moreover, ground truth availability 
largely limits the choice of evaluation methods since annotations are not 
always available in datasets and involvement of experts to provide an
notations can be expensive. Additionally, the AI model used for the 
application and the XAI technique employed to explain the model 
functioning also play a crucial role in determining the appropriate 
evaluation metric. Fig. B.4 provides an overview of evaluation tech
niques for XAI applications and the associated challenges for ensuring 
holistic evaluation. Through our analysis we recognize that under
standing the purpose of the application, system and privacy constrains, 
and end-user requirements is critical to choose appropriate XAI model. 
We propose a flowchart for developers to facilitate the choice of XAI 
techniques in Fig. B.5.

8. Conclusion

In this work, we reviewed existing explainability works to gain 
deeper insights into XAI techniques in bioinformatics, with a specific 
focus on omics and imaging data. We discussed the current XAI methods 
used in bioinformatics along with their limitations and evaluation 
techniques from the perspective of distinct needs of the bioinformatics 
field. Through the review, we discovered it is crucial to consider the 

needs of the application and its users when developing XAI techniques. It 
is also important to use domain knowledge to validate explanations. 
Since there are no clear guidelines for choosing the appropriate XAI 
method, based on the review we propose guidelines that can aid users to 
select the appropriate XAI method.
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[67] Civit-Masot J, Bañuls-Beaterio A, Domínguez-Morales M, Rivas-Pérez M, Muñoz- 
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