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Abstract
Next-generation sequencing (NGS) technologies together with an improved access to compute performance led to a cost-
effective genome sequencing over the past several years. This allowed researchers to fully unleash the potential of genomic 
and metagenomic analyses to better elucidate two-way interactions between host cells and microbiome, both in steady-state 
and in pathological conditions. Experimental research involving metagenomics shows that skin resident microbes can influ-
ence the cutaneous pathophysiology. Here, we review metagenome approaches to study microbiota at this barrier site. We also 
describe the consequences of changes in the skin microbiota burden and composition, mostly revealed by these technologies, 
in the development of common inflammatory skin diseases.

Introduction

Skin is the largest human organ with a primary role in isolat-
ing body from the external environment (Fig. 1). The cutane-
ous barrier is a physical obstacle made up of dead, superfi-
cial keratinocytes (called corneocytes), and tight junctions 
that confer protection against environmental factors. Barrier 
integrity is also supported by immune cells, a plethora of 
antimicrobial peptides (AMPs), various soluble mediators, 
or low pH. In response to microbial stimuli, almost each cell 
type in the skin can participate in immune defense. Keratino-
cytes, fibroblasts, and sebocytes can secrete inflammatory 
mediators that support activation and migration of immune 
cells. That includes cytokines, chemokines, growth factors, 
proteases, and other agents modulating both innate and adap-
tive immune responses [1]. Acidic environment is necessary 
for the maintenance of antimicrobial protection of stratum 
corneum, the most superficial layer of the epidermis. Acidic 
pH creates suitable conditions for limiting growth of certain 
microorganisms, as well as provides appropriate environ-
ment to the synthesis and processing of epidermal lipids 
catalyzed by pH-dependent enzymes [2]. Lipids synthesized 

in epidermis and sebaceous glands, together with various 
skin-derived AMPs, protect skin from a broad range of 
microorganisms. These elements constitute a highly effec-
tive line of defense against pathogens [1] (Fig. 1).

The cutaneous microbiome forms one of the largest 
microbial ecosystems in the human body and is recognized 
as an essential contributor to the skin barrier function by 
regulation of microbial composition of the skin and function 
of immune system [1]. Skin residents shape microbial com-
munities through various strategies. These consist of compe-
tition for nutrients and space [3], production of antimicrobial 
factors [4, 5] and stimulation of secretion of host-derived 
AMPs [1, 6]. All that restricts growth of more invasive 
species. Moreover, microorganisms can amplify immune 
responses via activation of toll-like receptors (TLRs) [7] 
that lead to secretion of immune mediators (like cytokines, 
AMPs) [1, 8]. In addition, they are also involved in estab-
lishment of immune tolerance [9]. Given growing evidence 
that the skin microbiome is an integral component of healthy 
skin environment, any modifications in the composition of 
the microbial communities may contribute to a loss of a 
gentle balance in the skin and subsequently promote the 
development of skin diseases [10, 11].

In the past, all studies conducted to characterize micro-
bial content of skin tissue had to rely on traditional culture-
dependent techniques. However, such an approach overlooks 
a high number of unculturable microbes. These can be read-
ily detected nowadays using a metagenomic approach. This 
broad term refers to using modern genomic techniques for 
sequencing a large set of genes within a sample without a 
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need for isolation of individual species [12]. Metagenom-
ics enables deeper exploration of microbiome diversity and 
characterization of “microbial dark matter”—a collection 
of unknown species that cannot be cultured [13]. These 
approaches can lead not only to more comprehensive iden-
tification of bacterial species residing on skin but also reveal 
microbial response to specific stimuli at transcriptome level 
[14]. A number of conducted metagenomic studies have 
risen rapidly over the past 5 years. However, there are sev-
eral drawbacks associated with this technology. Research-
ers are confronted with a robust array of computer tools for 
analyzing their data. Lack of clear guidelines limits conduct-
ing high-throughput experiments as both environmental fac-
tors, sample processing and analysis methods can influence 
results. Therefore, findings stemming from metagenomic 
studies should be read with caution, especially if they stand 
in opposition to other results.

In this review, we briefly summarize the current NGS 
methods employed in metagenome studies as well as dis-
cuss recent findings on implications of changes in cutane-
ous microbiota on skin diseases. Here, we focused on three 
inflammatory disorders: acne vulgaris, atopic dermatitis, 
and psoriasis, in which specific microbial disturbances play 
important role in pathogenesis. Understanding how various 
skin disorders can be linked to the composition of cutaneous 
microbiome can help to modify current therapeutic strategies 

by implementation of probiotics, novel antimicrobials, or 
even microbiota transplants [15, 16].

Studying the Metagenome—Techniques 
and Approaches

Before emergence of NGS methods, the primary technique 
to study interactions between microbial species was based 
on culturing a limited set of microbial taxa in vitro [17, 18]. 
Such an approach, however, faced many issues. A vast por-
tion of microbes are unculturable, with others growing at 
rates different than those in situ. Therefore, these studies 
were both difficult to conduct and prone to errors [19].

Most recently, thanks to the advent of high-through-
put sequencing techniques, usage of bacteria culturing in 
metagenomic studies is no longer necessary. The experi-
mental weight has moved from culture method choices to 
proper sample collection, most adequate technique choice 
as well as unflawed raw data processing and results visu-
alization. Several different strategies can be employed in 
metagenomic studies, each with a different set of advantages 
and disadvantages.

Currently most widely used sequencing methods employ 
DNA amplification and library preparation of short (usually 
no longer than 300 bp) amplified segments [20] (Fig. 2). Those 

Fig. 1  Skin is the first line of 
defense against various microor-
ganisms. In order to achieve its 
primary function, skin consists 
of different layers, starting with 
microbes on the skin surface. 
These various bacteria create 
microbiome barrier, which 
secrete antimicrobial factors and 
contribute to the skin defense 
mechanisms. Keratinocytes in 
the epidermis, which constantly 
divide and differentiate into 
corneocytes, are a vital part of 
the skin physical barrier. These 
cells create a solid layer, inter-
connected by tight junctions, 
that faces the environment and 
holds back microorganisms. 
Shedding of the dead skin cells 
also helps to limit the num-
ber of microbes on the skin. 
Finally, the immune barrier in 
the dermis consists of different 
immune cells, which altogether 
with keratinocytes and fibro-
blasts sense the danger signals 
and produce various cytokines 
and antimicrobial peptides
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are then sequenced either by synthesis (SBS) or ligation [21]. 
In case of shotgun sequencing, sample DNA is first frag-
mented to achieve desired length. A sufficient representation 
of amplified fragments (depth of coverage) must be achieved 
in order for computer algorithms to successfully reassemble 
the sequences of interest [22]. Then, the sequenced data need 
to be further assigned into bins (binning) corresponding to 
their taxon ID in order to get the taxonomic diversity profile 
of a sample. Consequently, very similar sequences can be dif-
ficult to distinguish, mis-binned, or can be misidentified as 
sequencing errors. Notably, in contrast to gut microbiota, stud-
ies of cutaneous microorganisms are hindered by considerable 
contamination with host material. Given a relative low abun-
dance of microbial material on the skin, up to 90% of reads 
can originate from human cells.[23]. To combat this obstacle, 
enrichment techniques can be utilized during amplification or 
library creation [24, 25].

NGS Methods for Metagenomics Studies

16S rRNA Sequencing

Specific targeting of variable regions of 16S rRNA gene 
has long been a useful method in identifying bacterial 
species. Similar approach can be conveyed using NGS 
techniques. While parts of 16S rRNA gene are conserved, 
others, named hypervariable regions (denoted V1-V9), 
can act as phylogeny markers. 16S rRNA sequencing is 
one of the least expensive metagenomic approaches. In 
this method, primers targeting conserved sequences next 
to variable regions are used to amplify the variable parts. 
Amplicons are then sequenced, and the resulting reads 
are aligned to reference taxonomy database such as NCBI 
Taxonomy Database [26], SILVA [27], or Ribosomal 

Fig. 2  Overview of methods used in a typical whole shotgun (meta)
genomic sequencing study. a After sample collection and DNA 
extraction, genetic material needs to be fragmented. Generated short 
DNA fragments are all sequenced in parallel in the following step 
(sequencing by synthesis depicted, characteristic, e.g., for Illumina 
method). Resulting short reads need to be assembled in silico to 
create sufficiently long segments for gene annotation and/or whole-

genome assembly. For this, either database reference genome is used, 
or de novo assembly is conducted. In the next step, a variety of proce-
dures can be undertaken, including phylogenetic binning of resulting 
sequences. For the assembly to succeed, sufficient representation of 
genomes (depth of coverage) must be achieved within the short frag-
ment (b). Given high sample complexity (breadth of coverage), this 
aspect is especially important for metagenomic studies
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Database Project (RDP) [28]. Notably, downstream results 
can depend on the choice of reference database [29]. Fun-
gal composition can be studied in a similar way, with the 
Internal Transcribed Spacer 1 (ITS1) region as a target 
[30]. 16S rRNA sequencing uses a specific set of primers 
which minimizes the problem of a sample contamination. 
This method, however, can be prone to bias on multiple 
levels. First, more abundant species tend to be overrep-
resented, to a point where rare ones are hard to detect 
[31]. Moreover, depending on the choice of primers and 
sequenced regions, the results can be further skewed [32]. 
Additionally, 16S rRNA sequencing requires prior knowl-
edge of the microbial community (or, more precisely, raw 
result must match a sequence in a database for species 
identification). Lastly, the resolution is usually restricted 
to genus level and the amount of functional information 
provided by the analysis is limited [33]. All that makes 
targeted sequencing a first-choice method, especially for 
studies involving screening of microbiota composition.

Whole‑Genome Shotgun Metagenomics (WGS)

Unlike the previous approach, shotgun metagenomics does 
not target any specific sequences (hence “shotgun”) and 
aims to sequence all genomic material within the sample. 
It enables simultaneous study of the whole microbiome, 
including myco- and viro- biome. Amount of information 
can be sufficient for a strain-level resolution. Also, given 
an adequate depth of analysis, extracting functional infor-
mation is also achievable [34]. These vary depending on 
the aim of the study e.g.: from relative abundance of spe-
cific microbial species, search for novel genes in specific 
environments [35], to studying emergence of antibiotic 
resistance [36]. While WGS offers a greater insight into 
the microbiome, there are multiple challenges that need 
to be overcome. For instance, samples with low microbial 
content – such as skin swabs – often require enrichment 
methods to be employed as the vast majority of genetic 
material in such samples comes from the host, not the 
microbial cells. Without enrichment, metagenomic data 
analysis is much more computationally difficult and costly, 
if possible at all. These techniques are often based on 
selective lysis of eukaryotic cells during DNA isolation, 
or more sophisticated sorting of isolated DNA based on 
its specific traits—such as methylation pattern [37]. Such 
enrichment, however, can on its own introduce bias into 
sequencing data [38]. In contrast, gut microbiome sam-
ples usually need no enrichment as the bacterial content 
is high enough. Shotgun sequencing is much more com-
pute- and resource- intensive than a targeted approach. 
For data analysis various pipelines can be applied, usually 
using a mixture of de novo (prioritizing whole-genome 
assembly from sequenced data) or read-based profiling 

(where reads are compared to database sequences) [39]. 
Given data complexity, analysis tools are rapidly evolv-
ing, with novel approaches such as machine learning being 
employed [40]. Vast amount of information generated 
and superior resolution make this the preferred method 
for elucidating high-complexity microbial communities 
or for comparative studies. Some of the WGS problems 
might be resolved as the third generation of sequencing 
methods become more prevalent. For example, Pacific 
Biosciences’ or Oxford Nanopore Sequencing do not rely 
on amplification methods and instead offer single molecule 
sequencing. This in turn overcomes the short read limit 
and problems emerging from repeated sequence elements 
[41]. Consequently, the genome assembly is less compute-
intensive given it is easier to create a continuous genome 
assembly (contig) from longer fragments. These methods, 
however, are still characterized by a higher error read rate 
(a chance that a single nucleotide was misidentified) than 
2nd generation methods [42], requiring use of specific data 
processing that account for that fact while potentially mak-
ing them unviable for certain applications such as clinical 
diagnostics [43].

Transcriptomics

Both targeted sequencing and metagenomic shotgun 
approach focus solely on the DNA content of the studied 
sample. While this enables a detailed study of microbial 
phylogeny or most prevalent gene families, it carries lit-
tle information about functional aspects. Metatranscrip-
tomic approach instead focuses on sequencing the gene 
transcripts. On a most basic level, it provides insights into 
the sets of genes that are undergoing expression. Simi-
lar to a classical RT-qPCR approach, relative expression 
or changes in expression can also be studied. Like all 
other NGS methods, this approach has its shortcomings. 
Prokaryotic mRNAs are notoriously short-lived, making 
difficult to “freeze” an actual expression profile [44]. Fur-
thermore, lack of a specific sequence (like a poly-A tail) 
complicates amplifying all transcripts without any bias 
[45]. Contamination with host material can also pose a 
problem. Most of all, assigning specific transcripts to spe-
cific bacterial species may prove impossible as appropriate 
databases are limited. Despite such challenging charac-
teristics, metatranscriptomic approach is becoming more 
widely used [46, 47], even in the context of skin micro-
biome [14]. This novel approach allows for an in-depth 
host-microbiome interactions, specially in pathological 
conditions. On the other hand, sequencing of host mRNAs 
is already relatively easy and has been successfully used in 
a myriad of studies, for example, focused on host response 
to microbial colonization [48].
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Bioinformatic Approaches to Data Analysis

Another challenge of NGS studies is data analysis. Sole 
number of sequencing reads does not allow for manual 
inquiry, most notably a quality control. A series of opera-
tions is performed in sequence on the input data that together 
form what is referred to as a pipeline. A well-constructed 
pipeline is a foundation of a successful NGS experiment. 
The general steps involve: trimming and excluding low-qual-
ity reads, assembly of short reads into overlapping, consen-
sus sequences (contigs), alignment to database sequences, 
phylogeny and/or functional identification, statistical analy-
sis, and visualization [49]. From a practical standpoint, the 
implementation of pipeline design (how a researcher selects 
each step in data manipulation to achieve his/her needs) 
ensures a successful data analysis. Several methods to pipe-
line design have arisen. Each approach offers its pros and 
cons.

The most skill-intensive method involves custom pipe-
line assembly in languages like R or Python (and Linux 
environment) [50]. This method offers the greatest level of 
customization, including custom-made scripts, potentially 
offering the most precise answers to research hypothesis. 
However, there are also a number of shortcomings associ-
ated with this approach. Pipeline handling, customization, 
and maintenance—require skilled bioinformaticians to han-
dle updating. Furthermore, as team members rotate, it may 
become increasingly hard for new team members to maintain 
the custom solution, potentially leading to a need of a thor-
ough rewrite. While the software used in this approach is, 
for the most part, free from any license fees, the hardware (a 
workstation-class computer or an access to a computational 
shard) may constitute a major expense. Finally, custom 
approach is the most prone to errors in a standardization of 
data analysis, making it hard to reproduce results of other 
groups [51].

Another approach involves non-commercial packages like 
Quimme2 [52] or Galaxy [53]. These packages allow for a 
more streamlined data manipulation. They often offer graph-
ical user interface or ability to work from a web-browser 
level. Furthermore, most use readily available servers for 
data processing, making those tools virtually free to use. 
Notable downsides involve less room for customization, 
often limited pipeline selection, and limited space for data 
storage. Moreover, data processing may take a long time 
depending on existing server load time. Lastly, attractive 
data visualization often requires additional software tools 
to be employed, usually requiring at least basic knowledge 
of programming languages like R or Python.

As a response to the NGS boom, several commercial anal-
ysis platforms have emerged, with examples like Explify® 
[54] or Qiagen CLC Genomic Workbench [55]. These offer 
the most streamlined experience for a non-informatician, 

with relatively easy to setup pipelines, graphical user inter-
face, data visualization suite and potentially professional 
support. While the advantages are clear, the downside is a 
relatively high cost, often calculated on a per-analysis basis.

Given a tremendous amount of information generated in 
each NGS experiment, several notions of data storage and 
reusability have arisen. Several repositories are available 
like the NCBI Sequence Read Archive [56] or the European 
Bioinformatics Institute MGnify [57]. Reusing such datasets 
for further studies has been a major goal of novel scientific 
guidelines e.g.: the European Commission FAIR ecosystem 
[58].

NGS in Skin Microbiome Research

Over the past decade, largely as a result of metagenomic rev-
olution, an important role of the microbiomes on regulation 
of pathophysiological processes at barrier sites has emerged. 
The human microbiome research is mostly focused on the 
microorganisms colonizing the digestive system, where bac-
terial composition has been linked to multiple pathologies, 
such as inflammatory diseases, allergies, diabetes, obesity, 
cancers and depression [59]. Nevertheless, understanding 
the role of the cutaneous microbiota can shed a new light 
on variety of inflammatory skin diseases. Deciphering the 
composition of healthy cutaneous microbiome serves as a 
first step to explore mutual interactions between microbes 
and the host. Skin microbiota consists primarily of bacte-
rial, fungal and viral communities, with bacteria being the 
best characterized component of the human microbiome 
[60]. Healthy skin is predominantly colonized by bacteria 
from four phyla; Actinobacteria, Proteobacteria, Firmicutes 
and Bacteriodetes [3, 23, 61]. Bacteria mainly reside on the 
skin surface or within skin appendages [62, 63]. Because 
the distribution of appendageal structures differs across 
skin regions, so does the abundance of cutaneous bacteria. 
Moreover, chemical characteristics of these sites, such as an 
oily microenvironment of sebaceous glands, or a moist niche 
of sweat glands, favors growth of certain microorganisms 
over others, influencing taxonomic composition of bacterial 
communities across skin regions. For example, sebaceous 
sites are preferentially inhabited by Cutibacterium (formerly 
Propionibacterium) species, whereas Staphylococcus and 
Corynebacterium populate moist areas of the skin [61, 64, 
65]. Common dermatological disorders preferentially appear 
in specific skin sites, depending on chemical landscape of 
skin. For instance, atopic dermatitis tends to manifest on the 
inner bend of the elbow (moist region), whereas psoriasis on 
the outer part (dry region). For that reason, characterizing 
the composition of microbial communities in specific skin 
areas should provide better understanding of mechanisms 
that drive dermatological disorders [8, 61].
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Alterations of Microbiota in Skin Diseases

Skin is a heterogeneous ecosystem, where uneven distribu-
tion of glands and hair follicles creates, physiologically and 
topographically distinct, complex niches that are home to a 
wide range of microbes, preferring a variety of living con-
ditions. In healthy skin, microbiota harmoniously co-exists 
with the host. Under homeostatic conditions, well-balanced 
microbial communities support tissue health, while break-
down of this “peaceful” composition of microorganisms 
disrupts homeostasis, including immune regulation. As a 
result of alterations in microbiota burden and composition 
(referred to as a dysbiosis), altered immune responses might 
contribute to pathogenesis of skin diseases like psoriasis 
or atopic dermatitis [8, 66, 67]. For example, well-known 
pathogens, such as S. aureus inhabit the healthy skin often 
without much harm. Nonetheless when the epidermal bar-
rier and/or well-balanced microbial composition is dis-
rupted, the bacteria become more harmful [8]. The analysis 
of the most common cutaneous species between individuals 
showed strain-level variation [3, 65]. Phenotypic variability 
of the most abundant species is known to change in com-
promised skin [3, 60, 65, 68]. In such conditions typical 
skin commensals like Cutibacterium acnes or Staphylococ-
cus epidermidis, may show their contextual pathogenic-
ity. For instance, S. epidermidis is usually associated with 
positive outcomes for the host health through interactions 
with keratinocytes, immune cells and skin microbiota. This 
interplay promotes skin health by reducing inflammatory 
response, limiting a bacterial infection and stimulation of 
wound repair [69]. However, S. epidermidis represents com-
mon source of nosocomial sepsis, as a result of contami-
nation of medical devices. Most infections are caused by 
methicillin-resistant S. epidermidis, encoding peptide toxin 
PSM-mec that is equipped with sepsis-associated proinflam-
matory and cytolytic properties [70]. Likewise, C. acnes 
exhibits two-faced behavior, either protecting against host 
pathogens or leading to pathogenesis of acne vulgaris [71]. 
While it still remains obscure why and how benign bacte-
ria can switch to aggressive behavior, this behavior may be 
attributed to the horizontal gene transfer (HGT). Through 
distinct mechanisms, including conjugation, transduction 
or transformation, HGT is a source of genetic diversity for 
bacterial communities. For example, typical genes of staphy-
lococcal virulence ssaA and esxA as well as markers of HGT 
(transposases, integrases, and other phage-related genes) 
were found in psoriatic lesions. This phenomenon may help 
to explain mechanisms of transition in contextual pathogen 
behavior in the compromised skin [11].

On the other hand, whether imbalance in microbial 
composition is the cause or the effect of a disease is not 
well understood. Although still hypothetical, host factors, 
including AMPs, might be a potential missing link that can 

facilitate dysbiosis-dependent skin illnesses. AMPs serve 
as the first line of immune defense, sharing both antimi-
crobial and immunomodulatory properties. In skin, some 
of AMPs such as human β defensin 1 (hBD1) and RNase7 
are constitutively expressed to create antimicrobial barrier, 
while others are only induced in certain conditions, such as 
inflammation, infection, or injury. Specific upregulation of 
host AMPs in response to skin-associated bacteria seems to 
be beneficial for maintaining skin homeostasis via a direct 
antimicrobial action or a stimulation of immune response 
[72, 73]. However, overexpression of certain AMPs with 
immunomodulatory properties can trigger excessive inflam-
matory response. For example, peptide LL37, one of the 
best characterized member of the cathelicidin family, can be 
responsible for breaking tolerance to autoantigens through 
its ability to sense nucleic acids [1, 74]. Antimicrobial agents 
derived from psoriatic scales that include LL37, hBD2, and 
hBD3 are able to induce nucleid acid-dependent activation 
of plasmacytoid dendritic cells (pDC) and therefore con-
tribute to the pathogenesis of psoriasis [75]. In contrast to 
psoriatic skin, the content of specific AMPs, such as catheli-
cidins, hBD2, and hBD3, are reduced in atopic dermatitis. 
Innate antimicrobial barrier is postulated to be impaired by 
the Th2-derived cytokines that suppress the production of 
AMPs. Consequently, it facilitates extensive S. aureus colo-
nization of atopic skin [76, 77]. In acne, the upregulation of 
various AMPs promotes an excessive immune response that 
worsens skin condition [78].

Acne Vulgaris

Acne vulgaris (commonly called acne) is highly prevalent 
inflammatory disease of pilosebaceous unit (hair follicles 
and their accompanying sebaceous gland), characterized by 
comedones and pimples. Multiple factors are involved in 
pathogenesis of acne, involving abnormal sebum production, 
hyperkeratinization, and proinflammatory response to C. 
acnes [78]. C. acnes is one of the most abundant lipophilic 
species in sebaceous sites of the skin, capable of mediating 
skin protection against harmful microbes. For example, the 
free fatty acids generated by Cutibacterium spp. modify the 
pH and act directly as antimicrobial factors. C. acnes is thus 
regarded more likely as a beneficial cutaneous species that 
primarily promotes skin health [71, 79]. Nevertheless, it has 
been considered to be a pathogenic factor in acne devel-
opment for more than 100 years [80]. Recent studies have 
facilitated our understanding of the role of C. acnes in the 
pathogenesis of acne. Comparison of 16 rRNA collected 
from hair follicles of acne patients and healthy individu-
als demonstrated that relative abundance of C. acnes was 
similar in both groups of donors [81]. Another analysis of 
skin microbiome based on ultra-deep metagenomic shot-
gun sequencing identified more C. acnes in the follicular 
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microbiome of healthy individuals. In the same study acne 
patients were shown to have a slightly lower relative abun-
dance of C. acnes and related C. granulosum, whereas minor 
bacterial taxa were more prevalent [68]. Many conditions, 
including hypoxia or altered lipid metabolism, might influ-
ence host-microbiome interplay within the follicular micro-
environment that subsequently drive the disease progression 
[78]. Based on these, it was proposed that both, inflamma-
tion and reduction of Cutibacterium abundance can modify 
lesional skin in a way that favors colonization by non-com-
mensal species [68].

As was referred previously, diversity at strain level might 
be associated with more harmful phenotype of species nor-
mally considered as benign. Strain-specific sequence dif-
ferences were apparent when comparing C. acnes genome 
from affected and healthy individual samples [81]. Genome 
analysis of C. acnes showed that isolates from acne-suffering 
patients contain plasmid and chromosomal regions encod-
ing a number of genes involved in virulence [68, 81]. At 
the same time genomes derived from normal skin samples 
were instead enriched in unique genetic elements encod-
ing Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) and Cas proteins [81]. The CRISPR/Cas 
mechanism is well known to guard bacteria against inva-
sion by other foreign DNA, including phages and plasmids 
[82]. Together, those findings suggest that specific genetic 
elements determine passive and aggressive behaviors of 
commensal-like C. acnes [81]. In summary, acne vulgaris 
is the flagship example of a disease, where commensal 
bacteria can become pathogenic. Although the causes of 
pathogenic behavior of C. acnes are still largely unknown, 
recent findings uncovering the previously uncharacterized 
host–microbe interactions and strain-specific virulence 
determinants can help in better understanding of the role of 
Cutibacterium in acne.

Atopic Dermatitis

Atopic dermatitis (AD, atopic eczema) is a chronic inflam-
matory skin condition in which the epidermal barrier is 
impaired. AD pathogenesis has been attributed to complex 
interactions among genetic, environmental, immunological, 
and microbial factors that trigger Th2-mediated skin inflam-
mation [83]. The decreased diversity of microbial commu-
nity on the skin surface along with overrepresentation of S. 
aureus are considered as key determinants of AD [83–85]. 
Depending on the disease state, specific bacterial shifts were 
found in both non-inflamed and inflamed AD skin. Exami-
nation of non-inflamed skin samples from AD-susceptible 
individuals showed elevated representation of Streptococcus 
(including α-haemolytic species), Gemella, Veillonella and 
Haemophilus. The majority of these species are known as 
components of commensal oral microbiota, but under certain 

conditions can act as opportunistic pathogens. The impact 
of these species on AD pathology remains unknown; none-
theless, they could play a role in sensitizing the immune 
system in the skin [86]. AD severity was associated with 
predominance of Staphylococcus species, particularly S. 
aureus and S. epidermidis [60, 66]. S. aureus was the abun-
dant species in severe AD, while S. epidermidis was found 
in patients with mild to moderate AD. Inflamed AD skin 
was colonized with a single clade of S. aureus, in contrast to 
heterogeneous communities of S. epidermidis in individuals 
with a less severe AD [60]. Dominance of S. aureus in AD 
subjects was correlated with decreasing abundance of coag-
ulase-negative staphylococci that are capable of producing 
antimicrobials against S. aureus [5]. Analysis of microbiota 
collected from infants showed that early skin colonization by 
commensal staphylococci might protect from development 
of AD [87]. S. aureus harbors numerous components that 
enhance adhesion to skin surface or damage the epidermal 
barrier. This binding is mediated by the bacterial adhesins 
that interact with host fibronectin and fibrinogen [83, 84]. 
Overgrowth of S. aureus, as well as its toxins could induce 
immune response through T cells, macrophages, and mast 
cells’ activation [84]. Of note, enhanced S. aureus skin colo-
nization is correlated with upregulation of Th2 cytokines -a 
characteristic feature of atopic inflammation. Analysis of 
cytokine profile shows that clinical isolate of S. aureus from 
AD skin shifts the Th1/Th2 balance toward Th2 response, 
whereas laboratory strain of S. aureus or S. epidermidis are 
more likely to stimulate Th1 response [88]. Taken together, 
these datasets suggest that in atopic skin, Staphylococcus 
spp. play opposite roles—exacerbating disease symptoms 
or inhibiting AD pathogenesis. Collectively, these studies 
confirm the overrepresentation of S. aureus as a key bacte-
rial microbiota component involved in the pathogenesis of 
atopic dermatitis.

Psoriasis

Psoriasis (PS) is a chronic inf lammatory skin dis-
ease characterized by keratinocyte hyperplasia, altered 
keratinocyte differentiation, as well as a dense skin leuko-
cyte infiltrate. In contrast to AD, where Th1/Th2 balance 
is shifted toward Th2-type immune response, the devel-
opment of psoriasis is mediated by aberrant activation 
mostly of Th17 cells and also Th1 cells [89, 90]. Dysreg-
ulation of interactions between immune cells, keratino-
cytes, and environmental factors, including microbiota, 
has been implicated in pathogenesis of psoriasis [90]. 
Unlike the inflammatory diseases discussed above, the 
role of microbial alterations in psoriasis is much less 
understood. Up to date, several reports described distur-
bances in microbiota composition specific to psoriatic 
skin. However, these reports vary in defining microbial 
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signature associated with this disease. Lack of the com-
mon, well-defined microbial pattern in psoriasis indi-
viduals, could be at least partly attributed to differences 
in experimental design reported in these studies, includ-
ing sampling methods, sequencing methods, as well as 
sampling sites that involve both sebaceous and dry skin 
regions [91].

Taxonomic variety of psoriasis-associated microbiota 
is still under debate. For example, an increased hetero-
geneity in psoriasis-associated microbiota was observed 
when compared to healthy skin [10]. Moreover, psori-
atic skin was reported to be readily colonized by poorly 
characterized, unknown microbes [11]. In contrast, an 
opposite correlation was also reported, where decreased 
bacterial diversity was observed in psoriatic skin com-
pared to normal skin [92, 93]. Other studies did not show 
significant difference among skin biopsies obtained from 
healthy donors and individuals with psoriasis [94]. When 
taking different skin microenvironments into account, 
species diversity was reduced in the sebum-rich areas of 
psoriatic lesions when compared to healthy skin, with dry 
sites bore similar microbial variety [11].

Dysbiosis of the psoriasis-associated skin microbiome 
was more apparent at the genus level. The main changes 
involved Staphylococcus, Streptococcus and Cutibac-
terium burden [10, 92–94]. Streptococcus species were 
found to be overrepresented in lesional skin. Additionally, 
the ratio of Streptococcus/cutibacteria was also elevated 
in psoriatic patients [93, 94]. High abundance of C. acnes 
in healthy skin was shown to negatively correlate with 
abundance of several other bacteria, including various 
staphylococci. Some studies highlight the role of Staphy-
lococcus spp. in psoriasis [10, 89]. It was reported that 
S. aureus and two additional Staphylococcus species, S. 
sciuri and S. pettenkoferi were more abundant in psoriatic 
patients, whereas S. epidermidis preferentially colonized 
healthy skin [10]. Overrepresentation of S. aureus in 
skin collected from psoriasis patients suggests a poten-
tial link of these bacteria with pathogenesis of psoriasis. 
This is supported by the reports that in vitro exposition 
of T cells to S. aureus-derived antigens promotes associ-
ated with psoriasis Th17-based immune response [95]. 
Given important role of Th17 lymphocytes in the immu-
nopathogenesis of psoriasis [89] and a recent finding that 
S. aureus can trigger Th17 polarization of  CD4+ T cells 
during skin colonization in newborn mice, a potential 
involvement of S. aureus in pathogenesis of psoriasis 
is plausible [10]. To conclude, the microbial shift that 
occurs in psoriasis is associated with decrease in benefi-
cial species at the expense of less friendly ones, like S. 
aureus. Nevertheless, specific impact of these species on 
PS development is yet to be fully elucidated.

Conclusion

Novel approaches to studying microbial communities, espe-
cially focused on metagenomics, helped to shed a new light 
onto microbiome-host interactions. As discussed in previous 
sections, skin disorders are associated with modifications 
in the cutaneous microbiota patterns. It has become appar-
ent that classifying specific bacterial species as a pathogen 
or a commensal depends on the context. Interactions with 
host cells or strain-specific differences can control microbe 
switch from passive to downright aggressive behavior. Using 
transcriptomic analysis, as well as re-analysis, can help to 
elucidate which genes are important to chronic inflamma-
tory diseases. In conclusion, while a great progress has 
been made in skin microbiome research, specific microbial 
signatures that can mechanistically explain pathogenic skin 
conditions or serve as diagnostic markers in inflammatory 
skin disorders remain to be fully characterized. However, 
classical in vitro and in vivo studies supplemented by vast 
data from transcriptomic and NGS can rapidly facilitate 
understanding the role of skin microbiome in the develop-
ment of chronic skin inflammatory diseases.
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