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RNA-binding proteins (RBPs) play a significant role in multiple cellular processes with their
deregulations strongly associated with cancer. However, there are not adequate
evidences regarding global alteration and functions of RBPs in pancreatic cancer,
interrogated in a systematic manner. In this study, we have prepared an exhaustive list
of RBPs from multiple sources, downloaded gene expression microarray data from a total
of 241 pancreatic tumors and 124 normal pancreatic tissues, performed a meta-analysis,
and obtained differentially expressed RBPs (DE-RBPs) using the Limma package of R
Bioconductor. The results were validated in microarray datasets and the Cancer Genome
Atlas (TCGA) RNA sequencing dataset for pancreatic adenocarcinoma (PAAD). Pathway
enrichment analysis was performed using DE-RBPs, and we also constructed the
protein–protein interaction (PPI) network to detect key modules and hub-RBPs.
Coding and noncoding targets for top altered and hub RBPs were identified, and
altered pathways modulated by these targets were also investigated. Our meta-
analysis identified 45 upregulated and 15 downregulated RBPs as differentially
expressed in pancreatic cancer, and pathway enrichment analysis demonstrated their
important contribution in tumor development. As a result of PPI network analysis, 26 hub
RBPs were detected and coding and noncoding targets for all these RBPs were
categorized. Functional exploration characterized the pathways related to epithelial-to-
mesenchymal transition (EMT), cell migration, and metastasis to emerge as major
pathways interfered by the targets of these RBPs. Our study identified a unique meta-
signature of 26 hub-RBPs to primarily modulate pancreatic tumor cell migration and
metastasis in pancreatic cancer. IGF2BP3, ISG20, NIP7, PRDX1, RCC2, RUVBL1,
SNRPD1, PAIP2B, and SIDT2 were found to play the most prominent role in the
regulation of EMT in the process. The findings not only contribute to understand the
biology of RBPs in pancreatic cancer but also to evaluate their candidature as possible
therapeutic targets.
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BACKGROUND

Pancreatic cancer is one of the most morbid cancer types
worldwide and is mostly diagnosed at a very advanced stage
with a 5-year survival rate of 8.2% (Gordon-Dseagu et al., 2018).
Recent studies have identified several mutations to be
predominant in different pancreatic cancer subtypes, and
about 80% of these mutations are found to be sporadic
(Feldmann et al., 2007; McGuigan et al., 2018). Pancreatic
cancer is a heterogeneous disease with aberrant gene
expression patterns like any other cancer. Therefore, in order
to understand the biology of the disease, altered regulatory events
need to be portrayed at the level of gene to RNA to protein to
signaling pathways of the cell.

After the expression of the genes, the roadway to the
functionality of the transcripts is highly regulated at the
posttranscriptional and translational level. RNA-binding
proteins (RBPs) are an integral part of this regulatory
machinery participating in all the cellular processes. RBPs
exert multi-functionality in directing the fate of the
transcripts such as splicing, stability, translocation,
translation, and decay (Neelamraju et al., 2015). A
transcript interacts with different RBPs at different stages
of life, and its fate and functionality is decided accordingly.
Canonical RBPs bind to the RNAs in a sequence-specific
manner with the help of RNA-binding domains (RBDs) and
form dynamic ribonucleoprotein (RNP) complexes to execute
the regulatory function. RBPs can bind at the coding region of
the mRNA, but it is more prevalent in the regulatory elements
of the RNA such as the 5′ and 3′ untranslated regions (UTRs)
and in the alternative UTRs of mRNA isoforms during RNA
processing (Wurth and Gebauer, 2015). There are also
evidences of RBP interaction with the regulatory non-
coding RNAs such as lncRNAs and miRNAs to form more
complex regulatory networks. Sometimes few
unconventional RBPs act as “mRNA clothes,” to expose or
hide specific coding and non-coding parts of an mRNA in
order to drive its activity (Singh et al., 2015; Hentze et al.,
2018). Being such a pivotal player of the regulatory
mechanism, the level of RBPs in a cell should be precisely
regulated. So, any alterations in the expression and alteration
in function due to mutation in the binding site of RBPs can
break the homeostasis and lead the cell toward oncogenesis
and several other diseases. There is numerous evidence of
modulation of normal repertoire of RBP in a cell in several
cancer types (Kechavarzi and Janga, 2014). For example,
overexpression and promoter mutation of TERT are
prevalent in several types of cancer such as melanoma,
cholangiocarcinoma, lung squamous cell carcinoma, and
adrenocortical carcinoma (Colebatch et al., 2019). ELAVL1
is a well-reported oncogenic RBP that is found to induce
tumorigenesis by facilitating the translation of several growth
factors and proto-oncogenes (Abdelmohsen and Gorospe,
2010; Wang et al., 2013a). Reappearance of oncofetal
proteins of the IGF2BP family is a major posttranscriptional
driver of oncogenesis in many aggressive cancer types (Bell et al.,
2013). The RNA-binding protein FXR1 also has diverse roles in

cancer progression by means of cell proliferation and
viability (Jin et al., 2016; Fan et al., 2017). Ribosomal
proteins control tumor suppression via activation of p53,
and deletion (43% of tumors) and mutation in genes
encoding ribosomal proteins such as RPL22 are evidenced
in several cancer types such as acute lymphoblastic leukemia
(Sloan et al., 2013; Pelletier et al., 2018; Lessard et al., 2019).
There are evidences of some onco-ribosomes as well like
RPL10-R98S mutation in T-cell leukemia mimicking the
oncogenic JAK-STAT pathway (Sulima et al., 2017; Girardi
et al., 2018).

Recent studies have corroborated that RBPs are highly
predominant and ubiquitously expressed than any other
regulatory elements throughout the cell (Wang et al.,
2018). But as opposed to other cancer types, dysregulation
of RBPs in the case of pancreatic cancer is not much worked
out. With the recent advancement of knowledge about the
multifaceted role of RBPs in cancer progression and keeping
in mind the aggressive nature of pancreatic cancer, the
disparity of RBPs in pancreatic cancer development needs
to be explored. Here, at the beginning, we have performed a
meta-analysis to identify the differentially expressed RBPs in
pancreatic cancer and validated them in a separate validation
dataset as well as in the Human Protein Atlas (Uhlén et al.,
2015). This was followed by the identification of “hub” RBPs,
finding out their coding and noncoding targets, and
exploration of biological processes supposed to be altered
by the deregulation of both the RBPs and their targets. Our
discovery of RBPs getting involved in important oncogenic
activities not only contributes to the existing knowledge but
also opens up immense therapeutic possibilities.

METHODS

Enumeration of Human RBPs
A comprehensive list of 1,542 manually curated RBPs by
Gerstberger et al. (2014) was the fundamental source of RBP
in our entire list of RBPs. Additionally, we downloaded a list
of RBPs from the RBPDB database under the category “Homo
sapiens” (Cook et al., 2011). Moreover, an extensive search
from literature resulted in a number of RBPs (Galante et al.,
2009; Kechavarzi and Janga, 2014; Neelamraju et al., 2018).
We also considered RBPs from high-throughput studies
involving cross-linking, mass spectrometry, etc., and a
common set of proteins from these studies yielded few
additional RBPs (Baltz et al., 2012; Castello et al., 2012).
We finally could catalogue an exhaustive list of 1,623 RBPs
(Supplementary Table S1). We obtained the Entrez IDs of
these RBPs using the “org.Hs.eg.db” package of
Bioconductor, and missing Entrez Ids from the package
were added to the list by manual search.

Selection of Microarray Datasets
The PDAC microarray gene expression datasets used in this
study for meta-analysis were obtained from Gene Expression
Omnibus (GEO) (Barrett et al., 2013). We used the keywords
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“pancreatic cancer”, “pancreatic adenocarcinoma,” and
“pancreatic ductal adenocarcinoma” and selected only the
datasets that contained information on pancreatic tumor and
normal tissues of human patients. We selected five datasets
for meta-analysis of the discovery cohort containing
information of 241 pancreatic tumor tissues and 124
normal pancreatic tissues (Badea et al., 2008; Park et al.,
2014; Janky et al., 2016; Yang et al., 2016; Chhatriya et al.,
2020). Two additional datasets were chosen for meta-analysis
in the validation cohort with 60 pancreatic tumor samples
and 35 normal pancreatic samples (Ellsworth et al., 2013;
Klett et al., 2018). Detailed information on these datasets is
provided in Table 1. For validation of the RBPs in the EMT-
induced pancreatic cancer cell line, a microarray gene
expression dataset (GSE23952) was chosen from GEO. The
dataset provides the gene expression profile of TGF-
beta–induced epithelial–mesenchymal transition (EMT) in
the pancreatic cancer cell line (Panc-1) compared to the
normal Panc-1 cell line (Maupin et al., 2010).

Meta-Analysis
Series matrix files of the datasets were downloaded from
GEO, and information for only 1,623 RBPs was extracted
from Log2-transformed processed data. Each dataset having
the number of RBP probes is mentioned in Table 1. All the
gene and probe IDs were converted to their corresponding
Entrez IDs, and expression values of the same Entrez ID were
aggregated with their mean value. All five microarray datasets
of the discovery cohort were integrated and merged, and the
corresponding combined expression set was made using the
“Biobase” package of R Bioconductor. To remove batch
effects among the datasets, batch correction was performed
using “ComBat” function of the R Bioconductor package
“sva.” Normalized data were used for the calculation of
differential expression of genes in pancreatic tumor tissue
compared to normal pancreatic tissue as controls.
Differential expression analysis was performed using the
“Limma” package of R Bioconductor (Ritchie et al., 2015).
The Benjamini–Hochberg correction method was used
minimize the false discovery rate (FDR). Genes with
adjusted p-value below 0.05 and fold change (log2) cutoff
of 0.5 were considered as differentially expressed genes.

Validation
Microarray datasets GSE16515 and GSE101448 were used for
validation of the DE-RBPs from the discovery cohort. Meta-
analysis of these two datasets was performed as described
previously, and differentially expressed RBPs below the
adjusted p-value cutoff 0.05 were considered for validation.
For validation, TCGA pancreatic adenocarcinoma (PAAD)
RNA-sequencing data were also used. Differentially
expressed genes from RNA-sequencing were downloaded
from the GEPIA and used for validation with adjusted
p-value cutoff of <0.01. The computation of differential
gene expression from the microarray dataset of EMT-
induced Panc-1 cell line (GSE23952) was performed using
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/). DEGs
with p-value below 0.05 were considered as significant. The
TNMplot (https://www.tnmplot.com) database was used to
compare gene expression of selected RBPs in normal, tumor,
and metastatic tissues (Bartha and Győrffy, 2021). Gene chip
data of the pancreas from the database were taken into
account for the validation. We have also used The Human
Protein Atlas to obtain tissue specific expression pattern of
specific RBPs. For example, for IGF2BP3, normal pancreatic
image was accessed using: https://www.proteinatlas.org/
ENSG00000136231-IGF2BP3/tissue/pancreas, while pancreatic
cancer image was accessed using: https://www.proteinatlas.org/
ENSG00000136231-IGF2BP3/pathology/pancreatic+cancer.

Pathway Over-Representation Analysis
To explore the potential biological functions and molecular
mechanisms modulated by the DE-RBPs and their coding
target RNAs, we used Gene Ontology (GO) enrichment which
comprises three major domains: biological process (BP),
molecular function (MF), and cellular component (CC)
(Ashburner et al., 2000). GO over-representation analysis
was performed using the clusterProfiler package of R (version
4.0.3) with the significance threshold of p-value <0.05 (Yu
et al., 2012). Kyoto Encyclopedia of Genes and Genomes
(KEGG) is an integrated data resource for systematic analysis
of gene functions (Kanehisa and Goto, 2000). KEGG pathway
assignment was performed by Enrichr (https://maayanlab.
cloud/Enrichr/), a web-based server for gene enrichment
analysis (Kuleshov et al., 2016). Pathway enrichment for

TABLE 1 |Mircoarray dataset information from GEO used for meta-analysis. The top five datasets are used for meta-analysis of the discovery cohort, and last two datasets
are used for meta-analysis of the validation cohort.

Dataset type Dataset ID No. of
tumor sample

No. of
normal sample

No. of
RBP probes

Platform References

Discovery set GSE15471 36 36 1,512 Affymetrix Human Genome U133 Plus 2.0 Array Badea et al. (2008)
GSE43797 7 5 1,617 Illumina HumanHT-12 V4.0 expression beadchip Park et al. (2014)
GSE62165 118 13 1,588 Affymetrix Human Genome U219 Array Janky et al. (2016)
GSE62452 69 61 1,510 Affymetrix Human Gene 1.0 ST Array Yang et al. (2016)
GSE143754 11 9 1,545 Affymetrix Human Transcriptome Array 2.0 Chhatriya et al. (2020)

241 124
Validation set GSE16515 36 16 1,512 Affymetrix Human Genome U133 Plus 2.0 Array Ellsworth et al. (2013)

GSE101448 24 19 1,617 Illumina HumanHT-12 V4.0 expression beadchip Klett et al. (2018)
60 35
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lncRNA targets of the RBPs was performed employing the
LncSEA database (http://bio.liclab.net/LncSEA/index.php), a
powerful platform for lncRNA enrichment analysis functions
(Chen et al., 2021). DE-RBPs and their coding target RNAs
were separated according to their upregulated and
downregulated expression pattern in PDAC, and pathway
analysis was performed separately for upregulated and
downregulated groups in each category.

Protein–Protein Interaction Network
Construction and Module Screening
Validated 60 differentially expressed RBPs were mapped to
the STRING database (https://string-db.org/), and the
protein—protein interaction network was built with the
genes of the combined score ≥0.4 (medium confidence
score) (Szklarczyk et al., 2017). Then, Cytoscape software
(v3.8.2) was used to visualize the interaction network
(Shannon et al., 2003). The significant gene module of the
network was detected by the Molecular Complex Detection
(MCODE) plugin of Cytoscape with the following criteria:
degree cutoff � 2, node score cutoff � 0.2, k-core � 2, and
maximum depth � 100 truncation standard to comprehend
the network (Bader and Hogue, 2003). Furthermore, to screen
out the hub genes of the network with the highest degree of
connectivity, the cytoHubba plugin of Cytoscape was used,
and the top five genes from each algorithm of the analysis
were together considered hub genes (Chin et al., 2014).

Identification of RNA Targets for Selected
RBPs
Targets of the RBPs, mainly those conventional RBPs that
were being experimented for a long time with respect to their
RNA-binding property, were derived primarily by extensive
search in literature. Our next approach was to explore
databases such as RNAInter (http://www.rna-society.org/
rnainter/) and RNAct (https://rnact.crg.eu/), which
contains information of RNAs and their interacting
proteins. RNAInter (RNA Interactome Database) includes
information on RNA-protein interactions based on strong
and weak (high-throughput) experimental evidence and
prediction algorithms (Lin et al., 2020). But, all the
selected RBPs did not have experimentally validated
targets and thus we also considered their targets derived
from the computational prediction method. As, RNAInter
does not have information for all the RBPs, we relied on the
RNAct database for predicted target RNAs of the concerned
RBPs (Lang et al., 2019). We also looked for target RNAs in
the CLIP-sequencing database, CLIPdb (http://lulab.life.
tsinghua.edu.cn/postar3/RBP.html) for protein-RNA
interactions (Yang et al., 2015). Additionally, we had
explored the CircInteractome database (https://
circinteractome.irp.nia.nih.gov/) to investigate the
interaction of RBPs with circular RNA (Dudekula et al.,
2016).

RESULTS

Meta-Analysis Identified Differentially
Expressed RBPs in Pancreatic Cancer
Importance of the dysregulation of RBPs in cancer and the
ambiguity of oncogenic RBPs as reported in different studies
led us to perform a meta-analysis of multiple microarray
datasets. The overall objective was to find out differentially
expressed RBPs in pancreatic cancer resulting out of gene
expression data from 241 tumor tissues and 124 normal
pancreatic tissue samples. We initiated the process by
analyzing the expression of 1,623 RBPs in these five
different microarray datasets as the “discovery cohort”
(Table 1), and our meta-analysis yielded a set of 49
upregulated and 21 downregulated RBPs (adj. p-value <
0.05, |log2FC| > 0.5). Detailed information on differential
expression of these RBPs is summarized in Supplementary
Table S2.

Validation of Meta-Analysis Result
In order to have more confidence in our findings, we further
wanted to validate the differentially expressed RBPs from the
discovery set separately in a validation meta-analysis set of
the two microarray datasets (adj. p-value <0.05) (60 tumor
tissues and 35 normal pancreatic tissue samples) and TCGA
RNA-sequencing data of pancreatic ductal adenocarcinoma
(PAAD) from GEPIA (adj. p-value <0.01) (179 tumor tissues
and 171 normal pancreatic tissue samples) (Supplementary
Figure S1). Finally, 45 upregulated and 15 downregulated
RBPs in PAAD got validated following such stringent
conditions (Supplementary Table S3). While the volcano
plot demonstrates the distribution of validated upregulated
and downregulated RBPs in Figure 1A, the heatmap portrays
the expression profiles of 60 differentially expressed RBPs (45
upregulated and 15 downregulated) in the validation
microarray dataset (Figure 1B). Hence, we report 60 RBPs
having significantly altered expression in pancreatic cancer.
Interestingly, we observed that there are reports of mutations
and copy number variation in PAIP2B, PRDX1, RNASE1,
BARD1, UHMK1, and RPL3L genes associated with
pancreatic cancer (Bartsch et al., 2005; Barton, 2016; Tang
et al., 2017; Wang et al., 2017; Alimirzaie et al., 2018; Grant
et al., 2018). The finding further strengthens the importance
of RBPs in pancreatic cancer.

Next, to have an idea about the most altered RBPs, we
applied a fold change cutoff of |log2FC| > 1.0 to the validated
DE-RBPs identifying IGF2BP3 and DDX60 as the most
upregulated and PAIP2B, AZGP1, PDCD4, SIDT2, and
RNASE1 as the most downregulated DE-RBPs in PDAC.
We thought that an excellent way to validate the
expression of these RBPs would be to check whether these
proteins were also altered in PDAC patients. Therefore, the
expression of those RBPs at the protein level in pancreatic
tumor tissues and normal pancreatic tissues were further
investigated using immunohistochemical data from the
Human Protein Atlas database. While the results for the

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7138524

Mukherjee and Goswami RBPs Modulate EMT in Pancreatic Cancer

http://bio.liclab.net/LncSEA/index.php
https://string-db.org/
http://www.rna-society.org/rnainter/
http://www.rna-society.org/rnainter/
https://rnact.crg.eu/
http://lulab.life.tsinghua.edu.cn/postar3/RBP.html
http://lulab.life.tsinghua.edu.cn/postar3/RBP.html
https://circinteractome.irp.nia.nih.gov/
https://circinteractome.irp.nia.nih.gov/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


top altered RBPs are shown in Figure 2, we found similar
changes for other RBPs too. The similarity of the expression
pattern of these RBPs in these patient-derived tissues to that
of our transcriptome meta-analysis results further validated
our finding.

Functional Enrichment of DE-RBPs
Next, we wanted to find out what effects these altered RBPs
could bring about in pancreatic cancer development and
progression. To assess that, the first step would be to
perform GO term enrichment and KEGG pathway analysis

of DE-RBPs depicting their role in distinct biological
functions and pathways. The enriched biological process
(BP) section of GO displayed the immunomodulatory
activity of the upregulated DE-RBPs, and the molecular
function (MF) division showed that these RBPs are mainly
associated with double-stranded RNA-binding, nuclease
activity, translation regulation, and mRNA UTR binding
(Figure 3A). On the other hand, downregulated DE-RBPs
mainly exhibit phosphodiester bond hydrolysis and mRNA
editing function in the BP category and stand for nuclease
activity and transmembrane transport in the MF category

FIGURE 1 | Expression pattern of DE-RBPs in pancreatic cancer. (A) Volcano plot showing significant DE-RBPs in the discovery dataset where red and green
triangles denote validated upregulated and downregulated RBPs, respectively. (B)Heatmap of 60 validated DE-RBP expression in the tumor and normal tissue samples
of the microarray validation dataset. Red indicates high expression and green indicates low expression.
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(Figure 3B). Additionally, KEGG pathway analysis also
indicated the involvement of upregulated RBPs in response
to viruses such as those causing hepatitis C, influenza, and
measles and in the NOD-like receptor signaling pathway
which is known as a master regulator of inflammation and
cancer (Saxena and Yeretssian, 2014) (Figure 3C). KEGG
pathways linked to downregulated RBPs illustrate their role
in protein processing, autophagy, mitophagy, and apoptosis
(Figure 3D). To summarize, all the over-represented
pathways either directly or indirectly substantiate the
important contribution of the DE-RBPs in the
pathophysiology of PDAC. The complete list of altered
pathways is presented in Supplementary Table S4.

PPI Network Construction and
Identification of Significant Gene Modules
Leading-edge research emphasizes higher-order interactions
between RBPs to enact the combinatorial regulation of specific
mRNAs and coordinate complex cellular processes (Sternburg
and Karginov, 2020). To have a comprehensive insight into those
intricate regulatory networks between DE-RBPs, a PPI network
was formed using the STRING database and visualized with
Cytoscape Software_v3.8.2. The network resulted in 44 nodes
and 87 edges where blue indicated upregulated RBPs and yellow
indicated downregulated RBPs (Figure 4A). The MCODE plugin
was used to find the highly interconnected regions in the main
network, and two significant gene cluster modules were obtained
(Figures 4B,C). To recognize the important hubs or nodes in the

interactome network, the cytoHubba plugin was used where hub
genes were ranked by 12 topological algorithms. We used the top
five genes calculated from each algorithm, and totally 20 genes
were identified as the key hub genes of the network among which
EIF2AK2, RNASEL, ISG20, IFIT1, and OASL were found to
overlap in at least five methods (Supplementary Figure S2).
Hence, these 20 hub genes were used in subsequent analyses with
18 genes being upregulated and 2 genes being downregulated.

Identification of Coding and Noncoding
Targets of Selected RBPs
Overall physiological functions of RBPs are governed by the type
of RNA they bind with and also by the subsequent fate of those
RNAs as determined by the RBPs themselves and other associated
factors. MRNAs are undoubtedly the most characterized targets
of RBPs, while recent discoveries of various types of noncoding
RNAs and their interaction with RBPs also carry crucial
functional significance. Hub genes along with the top altered
DE-RBPs (|log2FC| > 1.0) (DDX60 and IGF2BP3: upregulated,
PAIP2B, AZGP1, PDCD4, SIDT2, and RNASE1: downregulated)
(Table 2) were taken forward for target RNA identification. The
targets of these 26 RBPs; identified from literature, strong and
weak experimental evidences, and bioinformatic prediction were
divided into coding and noncoding categories. Noncoding RNAs
were again subdivided into two categories based on their length.
Long noncoding RNA groups consisted of lncRNAs and
lincRNAs, pseudo-gene RNAs, circular RNAs, and few
processed transcripts whereas miRNAs, snoRNAs, and
scaRNAs constituted the group of small noncoding RNAs.

FIGURE 2 | Representative Immunohistochemistry images showing expression of top-altered DE-RBPs in respective pancreatic tissues from the Human Protein
Atlas Database. Upper panel shows the images of top overexpressed DE-RBPs and the lower panel shows images of most underexpressed DE-RBPs.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7138526

Mukherjee and Goswami RBPs Modulate EMT in Pancreatic Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Only the coding and long noncoding transcript targets that were
differentially expressed in PDAC (GEPIA) were selected.
However, the expression of small noncoding RNA targets
could not be validated due to poor availability of data. A total
of 203 coding targets were identified for 26 RBPs (Supplementary
Table S5). We were able to identify 418 long noncoding target
RNA information for 20 RBPs and small noncoding RNA
information could be retrieved for 7 RBPs only
(Supplementary Table S6).

Target RNAs Drive Key Oncogenic
Pathways
As mentioned before, the function of an RBP depends on the
target RNAs it interacts with and hence, the pathways or
biological processes modulated by these targets largely
determine the role of the RBP in general; both in normal
physiological conditions as well as in the diseased state.
Therefore, it is imperative to explore the functions of both the
coding and noncoding targets identified for our selected RBPs.
Upregulated coding RNA targets underwent GO term
enrichment and KEGG pathway analysis. The biological
process (BP) segment of GO depicted the role of the target

RNAs mainly in the regulation of epithelial cell proliferation
and migration and mesenchymal development which indicated
their involvement toward epithelial-to-mesenchymal transition
(EMT). The regulation of protein kinase and serine/threonine
kinase emerges as the top biological process mediated by the RBP
targets, which is also a salient regulator of EMT. Positive
regulation of pri-miRNA transcription by the RBP targets is
also a significant biological process which denotes the direct
and indirect involvement of the RBPs in miRNA biogenesis
along with their targets (Figure5A). The GO-enriched terms
of the cellular component exhibited the association of the
target RNAs with transcription regulator complex, focal
adhesion, cell-substrate junction, ribonucleoprotein granule,
and cytoplasmic stress granules (Figure 5A). In the molecular
function (MF) category, coding targets are mainly enriched in
DNA-binding transcription activator activity, transcription
cofactor binding, mRNA, double-stranded RNA, and UTR
binding (Figure 5A). As the number of downregulated coding
RNA targets is very less, we did not get any significant enriched
GO terms for those. The KEGG pathway analysis of upregulated
coding targets delineated their role in several signaling pathways
such as the TGF-beta signaling, AGE-RAGE signaling, MAPK
signaling, PI3K-Akt signaling, sphingolipid signaling, relaxin

FIGURE 3 |GO and KEGG enrichment analysis of DE-RBPs. (A) Barplot shows enriched GO terms of upregulated RBPs, (B) barplot shows enriched GO terms of
downregulated RBPs, (C) radar plot represents the KEGG pathway analysis result of upregulated RBPs, (D) radar plot represents the KEGG pathway analysis result of
downregulated RBPs. BP: biological processes, MF: molecular function.
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signaling, Ras signaling, HIF-1 signaling, ErbB signaling, C-type
lectin receptor signaling, and VEGF signaling pathway.
Additionally, they are also indicated to be involved in
adherens junction, regulation of actin cytoskeleton, and Th17
cell differentiation (Figure 5B). Downregulated KEGG pathways
due to downregulated coding genes involve nicotinate and
nicotinamide metabolism, aldosterone-regulated sodium
absorption, tight junction, and endocytosis (Figure 5C). In
brief, we observed the alteration of very important pathways
known to be involved in cancer development and progression,
through the modulation of coding targets by RBPs. The list of all
altered pathways is shown in Supplementary Table S7.

Like coding targets, we also wanted to find out the downstream
pathwaymodulation by the long noncoding RNA targets of RBPs.
The long noncoding Set Enrichment Analysis (LncSEA) webtool

was used for this purpose and to our surprise, pathways leading to
cancer cell migration, metastasis, and EMT were the most
important ones (Figure 5D).

Epithelial-to-Mesenchymal Transition
Emerged as the Most Prevalent Biological
Process From RBP Targets
As already described in the previous segment, epithelial-to-
mesenchymal transition (EMT) turned out to be the most
distinct pathway modulated by the predicted targets of the
selected RBPs. EMT is a process by which epithelial cells lose
their cell polarity and cell–cell adhesion and attain migratory and
invasive properties becoming the cell type of mesenchymal
characteristics, and the process is considered a crucial step for

FIGURE 4 | Protein–protein interaction (PPI) network of the differentially expressed RBPs. (A) PPI network of DE-RBPs constructed using the STRING database.
RBPswithout any interaction with another DE-RBP are removed. Blue denotes upregulated DE-RBPs and yellow denotes downregulated DE-RBPs. (B,C) TwoMCODE
modules from the PPI network.
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tumor metastasis. We were curious to know exactly what were
the RBPs which play a central role in this process and what
were their targets. In order to do so, four EMT-related GO-
enriched terms of the biological process (BP) category were
selected from upregulated coding target–driven pathways, as
shown in Figure 6 and a cnetplot was used to visualize the
responsible target genes. The next obvious step was to go back
and identify the RBPs targeting those RNAs and actually
driving the process. Interestingly, we found that these were
the target genes of all 26 RBPs used in the analysis. The result
tells us that there is a clear indication that deregulated RBPs
primarily promote EMT and thereby facilitate metastasis in
pancreatic cancer.

Considering the fact that the finding is quite significant with
respect to pancreatic carcinogenesis, we went on further to
validate the results. There have been several experiments
where the effect of any particular EMT-promoting factor has
been tested on cancer cell lines by monitoring gene expression
status at both epithelial and mesenchymal states. We found that
one dataset (GSE23952) where TGF-βwas used to induce EMT in
Panc-1 pancreatic cancer cells, and gene expression profiling was
performed before and after induction. We understand that the
treatment by TGF-β cannot be the only method to induce EMT
and might also not completely mimic the actual scenario
prevailing in PDAC patients. Still, we moved forward and
used this dataset to validate the expression of our selected
RBPs over there, keeping in mind that the TGF-β–induced
EMT model is the most widely used method, and the dataset
is the best available option at present. We could validate the
expression of nine RBPs in that dataset (Figure 7A), thereby
supporting their role in EMT and indicating that TGF-β could
also play a possible role here.

In another attempt to further validate our finding, we wanted
to check what is the pattern of the expression of these RBPs
during metastatic progression of the disease in actual patient data.
If an RBP is either a promoter or inhibitor of EMT, we can expect
that it is progressively up or downregulated expression from the
normal pancreatic tissue to primary tumor to metastatic lesion.

We used a web-platform TNMplot which is an integrated
database using transcriptome-level datasets to compare gene
expression in normal, tumor, and metastatic tissues.
Expression values of these EMT-related RBPs were checked.
Progressive nature of the expression of the RBPs which
already got validated in TGF-β–mediated EMT induction
study further validated their importance in EMT (Figure 7B).
Additionally, the expression of remaining 19 RBPs was also tested
using TNMplot, and 12 out of 18 RBPs were progressively altered,
strengthening our finding that these RBPs play a significant role
in EMT in pancreatic cancer (Supplementary Figure S3).
Expression information on RCC2 and ZNFX1 were not found
in the dataset.

Lastly, in order to further verify the expression status of altered
RBPs in pancreatic cancer cell lines and tissue samples, we
explored the published literature and used The Protein Atlas
data. There were multiple studies where actually the expression of
these specific RBPs was estimated in several pancreatic cancer cell
lines or patient tissues using qPCR and/or Western blotting or
immunohistochemical analysis; convincingly supporting our
results (Supplementary Table S8) (Fernández-Salas et al.,
2000; Kong et al., 2010; Bhatti et al., 2011; Taniuchi et al.,
2014a; Cai et al., 2015; Taniuchi et al., 2015; Schultz et al.,
2017; Tang et al., 2017; Yu et al., 2017; Nguyen et al., 2019;
Cui et al., 2020; Konishi et al., 2021). Immunohistochemistry
results for IGF2BP3, PAIP2B, and SIDT2 have already been
shown in Figure 2, and we additionally present the results for
the rest of the five RBPs in pancreatic cancer tissues as shown in
Supplementary Figure S4, which strongly validate their
expression in patient samples signifying their importance in
the disease.

DISCUSSION

The prime objective of this study was to identify the deregulated
RBPs and investigate the modulation of gene expression by them
in pancreatic cancer. As RBPs play an instrumental role in
regulating normal cellular processes, the altered expression of
RBP emerged as a major player in the development and
progression of cancer. Apart from candidate RBP studies and
their involvement in pancreatic cancer, there are very few reports
of universal RBPome studies derived from TCGA RNA-
sequencing data in pancreatic cancer which have discrepancies
between the results (Glass et al., 2020; Wen et al., 2020). Disparity
among the outcomes of these studies led us to investigate the
RBPs which are universally altered in pancreatic cancer. The best
unbiased approach we thought of was to access all available
relevant gene expression microarray datasets and process them
together to find out the expression information for the RBPs and
perform the analysis.

Themeta-analysis offers statistical methods to integrate results
from multiple comparable studies with the aim of extrapolating
the number of observations and statistical power and provide a
precise estimate of the effects of an intervention (Fagard et al.,
1996). Thus, we conducted a meta-analysis of five published
transcriptomic microarray datasets for the discovery cohort, and

TABLE 2 | Information of the DE-RBPs used for target RNA identification. Hub
RBPs along with the top-altered RBPs are included in this group. These set of
RBPs are presented in the table as (A) upregulated RBPs and B) downregulated
RBPs.

Up-regulated key RBPs Down-regulated key
RBPs

A B

RBP Entrez ID RBP Entrez ID RBP Entrez ID
DDX60 5549161 EIF2AK2 5549161 AZGP1 5549161
IFIT1 5568 IFIT2 5568 P4HB 5568
IFIT3 258882 IGF2BP3 258882 PAIP2B 258882
ISG20 88855 MVP 88855 PDCD4 88855
NIP7 2225 OAS3 2225 RNASE1 2225
OASL 51235 PARP4 51235 SIDT2 51235
PRDX1 91615 RCC2 91615
RNASEL 99161 RUVBL1 99161
SNRPD1 575527 TEP1 575527
ZC3HAV1 33683 ZNFX1 33683
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the differentially expressed RBPs were validated by another meta-
analysis of two more transcriptomic array datasets and DE-RBPs
from TCGA RNA-sequencing data. Eventually, we identified 45
overexpressed and 15 underexpressed DE-RBPs that were
invariably claimed to be differentially expressed in pancreatic
cancer (Figure 1). Minute observations to the set of altered RBPs
reflected the enrichment of some protein families such as
IGF2BP, APOBEC, and OAS along with the assembly of

DEAD-box helicases, RNAse, translation initiator, vault
proteins, and some interferon-induced proteins. There are also
some unconventional RBPs with no functional validation of their
RNA-binding activity such as SPATS2L, TXN, UHMK1,
ANGEL1, and P4HB. RBPs associated with innate immune
response and immunomodulation are immensely represented
in DE-RBPs, as also shown by the pathway enrichment. IFIT,
OAS, and ZC3HAV family proteins are distinct interferon-

FIGURE 5 | Biological functions and pathways of the predicted target RNAs of DE-RBPs. (A) Bubble plot shows the enriched GO terms of upregulated coding
targets: biological processes (BP), Cellular Component (CC), and molecular functions (MF). (B) Radar plot shows KEGG pathway analysis of upregulated coding targets.
(C) Radar plot is shows KEGG pathway analysis of downregulated coding targets. (D) Altered pathways represent cancer hallmarks for predicted lncRNA targets from
the LncSEA database.
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stimulated genes (ISGs) (Justesen et al., 2000; Brice et al., 2019;
Pidugu et al., 2019) whereas LRRFIP1 and PDCD4 are involved in
the regulation of type I interferon response (Yang et al., 2010;
Kroczynska et al., 2012). Another interesting feature is the
downregulation of negative regulators of the typical
translational machinery (EIF2AK3 and PDCD4) to combat the
high energy demanding process of general translation
(Supplementary Table S3). Altered expression of translation
mediators indicate toward “translation acrobatics,” that is,
exploiting alternate modes of translation initiation by cancer
cells (Sriram et al., 2018). For example, the non-canonical
translation initiation factor EIF2AK2 is found to be
upregulated, and the upregulated EIF5 determines the
frequency of the leaky scanning mode of alternative
translation and is reported as a novel oncogenic protein
(Wang et al., 2013b). DDX60 was revealed to be the most
overexpressed RBP in pancreatic adenocarcinoma. DDX60 is
an ATP-dependent RNA helicase which induces type I IFN
(IFN-α/β), and IFN- β is reported to influence oncogenic Ras
transformation (Miyashita et al., 2011; Tsai et al., 2011). But there
is no report of DDX60 involvement in pancreatic cancer, in spite
of its consistent upregulation. IGF2BP3 is another important
overexpressed KH-domain–containing RBP which is already
reported to promote invasiveness and metastatic properties of
the PDAC cells (Taniuchi et al., 2014b). Most downregulated

RBPs include PAIP2B, SIDT2, PDCD4, AZGP1, and RNASE1,
among which we report for the first-time involvement of PAIP2B,
SIDT2, PDCD4, and RNASE1 in pancreatic cancer (Figure 2).

Some DE-RBPs exhibit protein–protein interaction among
themselves, and the interaction network regulates several
cellular processes. We also tried to find out the hub RBPs
while searching for the RBPs having more connectivity and
thus more regulatory capacity (Figure 4). RBPs act as the
principal mediators of posttranscriptional regulation of gene
expression by directly targeting various types of RNAs. Many
experimental methods have been employed to identify the
potential RNA partners of a particular RBP. Deep-sequencing
approaches are the most convenient method nowadays to
uncover the RBP-RNA interactome, but strong bioinformatic
prediction methods can also help us identify targets of novel
RBPs, which can serve as the basis for further prospective studies.
However, we have tried to look for the targets of a definite RBP in
every possible way to estimate the functions and pathways
governed by the target RNAs of altered RBPs. Evidence from
pathway enrichment intuitively manifested the connection
between downstream target RNAs and EMT, a major event in
metastasis (Figure 5). Being a highly dynamic process, metastatic
cascade is also known to be promoted by the differentiation of
tumor-infiltrating immune cells. Immune evasion of the cancer
cells at the primary site of the tumor remotely prepares their pre-

FIGURE 6 | Visualization of enriched EMT-related GO terms of upregulated coding targets. Cnetplot showing four EMT-related enriched GO terms of the biological
process (BP) category derived from upregulated coding targets along with the associated targets. Red represents the upregulated targets and green represents the
downregulated targets.
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metastatic niche (Kitamura et al., 2015). Given the prevalence of
immune response–related terms in RBP annotation results, as
mentioned in Figure 3, it is worth justifying the potential role of
target RNAs in pancreatic cancer metastasis. Apart from the
direct involvement of target RNAs in promoting metastasis or
EMT, concerned RBPs also act as direct or indirect regulators of
EMT. We validated the expression of RBPs in a gene expression
dataset of the TGF-β–induced EMT cell line of pancreatic cancer
(Figure 7). There we came across nine RBPs differentially

expressed in an identical pattern of our DE-RBPs. As the
mode of regulation by RBP is a complex process, the
expression level of target RNAs is not always linear with the
expression of that particular RBP. Hence, the direction of altered
expression is not always predictable using this approach.
Moreover, TGF- β is not the sole inducer of EMT, and in the
tumor microenvironment, there are other paracrine signaling
pathways such as WNT pathway, NOTCH signaling, and
mitogenic growth factor such as EGF and FGF-mediated

FIGURE 7 | DE-RBP expression deregulated in EMT and metastasis. (A) Barplot shows the expression pattern (log2 fold change) of DE-RBPs to be differentially
expressed in TGF-β–induced EMT in the Panc-1 cell line, as compared to uninduced Panc-1 cells, as obtained from the database GSE23952. (B)Boxplot comparing the
expression of the abovementioned DE-RBPs in normal, tumor, and metastatic tissue samples as computed using the TNMplot database.
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activation pathways acting in combination to induce an EMT
program (Dongre and Weinberg, 2019). Each pathway triggers
EMT by modulating different sets of RBPs. As we have chosen a
cell-line based model of EMT induced by a particular signaling
pathway, the system primarily lacks other signaling modules and
cross-talk with infiltrating immune cells which are known to be
major player of EMT. Thus, the RBPs we found altered in TGF-
β–induced EMT might be specific for the process. However, it
does not mean that other RBPs do not have any contribution in
EMT as they could always be part of other signaling pathways
promoting EMT. The TNMplot dataset lastly verified the
relatedness of the selected RBPs with EMT by comparing
between normal, tumor, and metastatic tissue samples
(Figure 7). We felt that we have tried to validate our findings
by multiple means. Even, at the end, we had curated the published
reports of experimental observations of other multiple groups
where they had evaluated the expression of these RBPs in
pancreatic cancer cell lines and patient samples
(Supplementary Table S8). Still, detailed experimental
interrogation of the functional role of individual RBPs in cell
lines or animal models could have the final say on establishing
their mechanism of action during the regulation of EMT.

Therefore, our study provides a comprehensive view of the
dysregulated RBPs in pancreatic cancer and substantial insights
into the molecular mechanisms of how RBPs interact among
themselves and with their target RNAs, modulating one of the
important hallmarks in pancreatic cancer, the epithelial-to-
mesenchymal transition. “RBP”-eutics is a currently emerging
field where RBPs are gaining attention as a promising target for
cancer therapeutics using diverse approaches such as small-
molecule inhibitors and oligonucleotide-based strategy (Mohibi
et al., 2019). Thus, considering the importance of our identified
RBPs in pancreatic cancer, their candidature as a suitable drug
target will be worth investigating.
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Supplementary Figure S1 | Flowchart for analyzing DE-RBPs in pancreatic cancer.
Discovery cohort includes meta-analysis of five microarray datasets, and DE-RBPs
from the analysis were validated in a meta-analysis to two microarray datasets and
TCGA RNA-sequencing data.

Supplementary Figure S2 | Highest degree connectivity network of the top five
hub genes for each topological algorithm. Top 5 hub genes for each 12 topological
algorithms are identified from the cytoHubba plugin used in Cytoscape. Interaction
networks are based on their highest degree of connectivity. Each network denotes
each algorithm used: (A) Betweenness, (B) BottleNeck, (C) Closeness, (D)
Clustering coefficient, (E) Degree, (F) Density of Maximum Neighborhood
Component (DMNC), (G) EcCenticity, (H) Edge Percolated Component (EPC), (I)
Maximal Clique Centrality (MCC), (J) Maximum Neighborhood Component (MNC),
(K) Radiality, and (L) Stress.

Supplementary Figure S3 | Boxplot showing the role of hub RBPs and top-altered
RBPs in metastasis. Boxplot compares the expression of the hub RBPs and top-
altered RBPs in normal, tumor, and metastatic tissue samples from the TNMplot
database. Expression of the remaining six RBPs is shown in Figure 7A.

Supplementary Figure S4 | Immunohistochemistry images showing the
expression of EMT-specific RBPs in respective pancreatic tissues from the
Human Protein Atlas database. Comparison of the expression of tumor and
normal tissue samples has been shown. The database does not have any IHC
staining data corresponding to ISG20.

Supplementary Table S1 | List of enumerated RBPs. The list includes the names of
1623 RBPs along with their Entrez IDs.

Supplementary Table S2 |Differentially expressed RBPs in pancreatic cancer from
the meta- analysis of the discovery cohort. The table includes analyzed data of the
RBPs in pancreatic tumor tissues compared to normal pancreatic tissues identified
from the meta-analysis of the five microarray datasets.

Supplementary Table S3 | Validated differentially expressed RBPs in
pancreatic cancer. DE- RBPs from the discovery cohort are validated in a
meta-analysis of the two microarray datasets and TCGA RNA-sequencing data.
The validated DE-RBPs which include 45 upregulated and 15 downregulated
RBPs are listed in the table.

Supplementary Table S4 | GO term enrichment and KEGG Pathway analysis
results of DE- RBPs. Result of GO enrichment for upregulated RBPs is shown in
sheet 1 named as “UP RBP GO” and result for downregulated RBPs shown in sheet
2 named as “DOWN RBP GO.”Sheet 3 named as “KEGG” includes the result of
KEGG pathway analysis for upregulated and downregulated RBPs.

Supplementary Table S5 | Interacting coding RNA partners of the selected DE-
RBPs.

Supplementary Table S6 | Interacting noncoding RNA partners of the selected
DE-RBPs. Noncoding target RNAs are divided into two categories depending on
their size. First sheet of the file consists of the “Long Noncoding RNA” targets of the
RBPs. This category includes the name of RBPs, name of interacting RNA, and
biotype of the target transcripts such as lncRNAs and lincRNAs, pseudo-gene
RNAs, circular RNAs, and few processed transcripts. Second sheet of the file
consists of the “Small Noncoding RNA” targets of the RBPs. This category includes
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the name of RBPs, name of interacting RNA, and biotype of the target transcripts
such as miRNAs, snoRNAs, and scaRNA.

Supplementary Table S7 | GO term enrichment and KEGG pathway analysis
results of coding targets of selected RBPs. Result of GO enrichment for upregulated
coding targets are shown in sheet 1 named as “UP TARGET GO.” KEGG pathway
analysis results of upregulated coding targets are shown in sheet 2 named as “UP

TARGET KEGG”, and results of downregulated coding targets are shown in sheet 3
named as “DOWN TARGET KEGG.”

Supplementary Table S8 | List of published reports of experimental validation
verifying the expression status of altered RBPs in pancreatic cancer cell lines and
patient samples.
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GLOSSARY

RBP RNA-binding protein

TERT telomerase reverse transcriptase

ELAVL1 ELAV-like RNA-binding protein 1

FXR1 FMR1 autosomal homolog 1

JAK-STAT Janus kinase- signal transducer and activator of transcription

TCGA The Cancer Genome Atlas

GEPIA gene expression profiling interactive analysis

DDX60 DEAD-box helicase 60

IFN InterferonInterferon

IGF2BP Insulin-like growth factor 2 mRNA-binding protein

PDAC Pancreatic ductal adenocarcinoma

PAIP2B Polyadenylate-binding protein–interacting protein 2B

SIDT2 SID1 transmembrane family member 2

PDCD4 Programmed cell death 4

AZGP1 Alpha-2-glycoprotein 1

RNASE1 Ribonuclease A family member 1

NOD Nucleotide-binding oligomerization domain

ISG20 Interferon-stimulated exonuclease gene 20

MAPK Mitogen-activated protein kinase

AGE Advanced glycation end products

RAGE Receptor of AGE

PI3K-Akt phosphatidylinositol 3-kinase - AKT serine/threonine kinase

HIF Hypoxia-inducible factor

VEGF Vascular endothelial growth factor

Th17 T-helper cell 17

RCC2 Regulator of chromosome condensation 2

APOBEC Apolipoprotein B MRNA editing enzyme catalytic subunit

OAS Oligoadenylate synthetase

SPATS2L Spermatogenesis-associated serine rich 2–like

TXN Thioredoxin

UHMK1 U2AF homology motif kinase 1

ANGEL1 Angel homolog 1

P4HB Prolyl 4-hydroxylase subunit beta

IFIT Interferon-inducedpProtein With tetratricopeptide repeats

LRRFIP1 LRR-binding FLII-interacting protein 1

EIF2AK Eukaryotic translation initiation factor 2 alpha kinase

EIF5 Eukaryotic translation initiation factor 5

IFN InterferonInterferon

TGF- β Tumor growth factor-beta

lncRNA Long noncoding RNA

WNT Wingless-type

EGF Epidermal growth factor

FGF Fibroblast growth factor

SnoRNA Small nucleolar RNA

ScaRNA small Cajal body-specific RNA

IHC Immunohistochemistry
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