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The potential for production of chemicals from microalgal biomass has been considered as an alternative
route for CO2 mitigation and establishment of biorefineries. This study presents the development of
consolidated bioprocessing for succinate production from microalgal biomass using engineered
Corynebacterium glutamicum. Starch-degrading and succinate-producing C. glutamicum strains produced
succinate (0.16 g succinate/g total carbon source) from a mixture of starch and glucose as a model
microalgal biomass. Subsequently, the engineered C. glutamicum strains were able to produce succinate
(0.28 g succinate/g of total sugars including starch) from pretreated microalgal biomass of CO2-grown
Chlamydomonas reinhardtii. For the first time, this work shows succinate production from CO2 via
sequential fermentations of CO2-grown microalgae and engineered C. glutamicum. Therefore, consolidated
bioprocessing based on microalgal biomass could be useful to promote variety of biorefineries.

M
etabolic engineering, aiming for enhanced production of desired bio-products through modification of
cellular metabolism, has enabled to construct microbial cell factories including engineered Escherichia
coli and yeast for production of native or non-native biochemical from fermentable sugars1. However,

efficient conversion of lignocellulosic biomass to fermentable sugars is critical for production of biofuels and
chemicals in industrial scales2.

The recalcitrant structures of lignocellulose hamper its efficient degradation into simple sugars3. Although
various methods have been developed to break the structures of lignin and crystalline cellulose prior to enzymatic
hydrolysis4, the pretreatment step is a still bottleneck for fermentation of lignocellulosic biomass. On the other
hand, microalgal cultivation as a potential platform for production of biofuels or chemicals has several positive
aspects5, including high productivity per-acre over lignocellulosic feedstock resources6,7. In addition, microalgal
lipids could be converted to biodiesel, and other components of microalgal biomass including carbohydrates,
polyunsaturated fatty acid and proteins can serve as CO2-derived carbon sources for biorefineries i.e. direct
conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis8. Thus, we have considered
microalgal biomass as a potential feedstock to replace the lignocellulosic biomass and to produce value-added
chemicals.

Corynebacterium glutamicum is a predominantly aerobic, non-pathogenic, biotin-auxotrophic Gram-positive
bacterium. It is used industrially for amino acid production, in particular the flavor enhancer L-glutamate and the
feed additive L-lysine9. Recently, engineering of amino acid-producing C. glutamicum have been enabled to utilize
hydrolysates of rice straw, wheat bran, and molasses10. Moreover, recent studies have indicated the potential of C.
glutamicum as a microbial cell factory to produce other commercially relevant chemicals such as succinate,
isobutanol, cadaverine, and ethanol11–13. To broaden the substrate range, metabolic engineering of C. glutamicum
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has been employed to utilize non-native carbon sources such as
cellobiose, N-acetylglucosamine, or starch14–16. Particularly, starch
was used as sole carbon source for production of cadaverin17, L-
glutamate18, L-lysine19 and organic acids20 in C. glutamicum via either
enzyme secretion or surface-display of a-amylases. In this report, we
focused on highly accumulated starch in microalgae biomass as
potential carbon source for C. glutamicum. Here, we engineered a
succinate-producing C. glutamicum strain to secrete starch-degrad-
ing a-amylases to produce succinate from CO2-derived microalgal
biomass, as an example of consolidated bioprocessing for microalgal
biomass (Fig. 1).

Results
Utilization of soluble starch by engineered C. glutamicum.
Carbohydrates including starch are major constituents in the
microalgal biomass of Chlamydomonas reinhardtii UTEX 90 when
the algae were starved for other essential elements such as nitrogen.
As C. glutamicum wild type ATCC 13032 is unable to utilize starch,
we first implemented this ability by constructing strains Cg-
pSbAmyA and Cg-pBlAmyS capable of secreting a-amylase into the
medium (Table 1). C. glutamicum wild type harboring the empty
plasmid pBbEB1c did not consume soluble starch (Sigma; no glucose

detected) at all and showed no growth (Fig. 2). Strain Cg-pSbAmyA
did not completely consume 0.5% (w/v) soluble starch (Sigma)
within 56 hr and reached a maximal cell dry weight (cdw) of 0.5 6

0.01 g/L. However, strain Cg-pBlAmyS completely consumed 0.5%
soluble starch (Sigma) in 6 hr and reached a maximal biomass of
1.23 g 6 0.01 cdw/L, which was the same biomass of the Cg-
pBbEB1c grown on 0.5% (w/v) glucose as sole carbon source
(1.23 g 6 0.01 cdw/L). Thus, we measured a-amylase volume
activity in the supernatants. In comparisons to Cg-pSbAmyA
culture medium, 2-fold increased activities of Cg-pBlAmyS culture
medium were measured at 8 hr when Cg-pBlAmyS cells reached
almost the maximum cell growth (Table 2). However, low amylase
activities (less than 100 U/L) of Cg-pSbAmyA were not enough to
completely utilize the starch as sole carbon source. Nonetheless, we
successfully constructed starch-degrading C. glutamicum strains via
secreting the a-amylase and applied this system for succinate
production.

Succinate production from soluble starch by engineered C.
glutamicum. The succinate-producing C. glutamicum strain BL-
112, which carries deletions of the genes pqo (encoding for
pyruvate:menaquinone oxidoreductase), pta-ackA (encoding for

Figure 1 | Scheme of CO2-derived succinate production from microalgal biomass using engineered C. glutamicum through consolidated
bioprocessing. Engineered C. glutamicum secrets a-amylase to degrade soluble starch derived from extracts of CO2-grown C. reinhardtii and produces

succinate from total sugars from microalgal biomass without enzyme addition.

Table 1 | Bacteria strains and plasmids used in this study

Strain or plasmid Relevant characteristics Source or reference

Strains
E. coli HIT-DH5a F2(80d lacZ M15) (lacZYA-argF) U169 hsdR17(r2 m1) recA1 endA1 relA1 deoR96 RBC Bioscience
C. glutamicum ATCC 13032 Wild type ATCC
Cg-pBbEB1c Wild type harboring pBbEB1c This study
Cg-pSbAmyA Wild type harboring pBbEB1c-torA-SbAmyA(cg.co) This study
Cg-pBlAmyS Wild type harboring pBbEB1c-torA-BlAmyS(cg.co) This study
BL-1 C. glutamicum ATCC 13032 derivative with in-frame deletions of pqo, pta-ackA, sdhCAB,

and cat
12

BL-1-pBbEB1c BL-1 harboring pBbEB1c This study
BL-1-pSbAmyA BL-1 harboring pBbEB1c-torA-SbAmyA(cg.co) This study
BL-1-pBlAmyS BL-1 harboring pBbEB1c-torA-BlAmyS(cg.co) This study
C. reinhardtii Wild type UTEX90
Plasmids
pBbEB1c ColE1 (Ec), pBL1 (Cg), Cmr, Ptrc, BglBrick sites, CoryneBrick vector 29
pBbEB1c-torA-SbAmyA(cg.co) pBbEB1c derivative containing the codon-optimized S. bovis amyA gene with a TorA signal

peptide
This study

pBbEB1c-torA-BlAmyS(cg.co) pBbEB1c derivative containing the codon-optimized B. licheniformis amyS gene carrying the
mutations Q268S and N265Y and a TorA signal peptide

This study
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phosphate acetyltransferase and aceate kinase), sdhCAB (encoding
for succinate dehydrogenase complex), and cat (encoding for acetyl-
CoA:CoA transferase) was transformed with the plasmids pBbEB1c-
torA-SbAmyA(cg.co) and pBbEB1c-torA-BlAmyS(cg.co). As a result,
we constructed BL-1-pSbAmyA and BL-1-pBlAmyS strains.

Microalgal biomass consist mainly carbohydrates (60%, based on
cdw), protein (8.3%, based on cdw) and others21. 58% of carbohy-
drates in microalgal biomass were soluble starch. We used a mixture
of 0.5% (w/v) glucose and 0.5% (w/v) soluble starch as the model
carbon source of microalgal biomass for succinate production. These
strains and a control strain carrying the vector without an amylase
gene (BL-1-pBbEB1c) were tested for their ability to utilize a model
carbon source of microalgal biomass. 0.5% glucose was supplemen-
ted as an additional carbon source to the CgXII defined medium with
0.5% soluble starch. The control strain BL-1-pBbEB1c in a mixture of
glucose and starch grew (maximal growth 1.78 g 6 0.01 cdw/L)
where 0.5% glucose was completely depleted and 0.5% starch was
not consumed at all. On the other hand, the strains BL-1-pBlAmyS
and BL-1-pSbAmyA showed an almost doubled biomass formation
(2.64 g 6 0.01 cdw/L and 2.89 6 0.17 g cdw/L), respectively, in
comparison to the control strain (Fig. 3). The BL-1-pSbAmyA and
BL-1-pBlAmyS degraded soluble starch in the early stage of cell
growth. Then, both BL-1-pBlAmyS and BL-1-pSbAmyA strains com-
pletely consumed both glucose and starch within 16 hr.

When cultivated with the mixture of 0.5% glucose and 0.5% of
starch, strains BL-1-pSbAmyA and BL-1-pBlAmyS produced 1.56 6

0.01 g/L succinate after 24 hr and 1.44 6 0.01 g/L succinate after
14 hr, respectively. The yields (g/g) (succinate/total sugars; assuming
100% conversion of starch to glucose) of BL-1-pBlAmyS (0.16 g/g)
and BL-1-pSbAmyA (0.14 g/g) were slightly higher compared to the
BL-1 strain cultivated on glucose (0.12 g/g)12. As a result, strain BL-
1-pBlAmyS showed the fastest cell growth and succinate production
due to fast utilization of both glucose and starch. When glucose was
supplemented to starch-minimal medium as microalgal biomass, the
amylase volume activities of Cg-pSbAmyA or Cg-pBlAmyS were sig-
nificantly increased by 6.2-folds or 3.1-fold, respectively, compared
to the strains with starch as sole carbon source (Table 2) and conse-
quently, the starches were rapidly consumed after 4 hr (lag phase).
Initial supply of glucose is necessary for the C. glutamicum-secreting
SbAmyA or BlAmyS strains that increase the amylase volume
activities and efficiently hydrolyze soluble starch. The increased
volume activities of SbAmyA or BlAmyS were also shown in BL-1-
pSbAmyA and BL-1-pBlAmyS, which is important for efficient
consolidated bioprocessing of microalgal biomass where initial fer-
mentable carbohydrates exist (Fig. 4). For the first time, we success-
fully constructed starch-degrading and succinate-producing C.

Figure 2 | Profile of soluble starch and the growth of C. glutamicum
strains. Cg-pBbEB1c as a control strain (A) and a-amylase-secreting Cg-

pSbAmyA (B) and Cg-pBlAmyS (C) strains were cultivated with 0.5% (w/v)

soluble starch (Sigma) as a sole carbon source. Optical density was

measured at 600 nm (closed circle; black). Soluble starch (closed square;

blue) in the supernatant was quantified. Mean values and standard

deviations of triplicate cultures are shown (s.d. less than 1% not shown).

Table 2 | Secreted a-amylase volume activities (U/L) in the culture medium

Time Carbon sources

Secreted a-amylase volume activities (U/L)

Starch-degrading C. glutamicum wild type
derivatives

Starch-degrading and succinate-producing C.
glutamicum BL-1 derivatives

Cg-pSbAmyA Cg-pBlAmyS BL-1-pSbAmyA BL-1-pBlAmyS

8 hr Starch* 90.8 6 4.4 203.1 6 3.8 n.m. n.m.
Glc 1 Starch** 560.3 6 25.3 643.1 6 25.3 737.5 6 16.4 748.7 6 10.7

12 hr Starch 99.3 6 1.3 217.0 6 8.2 n.m. n.m.
Glc 1 Starch 598.3 6 19.6 657.4 6 12.0 729.4 6 15.1 806.8 6 17.0

24 hr Starch 76.5 6 5.6 205.8 6 20.2 n.m. n.m.
Glc 1 Starch 589.3 6 6.9 307.9 6 20.0 839.1 6 24.6 665.9 6 60.7

Note: One unit (U) of activity was defined as the amount of enzyme required to release 1 mmol of CNP from N3-G5-b-CNP per minute at 37uC. Mean values and standard deviations of duplicate cultures are
shown.
*0.5% starch was used as sole carbon source.
**A mixture of 0.5% (w/v) glucose and 0.5% (w/v) starch was used as sole carbon source. Since the BL-1-pSbAmyA and BL-1-pSlAmyS were only cultivated with a mixture of glucose and starch, enzyme
activity data is not measured (n.m.).
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glutamicum strains and produced succinate from soluble starch
using the engineered strains.

CO2-derived succinate production from microalgal biomass by
engineered C. glutamicum. Finally, we applied our engineered
strains to utilize CO2-derived microalgal biomass and to produce
CO2-derived succinate. To obtain the microalgal biomass, C.
reinhardtii UTEX 90 was grown photoautrophically with 5% (v/
v) CO2 and 95% (v/v) air bubbling. Disrupted microalgal biomass
was centrifuged and the resulting supernatant was used as only
carbon source for succinate production in CgXII medium. It
contained 0.2% total sugars, of which 50% were determined to
be soluble starch, similar to previous work21. Compared with BL-
1-pBbEB1c (0.56 g 6 0.01 cdw/L), BL-1-pSbAmyA and BL-1-
pBlAmyS showed doubled biomass formation (1.05 6 0.01 g
cdw/L and 1.02 6 0.01 g cdw/L) in 24 hr, respectively (Fig. 4).

As shown for the cell culture on a mixture of starch and glucose in
this study, the BL-1-pSbAmyA and BL-1-pBlAmyS also degraded
soluble starch in microalgal biomass from the initial cell growth.
Then, the rest of sugars were slowly consumed, but 10% of initial
total sugars were not utilized at all, which could be pentose sugars
not utilized by the strains, such as xylose or arabinose.

The strains BL-1-pBlAmyS and BL-1-pSbAmyA produced 0.49
6 0.01 g/L and 0.50 6 0.01 g/L succinate after 24 hr from 0.2%
total sugar including 0.1% starch in pretreated microalgal biomass,
respectively. The control strain BL-1-pBbEB1c unable to utilize
starch produced only 30% of the succinate (0.15 g/L 6 0.001)
found for the amylase-secreting strains. Moreover, the yields (suc-
cinate/total sugars used) of BL-1-pBlAmyS (0.28 g/g) and BL-1-
pSbAmyA (0.28 g/g) were significantly higher compared to the
BL-1-pBbEB1c strain (0.20 g/g) when pretreated microalgal bio-
mass was used. Finally, for the first time, we successfully produced
succinate from CO2-derived microalgal biomass using engineered

Figure 3 | Profile of glucose, soluble starch, succinate, and the growth of
C. glutamicum strains. The succinate-producing C. glutamicum strains

BL-1-pBbEB1c (A), BL-1-pSbAmyA (B), and BL-1-pBlAmyS (C) were

cultivated with a mixture of 0.5% (w/v) soluble starch and 0.5% (w/v)

glucose as an model microalgal biomass. Optical density was measured at

600 nm (closed circle; black). Soluble starch (closed square; blue), glucose

(closed triangle, red), and succinate (open circle, green) in the supernatant

were quantified. Mean values and standard deviations of triplicate cultures

are shown (s.d. less than 1% not shown).

Figure 4 | Profile of total sugar, soluble starch, succinate, and the growth
of C. glutamicum strains. Succinate-producing C. glutamicum strain BL-

1-pBbEB1c (A), BL-1-pSbAmyA (B), and BL-1-pBlAmyS (C) were

cultivated with pretreated microalgal biomass as sole carbon source. Total

sugar already contains soluble starch in this experiment. Optical density

was measured at 600 nm (closed circle; black). Total sugar (open triangle;

red), soluble starch (closed square; blue), and succinate (open circle; green)

in the supernatant were quantified. Mean values and standard deviations of

triplicate cultures are shown (s.d. less than 1% not shown).
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strains capable of degrading starch without a need for additional
enzyme treatment.

Discussion
Microalgal biomass of C. reinhardtii is a remarkable carbohydrate
feedstock to provide the carbon sources for microbial fermentations.
Often separate hydrolysis and fermentation (SHF) or simultaneous
saccharification and fermentation (SSF) process have been applied
for production for the production of bioethanol22,23. However, addi-
tional enzyme loading at either SHF or SSF process could be a crucial
bottleneck for economically feasible bioprocess to produce value-
added chemicals or biofuels24. Thus, consolidated bioprocessing
was suggested as an alternative strategy that microbial strain is cap-
able of producing enzyme for saccharification and producing the
target chemicals such as biofuels from lignocellulosic biomass25,26.
In this study, we suggested another type of consolidated bioproces-
sing based on microalgal biomass. A succinate-producing C. gluta-
micum strain was capable of degrading starch by secreting a-amylase
and successfully fermented microalgal biomass and produce succin-
ate without amylase additions.

BL-1-pBlAmyS (0.28 g/g) strain and its fermentation of showed
remarkable yield of succinate production due to the utilization of
soluble starch that C. glutamicum wild type is not able to consume.
This consolidated bioprocessing based on microalgal biomass with
the best strain BL-1-pBlAmyS does not require additional costs for
loading enzymes but produce the high yield of succinate, compared
to the succinate producer BL-1. Furthermore, efficient hydrolysis of
soluble starch and co-uptake of other carbohydrates and their coop-
erative sugar metabolisms could be useful to ensure faster cell growth
of C. glutamicum and higher production of succinate. Metabolic
engineering by optimizing gene expression of AmyS from B. liche-
niformis could be possible by tuning translation strengths on ribo-
somal binding site or changing different signal peptides. Additional
sugar transporters and hydrolytic enzymes could be necessary to
uptake unused carbohydrates in the total sugars because 10% of total
sugars in microalgal biomass were not fermentable. In addition to
extensive studies on sugar metabolism27, pentose-sugar fermenta-
tions of engineered C. glutamicum have been well investigated28,29.
Current synthetic platform (CoryneBrick29) for the gene expression
in this study can be easily expanded for additional gene expression of
targets. Also, application of cell display system20 (i.e. the B. subtilis
PgsA and C. glutamicum PorC protein as anchor) of target amylases
in C. glutamicum could be alternative to increase hydrolysis of sol-
uble starch and production of succinate.

Microalgal biomass was shown to serve as an efficient carbon
source for the microbial production of succinate, which is considered
as a platform chemical, when suitably engineered strains were used
which are capable of starch degradation by the secretion of amylases.
Ultimately, consolidated bioprocessing based on microalgal biomass
offers another options to resolve issues of alternative energy
resources, global warming, human health and food security.

Methods
Bacterial strains and growth conditions. Strains used in this study are listed in
Table 1. For cloning purposes E. coli DH5a was used and grown in lysogeny broth
medium (LB) When appropriate, the medium was supplemented with 25 mg/mL
chloramphenicol. C. glutamicum ATCC 13032 and its derivatives were cultivated in
BHIS medium30 at 30uC and 200 rpm and 7.5 mg/mL chloramphenicol was added
when appropriate. For the utilization of soluble starch or microalgal biomass and
succinate production, engineered C. glutamicum were pre-cultivated in the BHIS
medium overnight and then incubated aerobically in the CgXII defined medium
(50 mL in 250 mL baffled Erlenmeyer flasks) containing either 0.5% soluble starch
(Sigma-Aldrich) or pretreated microalgal biomass as sole carbon source30 at 30uC on a
rotary shaker at 200 rpm with 7.5 mg/mL chloramphenicol. The biomass
concentration was calculated from OD600 values using an experimental determined
correlation factor of 0.25 g cell dry weight per liter for OD600 5 131.

Microalgal cultivation for biomass preparation. To obtain a large amount of algal
biomass containing starch for succinate production by C. glutamicum, a freshwater

green alga, C. reinhardtii UTEX 90, was grown photoautotrophically in Tris-acetate-
phosphate medium21 without acetic acid (TAP-C). Cultivations were carried out at
23uC in 20 L of the TAP-C medium in a 25 L photobioreactor with 65 mL/min of 5%
(v/v) CO2 and 95% (v/v) air aeration and 100 mE/m2/s of illumination with a dark/
light cycle (12:12 hr). The cells were harvested by centrifugation at 5,000 3 g for
10 min after two weeks cultivation including nitrogen starvation (1.15 g cell dry
weight/L). The lyophilized cells were resuspended in distilled water, disrupted by
glass bead-beating, and centrifuged (10 min at 5,000 3 g). The supernatant was used
as only carbon source for the cultivation of C. glutamicum.

Construction of a-amylase-secreting C. glutamicum. The amyA (NCBI no.
AB000829.1) and amyS (NCBI no. M38570.1) genes from Streptococcus bovis and
Bacillus licheniformis, respectively, were chosen since they were well characterized
and studied in C. glutamicum19 and E. coli32. Each target gene was synthesized
(Genscript, USA) with codon-optimization for C. glutamicum (represented as cg.co).
Each gene was assembled using a standard BglBrick cloning method, where the target
gene is inserted at the EcoRI and XhoI sites of the CoryneBrick plasmid pBbEB1c29.
The Tat-specific TorA signal peptide sequence from C. glutamicum33 was added to the
coding sequence of the target gene where the native signal sequences was already
deleted. The plasmids used in this study are listed in Table 1. For the transformation
of C. glutamicum, competent cell preparation and electroporation were performed
with the plasmids according to a previously described protocol34 with some
modifications.

Enzyme activity measurement. For the determination of a-amylase volume activity
(U/L), the supernatant of the cells were collected and the samples were analyzed using
an a-amylase measurement kit (Kikkoman, Tokyo, Japan) using 2-chloro-4-
nitrohenyl 65-azido-65-deoxy- b-maltopentaoside (N3-G5-b-CNP) as the substrate
in the previous studies35. The assay mixture was incubated at 37uC for 10 min, and the
enzymatic reaction was terminated by adding 800 mL of a reaction stop solution. a-
Amylase activity was determined according to the manufacturer’s instruction by
measuring the absorbance of the liberated 2-chloro-4-nitrophenol (CNP) at 400 nm.
One unit (U) of activity was defined as the amount of enzyme required to release
1 mmol of CNP from N3-G5-b-CNP per minute at 37uC.

Determination of starch, total sugar, and succinate. For quantification of starch16,
different dilutions of the culture supernatant were assayed with Lugols solution
containing iodine (1.5 g/L) and potassium iodide (15 g/L), leading to the formation
of a blue complex that was measured in a spectrophotometer at 530 nm. For
quantification of total sugars36, a colorimetric method based on the phenol–sulfuric
acid reaction was used to determine the amount of total sugars including the starch in
pretreated microalgal biomass. Succinate in the supernatant was quantified by HPLC
as described previously12.
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