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Abstract

Pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) are responsible for
cystic fibrosis (CF), the commonest monogenic autosomal recessive disease, and CFTR-related disorders in infants
and youth. Diagnosis of such diseases relies on clinical, functional, and molecular studies. To date, over 2,000 vari-
ants have been described on CFTR (~40% missense). Since few of them have confirmed pathogenicity, in silico
analysis could help molecular diagnosis and genetic counseling. Here, the pathogenicity of 779 CFTR missense vari-
ants was predicted by consensus predictor PredictSNP and compared to annotations on CFTR2 and ClinVar. Sensi-
tivity and specificity analysis was divided into modeling and validation phases using just variants annotated on
CFTR2 and/or ClinVar that were not in the validation datasets of the analyzed predictors. After validation phase,
MAPP and PhDSNP achieved maximum specificity but low sensitivity. Otherwise, SNAP had maximum sensitivity
but null specificity. PredictSNP, PolyPhen-1, PolyPhen-2, SIFT, nsSNPAnalyzer had either low sensitivity or speci-
ficity, or both. Results showed that most predictors were not reliable when analyzing CFTR missense variants, ratify-
ing the importance of clinical information when asserting the pathogenicity of CFTR missense variants. Our results
should contribute to clarify decision making when classifying the pathogenicity of CFTR missense variants.
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Introduction

Cystic Fibrosis Transmembrane Conductance Regu-

lator gene (CFTR; ABCC7; MIM #602421) (Riordan et al.,

1989; Rommens et al., 1989) encodes for a transmembrane

channel that regulates the chloride flow in the apical do-

main of epithelial cells. This protein is a member of the

ATP-binding cassette (ABC) superfamily (Holland et al.,

2003). It has two membrane-spanning domains (MSD1 and

MSD2), two nucleotide-binding domains (NBD1 and

NBD2), and one intrinsically disordered region, the regula-

tory domain (RD) (Holland et al., 2003; Gadsby et al.,

2006). The amount and/or function of the CFTR protein in

the cells can be affected by disease-causing variants in the

CFTR gene. When this channel is impaired, its malfunction

Genetics and Molecular Biology, 42, 3, 560-570 (2019)

Copyright © 2019, Sociedade Brasileira de Genética.

DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2018-0148

Send correspondence to Maria Teresa Vieira Sanseverino. Serviço
de Genética Médica, Hospital de Clínicas de Porto Alegre, 2350
Rua Ramiro Barcelos, Porto Alegre, RS, Brazil. E-mail:
msanseverino@hcpa.edu.br

Research Article

http://orcid.org/0000-0001-6737-7142
http://orcid.org/0000-0002-7404-2911


damages the tissues and organs where CFTR expression is

critical, leading to cystic fibrosis (CF; MIM #219700) – the

most frequent monogenic autosomal recessive inherited

disease – and CFTR-related disorder (Cutting, 2015).

To date, more than 2,000 variants have been de-

scribed in the CFTR gene according to the Cystic Fibrosis

Mutation Database – CFTR1 (CFTR1, 1989). Although

p.Phe508del (c.1521_1523delCTT), commonly known as

�F508, is the most common pathogenic variant in CF pa-

tients, present in about 70% of CF alleles worldwide, the

ones that cause amino acid substitutions correspond to al-

most 40% of CFTR variants (Cutting, 2015; Brennan and

Schrijver, 2016). Even though most missense variants are

rare, several may have clinical significance. Unfortunately,

the minority of them has conclusive clinical data of patho-

genicity (CFTR2, 2011).

In 2015, the American College of Medical Genetics

and Genomics (ACMG) and the Association for Molecular

Pathology (AMP) published guidelines for the clinical lab-

oratory interpretation of genetic variants regarding mo-

nogenic and mitochondrial diseases (Richards et al., 2015).

The journal cites a plethora of evidence that should be taken

into consideration when establishing the pathogenicity of a

genetic variant. Amid them, computational (in silico) pre-

dictive programs can have an auxiliary role on variant inter-

pretation (Richards et al., 2015). Among the main catego-

ries of in silico predictors are those that evaluate missense

variants. The impact of these variants depends on criteria

such as the functional consequence of the amino acid sub-

stitution, the location and the context within the protein

structure and/or the evolutionary conservation of a nucleo-

tide or amino acid. The algorithms used by those predictors

consider one or more of the criteria above when assessing

the impact of a missense variant (Tavtigian et al., 2008;

Hicks et al., 2011; Thusberg et al., 2011; Thompson et al.,

2013; Bendl et al., 2014; Richards et al., 2015).

Several studies have been published throughout the

years that aimed at comparing the performance of in silico

predictors and to evaluate their ability to correctly predict

disease-causing variants for different genes (Tavtigian et

al., 2008; Dorfman et al., 2010; Hicks et al., 2011;

Thusberg et al., 2011; Thompson et al., 2013; Bendl et al.,

2014; Bendl et al., 2016). Generally speaking, the accuracy

of the predictors ranges from 65 to 80% when analyzing

pathogenic variants. Furthermore, most predictors tend to

have low specificity, which results in an overrepresentation

of these missense variants as deleterious. Also, these pre-

dictions may not be reliable when analyzing missense vari-

ants with mild effect (Thusberg et al., 2011; Choi et al.,

2012). As an example of the clinical applicability of these

predictors, different potentially deleterious SNPs in the

GBA1 gene were identified that could be associated with

Gaucher’s disease (Manickam et al., 2014). Specifically for

CF, three common predictors (SIFT, PANTHER, and Poly-

Phen) were evaluated by comparing the predicted pathoge-

nicity against the diagnosis of CF and its clinical manifesta-

tions in cohorts of subjects with CF and CFTR-related dis-

orders carrying those variants (Dorfman et al., 2010).

Therefore, the aim of this study was to predict the ef-

fect of CFTR missense variants and compare the results to

public clinical data available in variant annotation data-

bases (CFTR2 and ClinVar), verifying whether the chosen

predictors would be suitable for analyzing CFTR missense

variants, if any. In addition, we aimed to find out if there is

any particular feature or modification in the CFTR protein

structure that could make predictors agree or disagree

more.

Materials and Methods

Data collection

A summary of this study’s workflow is represented in

Figure 1. From the date this analysis started (November

2016), there were 2,009 variants described at the Cystic Fi-

brosis Mutation Database (CFTR1, 1989). In this study, we

evaluated only variants that cause amino acid substitution;

thus, 779 missense variants in the CFTR gene

(NM_000492.3, LRG_663, ENSG00000001626) were col-

lected from the Human Gene Mutation Database® (HGMD)

Professional 2016.2 Trial Version for posterior prediction

of pathogenicity. This study was approved by the Hospital

de Clínicas de Porto Alegre (HCPA) Ethics Committee

(CAAE 59458516.5.0000.5327; GPPG 16-0644).

Prediction

In order to predict the effect of CFTR missense vari-

ants in the protein, we employed the consensus classifier

PredictSNP (Bendl et al., 2014). The canonical protein se-

quence for the analysis was retrieved from the UniProt da-

tabase – UniProtKB, Isoform 1 (The UniProt Consortium,

2017). PredictSNP comprises scores from different predic-

tors (MAPP, PhDSNP, PolyPhen-1, PolyPhen-2, SIFT,

SNAP, nsSNPAnalyzer, and PANTHER) and uses the in-

formation of six of them (MAPP, PhDSNP, PolyPhen-1,

PolyPhen-2, SIFT, SNAP) to create its own score. Pre-

dictSNP then classifies variants as “neutral” or “deleteri-

ous” and transforms the individual confidence scores of

each predictor into one comparable scale ranging from

0–100%, which represents the percentage of expected ac-

curacy, as described elsewhere (Bendl et al., 2014). By do-

ing this, PredictSNP homogenizes the analysis. Impor-

tantly, the authors of PredictSNP constructed three

independent datasets where they removed all duplicities,

inconsistencies, and variants previously used in the training

of the evaluated tools and a benchmark dataset containing

over 43,000 variants in order to evaluate, without bias, the

eight established prediction tools mentioned above. Spe-

cific methodological details are described elsewhere

(Bendl et al., 2014). Variants were inputted from codons 1

to 1480 using their legacy names, e.g. S1251N (c.3752G >
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A; p.Ser1251Asn), and then submitted to prediction analy-

sis.

Variant annotation databases

In order to compare the predicted pathogenicity of

missense variants to the literature, we used data from

CFTR2 and ClinVar as a reference to determine if predic-

tors asserted the pathogenicity correctly.

The Clinical and Functional Translation of CFTR

(CFTR2) is an online database for health professionals and

patients, gathering clinical, molecular, and functional in-

formation of CF (CFTR2, 2011). Also, it publishes at least

once a year a list of curated variants already found in pa-

tients across the globe. CFTR2 classifies variants as “CF-

causing”, “Non CF-causing”, “Varying clinical consequen-

ce”, and “Unknown significance”. Sometimes, a variant

may change from one class to another in an updated version

of this list. For this study, we used the most up-to-date list

available on CFTR2 (CFTR2_17March2017.xlsx) when

we were gathering data as a reference to compare the pre-

dicted and the clinical information of pathogenicity. Only

the minority of variants that we analyzed on PredictSNP

were recorded in the CFTR2 list (74 variants; 9.5%).

The other variant annotation database, ClinVar, is a

platform of the National Center for Biotechnology Infor-

mation (NCBI) that aggregates information about genomic

variation and its relationship to human health (Landrum et

al., 2018). Regarding Mendelian diseases, ClinVar uses the

562 CFTR variants: Do predictors work?

Figure 1 - Schematic representation of the methodology employed in this study. Through steps of selection of variants, comparison to annotations on

CFTR2 and ClinVar, and assignment of CFTR structure to each variant, two-phase sensitivity and specificity analysis and modeling of CFTR structure

was performed as shown. CFTR1: Cystic Fibrosis Mutation Database; HGMD: Human Gene Mutation Database; SNP: single nucleotide polymorphism;

UniProt: Universal Protein Resource; PDB: Protein Data Bank; ROC: Receiver operating characteristic curve.



five standard terms to classify the clinical significance of

variants according to Richards et al. (2015), classifying

them as “Pathogenic”, “Likely pathogenic”, “Unknown

significance”, “Likely benign”, and “Benign”. Different

sources can submit data of any variant of the human ge-

nome, but not all data on ClinVar is curated. Only 146 of

the 779 (18.7%) CFTR missense variants analyzed in this

study were described on ClinVar until November 20, 2016,

which is the date when we did the research in the website.

Also, CFTR2 submits variant data regarding the CFTR

gene to ClinVar.

CFTR topology, domains, and secondary structure

Information about CFTR structure was gathered from

different sources. Data from the CFTR protein topology

were retrieved from the UniProt database – UniProtKB

(The UniProt Consortium, 2017), and divided into “cyto-

plasmic”, “transmembrane”, and “extracellular”, according

to the amino acid position in relation to the cell membrane.

The information about CFTR domains (MSD1, NBD1, RD,

MSD2 and NBD2) was collected both from Pfam (Finn et

al., 2016) and CFTR1. When data diverged between them,

CFTR1 data were chosen since it is a specific database for

the CFTR gene. Regarding the secondary structure of

CFTR, information was collected from the Protein Data

Bank (RCSB PDB) (Berman et al., 2000), using the PDB

ID: 5UAK (Liu et al., 2017). Features represented in the

secondary structure of CFTR were divided according to

RCSB PDB into: “�-strand”, “turn”, “empty (no secondary

structure assigned)”, “3/10-helix”, “�-bridge”, “bend”, and

“�-helix”.

Modeling of CFTR protein and possible effect of
elected variants

The structural modeling of the CFTR protein (Uni-

ProtKB number: P13569) was performed using the

I-TASSER package (Zhang, 2008; Roy et al., 2010; Yang

et al., 2015). Through sequential steps of identification of

possible template structures, template fragmentation, incre-

mental model construction and evaluation, the tool was

able to construct a high-quality model for the protein (resi-

dues 1-1480). The visualization of the structures was per-

formed with the software PyMOL (The PyMOL Molecular

Graphics System, Version 1.8 Schrödinger, LLC). This

model was created to verify the possible implications of

four different CFTR missense variants that were chosen

based on the agreement or disagreement shown by all pre-

dictors for each one of them. The variants picked for the

model were: p.Met1Val (c.1A > G), p.Arg117His (c.350G

> A), p.Gly551Asp (c.1652G > A), and p.Ile1027Thr

(c.3080T > C).

Sensitivity and specificity analysis

In order to compare predictions to annotations avail-

able on CFTR2 and/or ClinVar, annotated variants that

were used to validate (present in the training or benchmark

dataset) of any predictor were excluded from the analysis

(ure 1). Therefore, from the variants annotated on CFTR2

and/or ClinVar, only 42 remained for further evaluation, al-

lowing for an unbiased comparison of predictor perfor-

mance. These remaining 42 variants were randomly di-

vided in two phases, each one composed by deleterious and

neutral variants: 1) Modeling phase: 29 out of 42 variants

were randomly used to build a ROC curve, where sensitiv-

ity and specificity were calculated; 2) Validation phase: the

remaining 13 variants (nine CF-causing and four Non-

CF-causing) were used to verify if parameters generated in

the modeling phase were trustworthy (Table S1). For this

analysis, accuracy values were used as a continuous vari-

able. Variants predicted as neutral were analyzed as nega-

tive accuracies, differentiating them from those accuracies

of variants predicted as deleterious. Hence, a continuous

variable ranging from -1 to +1 (absolute frequency of the

percentage of expected accuracy) was used.

Statistical analysis

For this study, “Non CF-causing”, “Benign”, and

“Likely benign” variants were considered “neutral” while

“CF-causing”, “Pathogenic” and “Likely pathogenic” vari-

ants were considered “deleterious”. For the sensitivity and

specificity analysis, Youden Index J was employed in the

modeling phase to determine the cut-off threshold where

sensitivity and specificity parameters would be maximized,

generating the best possible diagnostic parameters (You-

den, 1950). In order to verify if there was any amino acid

change, any particular region, domain, or any secondary

feature of the CFTR protein that was associated with a

higher or lower agreement between predictors, Pearson’s

Chi-Squared or Fisher’s Exact Test was used as appropri-

ate. We counted the agreement or disagreement between

predictors based on the predicted pathogenicity (“neutral”

or “deleterious”) for a given variant, as follows: “0” (full

agreement), “1” (1 disagreement), “2” (2 disagreements),

and “3” (3 disagreements). Predictors that could not assign

a prediction to any of the 779 CFTR missense variants (then

considering them as “missing”) were excluded from the

analysis (namely, MAPP and PANTHER) (e 1). Results

were analyzed using SPSS v18.0. Data were considered

statistically significant when p < 0.05.

Results

Descriptive analysis

Descriptive data of variants submitted to prediction

analysis are shown in Table 1. All in silico tools predicted

the pathogenicity of the 779 CFTR missense variants ex-

cept for MAPP (missing = 53) and PANTHER (miss-

ing=488). At least 25% of the predictions made by Pre-

dictSNP had an accuracy of 87%. Also, nsSNPAnalyzer

had the lowest amplitude and its predictions had lower ac-
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curacy than other predictors. At least half of the accuracies

provided by nsSNPAnalyzer were of 63%.

Sensitivity and specificity analysis

In the modeling phase of the sensitivity and specific-

ity analysis, ROC curves and the best possible cut-off

thresholds were generated, as evidenced in Table 2. In the

validation phase, the remaining variants generated diagnos-

tic parameters that could better indicate the performance of

each predictor. Noteworthy, MAPP’s modeling phase was

constituted by 22 deleterious and 4 neutral variants, since

the other 3 variants belonged to the group of 56 missing

variants that MAPP could not attribute a prediction result,

namely, p.Asp836Tyr (CF-causing), p.Asn900Lys (CF-

causing), and p.Arg668Cys (Non CF-causing).

Overall, predictors had poor performances in this

analysis. However, the two-phase experiment revealed

that, at the best cut-off threshold that Youden J Index could

find, MAPP and PhDSNP had maximum specificity, even

though both had low sensitivities (Table 2). Interestingly,

when comparing the results shown in Table 2 to our bank of

missense variants, the ones annotated as CF-causing or at

least having varying clinical consequence were predicted as

deleterious when the expected accuracy surpassed the

threshold. MAPP had two exceptions, with variants being

Non CF-causing but predicted as deleterious. Although

SNAP had maximum sensitivity in the validation phase

(Table 2), it presented null specificity. The same specificity

result applies to SIFT. This result was not relevant since all

13 variants in the validation phase were predicted as delete-

rious.

Agreement between predictors according to CFTR
structure

We wanted to evaluate the agreement between pre-

dictors in relation to CFTR’s topology (Figure 2A), do-

mains (Figure 2B), and features of secondary structure

(Figure 2C). MAPP and PANTHER were excluded from

this analysis because they were not capable of assigning a

prediction for a considerable number of CFTR missense

variants. The results showed that predictors have the ten-

dency to fully agree when amino acid changes are located

in the cytoplasm, although not statistically significant (Fig-

ure 2A; p=0.052). To what concerns protein domains,

CFTR amino acid changes located in NBD1 and NBD2

were significantly associated with full agreement between

predictors (p < 0.001), as expected. For those changes lo-

cated in MSD1, on the contrary, predictors tended to not

agree fully, being directly associated with two disagree-

ments between predictors (Figure 2B; p < 0.001). Taking

the features of CFTR secondary structure into account,

amino acid substitutions located in �-strands and bends

were associated with full agreement between predictors

whereas amino acid changes in �-helices were associated

with at least one disagreement between predictors (Figure

2C; p=0.001).

564 CFTR variants: Do predictors work?

Table 1 - Descriptive analysis of each predictor for CFTR missense variants (n=779a).

Predictor PredictS

NPe

MAPP PhDSNP PolyPhen

1

PolyPhen

2

SIFT SNAP nsSNPA

nalyzer

PANTH

ER

Number of predicted variants used

in location analysis

Valid 779 726 779 779 779 779 779 779 291

Missing 0 53 0 0 0 0 0 0 488

Number of variants used in

sensitivity and specificity analysis

Valid 42 39 42 42 42 42 42 42 -

Missing 0 3b 0 0 0 0 0 0 -

Pathogenicity Neutral (%)c 286

(36.7%)

339

(46.7%)

218

(28.0%)

400

(51.3%)

287

(36.8%)

211

(27.1%)

264

(33.9%)

292

(37.5%)

192

(66.0%)

Deleterious (%) 493

(63.3%)

387

(53.3%)

561

(72.0%)

379

(48.7%)

492

(63.2%)

568

(72.9%)

515

(66.1%)

487

(62.5%)

99

(34.0%)

Mean of Expected Accuracyd (SD) 73 (11.8) 69 (12.3) 73 (12.6) 67 (5.2) 66 (13.9) 71 (13.0) 70 (12.0) 64 (1.0) 61 (7.9)

Minimum 51 41 45 59 40 43 50 63 47

Maximum 87 92 98 74 87 90 89 65 74

Percentiles 25 63 62 61 67 55 65 61 63 56

50 (Median) 74 72 77 67 68 79 72 63 63

75 87 77 86 74 81 79 81 65 68

a Missense variants were retrieved from HGMD® Professional 2016.2 Trial Version on 09/29/2016.
b MAPP could not assign a prediction for three out of the 42 variants used for the sensitivity and specificity analysis (Supp. Table S1).
c Parenthesis represent the percentage of neutral or deleterious predictions over the valid number of predicted variants.
d Expected accuracy is a comparable scale ranging from 0–100% which represents the transformed confidence scores of individual predictors.
e PredictSNP uses scores from MAPP, PhDSNP, PolyPhen1, PolyPhen2, SIFT and SNAP to create its own prediction scores.

Descriptive data of each predictor are depicted. Missing values represent that predictors were not able to assign the pathogenicity of a variant. SD: Stan-

dard deviation.
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Figure 2 - Agreement between predictors according to CFTR protein structure. A) Agreement between predictors in relation to CFTR topology. Even

though there was a tendency of association between full agreement and cytoplasm, it was not statistically significant (p=0.052). B) Agreement between

predictors in relation to CFTR domains. NBD1 and NBD2 were significantly associated with full agreement between predictors. MSD1 was not signifi-

cantly associated with full agreement and significantly associated with two disagreements between predictors (p < 0.001). C) Agreement between predic-

tors in relation to the secondary structure of CFTR. Beta-strands and bends were significantly associated with full agreement between predictors whilst al-

pha-helices were not. Overall, predictors tended to agree more when they predicted missense variants as deleterious (black columns). As the

disagreements increased, the neutral prediction got more frequent (white columns). *p < 0.05; : p > 0.05. MAPP and PANTHER were not included in this

analysis.



Variants in the CFTR protein model

Examples of variants that would be featured in the

CFTR protein model (Figure 3) were chosen based on the

agreement between predictors, as described in the next

paragraphs.

Predictors fully agreed that p.Met1Val (c.1A > G;

legacy name M1V) is a neutral variant. However, our mo-

del (Figure 3A) showed that this variant would deviate the

translation initiation to the second methionine codon in the

mRNA molecule, causing the loss of the first 81 amino ac-

ids of the protein, which is corroborated by data available

on CFTR2 and ClinVar.

One example of a variant that showed disagreement

between predictors is p.Arg117His (c.350G > A; legacy

name R117H). Considering that the residue of arginine

(positively charged at physiological pH) is preceded by two

glutamic acids (negatively charged at physiological pH), its

substitution for histidine, which has an imidazole ring in the

side chain and is also positively charged at physiological

pH, could disturb the local neutralization. Besides, codon

566 CFTR variants: Do predictors work?

Table 2 - Best cut-off threshold of each predictor in the sensitivity and specificity analyses (n=42).

Best cut-off threshold of each predictor according to variant annotation databases in the

modeling phase (n=29)

Sensitivity and specificity of each predictor according to

variant annotation databases in the validation phase (n=13)

Predictor AUCa Youden Index J Cut-off (% of

expected accuracy)

Sensitivity

(%)

Specificity

(%)

Sensitivity (%) Specificity (%)

MAPPb 0.773 0.500 � 50 50 100 33.3 100

SNAP 0.658 0.400 � -74 100 40 100 0

PolyPhen2 0.638 0.350 � -66 75 60 55.6 50

PhDSNP 0.604 0.333 � 84 33.3 100 22.2 100

SIFT 0.575 0.317 � -78.5 91.7 40 77.8 0

PolyPhen1 0.567 0.267 � -4 66.7 60 44.4 25

nsSNPAnalyzer 0.475 -0.050 � -1 75 20 66.7 50

PredictSNPc 0.613 0.358 � -74.5 95.8 40 77.8 25

a AUC = area under the curve representing the discrimination between variants that are and are not deleterious. It ranges from 0 to 1 (values close to 1 rep-

resent predictors with better performances).
b In the modeling phase, MAPP’s ROC curve was built using 22 deleterious and four neutral variants (n=26). The other three variants were considered

“missing” in our dataset because MAPP could not generate a valid prediction for these variants (Supp. Table S1).
c PredictSNP uses scores from MAPP, PhDSNP, PolyPhen1, PolyPhen2, SIFT and SNAP to create its own prediction scores.

Negative cut-off values represent cut-offs of a neutral prediction.

Youden Index J (Youden, 1950) is a statistical test to rate diagnostic tests, ranging from 0 to 1 (values close to 1 represent predictors with better perfor-

mances). Youden Index is calculated according to the equation: J = (Sensitivity + Specificity) - 1

PANTHER was not included in this analysis.

All data presented in this table is statistically significant (p < 0.05).

Figure 3 - Modeled structure of the CFTR protein. A) Modeled structure for CFTR in its proposed location when inserted in biomembranes (dotted lines),

evidencing the absence of extracellular domains. Proposed variants are highlighted, while two segments that may be lost (at least partially) as a function

of these variants are highlighted in orange (associated with p.Met1Val) and in yellow (associated with p.Arg117His). Details regarding these deletions are

given in the results session. B) Main structural features of human CFTR. The semi-symmetric structure is composed of two equivalent halves, comprising

two domains (MSD and NBD) each. The N-terminus half of the protein has exclusive topological regions, namely the Lasso domain and the R domain (or

R insertion). MSD: Membrane-spanning domain; NBD: Nucleotide-binding domain; R domain: Regulatory domain.



117 is in the interface between transmembrane and extra-

cellular segments of the protein, which could also cause a

local disturbance (Figure 3A). Since p.Arg117His is well

known for being pathogenic when in cis with the 5T

(c.1210-12[5]) allele of the poly-T tract (c.1210-12[5-9]),

which causes the skipping of exon 10 during mRNA pro-

cessing, we also elaborated a model contemplating the ef-

fect of both CFTR variants when in cis (not shown). The

combination p.[Arg117His;5T] (c.[350G > A;1210-12[5]])

in the same CFTR model did not offer conclusive results of

its pathogenicity, which corroborates the disagreement ver-

ified in the analysis of in silico predictors.

Another chosen variant was p.Gly551Asp (c.1652G >

A; legacy name G551D), which had 100% agreement be-

tween predictors as being deleterious. In our model (Figure

3A), the p.Gly551Asp could change the local molecular en-

vironment of the NBD1 domain, establishing new interac-

tions, by replacing an amino acid that lacks a side chain

with a negatively charged one (at physiological pH), which

may be the cause of its pathogenicity.

The last variant picked from our database was

p.Ile1027Thr (c.3080T > C; legacy name I1027T). This

variant changes isoleucine (hydrophobic) for threonine

(polar and uncharged at physiological pH) in the middle of

a transmembrane helix, where the side chain is exposed to

the lipid portion of the cell membrane. This variant was

considered neutral by all predictors with the exception of

Polyphen1, and also considered benign by CFTR2 and

ClinVar.

Discussion

In this study, we submitted 779 CFTR missense vari-

ants to prediction analysis in the consensus classifier Pre-

dictSNP. We compared prediction results to annotations

available on CFTR2 and ClinVar in order to determine if

any of these predictors would present a reliable interpreta-

tion of these variants.

Analysis of sensitivity and specificity showed that

none of the predictors had a reliable performance predict-

ing the pathogenicity of CFTR missense variants. It was ob-

served that MAPP and PhDSNP had maximum specificity,

correctly identifying true negatives, i.e., non-pathogenic

variants. However, the fact that the sensitivity of both pre-

dictors was lower than 50% means that they would be ran-

domly assigning variants as deleterious. It is important to

highlight that a higher specificity would be preferred in-

stead of a higher sensitivity, since molecular diagnosis is

not used for screening but as a complementary form of CF

diagnosis, where the clinical features and the sweat chlo-

ride test have already been performed in patients (Farrell et

al., 2017). Hence, the goal would be to avoid predicting

neutral variants as pathogenic. On the other hand, both

SIFT and SNAP presented good sensitivity in the detriment

of a null specificity. This result is a clear example of one of

the main struggles of in silico predictors: overprediction of

variants as deleterious (Choi et al., 2012; Richards et al.,

2015).

One factor that may contribute to the disagreements

between the prediction of predictors is the algorithms em-

ployed by each one of these tools (Bendl et al., 2014). Four

predictors included in the analysis generated by Pre-

dictSNP – PhDSNP (Capriotti et al., 2006), PolyPhen2

(Adzhubei et al., 2010), SNAP (Bromberg and Rost, 2007),

nsSNPAnalyzer (Chandonia et al., 2004; Bao et al., 2005) –

apply machine-learning methods to train their decision mo-

dels (Larrañaga et al., 2006). From the other predictors,

SIFT (Ng and Henikoff, 2003) and PANTHER (Thomas et

al., 2003; Brunham et al., 2005) use only evolutionary in-

formation while MAPP (Stone and Sidow, 2005) also con-

siders differences in the physicochemical properties of wild

type and mutated amino acids in their prediction. Poly-

Phen1 (Ramensky et al., 2002) uses a set of empirical rules

in order to classify missense variants. This diversity in the

way predictors analyze missense variants indicates that

these tools should not be used as the only way to assert the

pathogenicity of this type of variant. Besides, multiple lines

of computational evidence that support a deleterious or a

benign impact on a gene or gene product should not be

counted as an independent criterion, therefore being

counted only once in any evaluation of a variant (Richards

et al., 2015).

Considering the structure of the CFTR protein, we

had some interesting findings. Regarding the agreement be-

tween predictors in relation to neutral or deleterious predic-

tions, we observed that missense variants located in nucleo-

tide-binding domains (NBD1 and NBD2), �-strands, and

bends are associated with full agreement between computa-

tional tools (Figure 2). One explanation for this resides in

the fact that all �-strands present in the CFTR structure are

located either in NBD1 or NBD2. Notably, the CFTR pro-

tein is a peculiar member of the ABC superfamily (Holland

et al., 2003; Gadsby et al., 2006) and it is fundamentally

composed by two halves, each half having one membrane-

spanning domain (MSD) and one NBD (Figure 3B). Other-

wise, missense variants located in MSD1 and in �-helices

are associated with at least one disagreement between pre-

dictors (Figure 2). Herein, not just MSD1 and MSD2 are

basically formed by �-helices but this secondary structure

is also present in other domains. The structure 5UAK cu-

rated in the Protein Data Bank (Berman et al., 2000; Liu et

al., 2017), used as a reference to determine where the amino

acid substitution generated by each CFTR missense variant

is located in the secondary structure, corroborates the data

above. At least visually, our results suggest that predictors

tend to agree more when they assert variants as deleterious,

and they also tend to disagree more when asserting variants

as neutral.

The molecular model elaborated with p.Met1Val,

p.Arg117His, p.Gly551Asp, and p.Ile1027Thr made it pos-

sible to better rationalize the effect of these variants in the
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CFTR protein, and some of the affirmations generated by

our model were corroborated by CFTR2 and ClinVar data.

In the case of p.Met1Val, translation initiation at the first

methionine would be aborted, promoting the loss of the first

81 amino acids of the protein sequence (Figure 3B), which

includes the Lasso domain (Liu et al., 2017). Our analysis

is corroborated by CFTR2 and ClinVar, where p.Met1Val

is classified, respectively, as “CF-causing” and “Patho-

genic”. In fact, there were 26 patients in the CFTR2 data-

base that carried this pathogenic variant (CFTR2, 2011).

A variant that showed disagreement between predic-

tors is p.Arg117His (c.350G > A; legacy name R117H),

which is described as having varying clinical consequence

by CFTR2. In the same database, there are 1,817 patients

that carry p.Arg117His (CFTR2, 2011). According to

ClinVar, this variant is pathogenic, has conflicting interpre-

tation of pathogenicity, and is also a risk factor. In addition,

when p.Arg117His is in cis with c.1210-12[5] (5T form of

the poly-T tract, an intragenic modifier that causes the skip-

ping of exon 10 during mRNA processing), this combina-

tion is considered as CF-causing according to CFTR2,

being carried by 102 patients (CFTR2, 2011). It is impor-

tant to emphasize that p.Arg117His and c.1210-12[5] do

not cause CF when they are alone or in trans (CFTR2,

2011). According to our model, the combination c.[350G >

A;1210-12[5]] does not offer conclusive results of its pa-

thogenicity, which corroborates curated data (CFTR2,

2011), but reinforces the inconclusive predictions of in

silico tools. Finally, the amino acid change generated by

this missense variant affects the function of the CFTR pro-

tein. When arginine is substituted by a histidine, the con-

ductance of CFTR is affected, thus impairing the flow of

chloride ions (Sheppard et al., 1993). Ivacaftor (Kalyde-

co®; Vertex Pharmaceuticals Inc., Boston, MA), a drug ap-

proved to treat gating defects caused by CFTR missense

variants, has already been approved by the U.S. Food and

Drug Administration for the treatment of patients carrying

p.Arg117His as well (Vertex Pharmaceuticals Inc.).

The substitution of a glycine for an aspartate on co-

don 551 (p.Gly551Asp; c.1652G > A; legacy name

G551D) has been reported as CF-causing by CFTR2 and

pathogenic by ClinVar. This variant does not affect the

amount of CFTR protein available in the cell membrane.

Instead, its pathogenicity relies upon the functional activity

of CFTR, impairing the gating of this chloride channel due

to its proximity with the ATP-binding site. The

p.Gly551Asp variant was also chosen to be featured in our

model (Figure 3A) because it is one of the two CFTR

missense variants carried by more than 1% of CF patients

(Cutting, 2015; Brennan and Schrijver, 2016), being a

well-known therapeutic target of ivacaftor. In fact, there are

2,915 patients carrying this variant in the CFTR2 database.

The last variant picked from our database was

p.Ile1027Thr (c.3080T > C; legacy name I1027T). Al-

though this substitution could affect the permeability of the

CFTR channel, it was considered neutral by all predictors

except for PolyPhen1. Concerning CFTR2, p.Ile1027Thr is

a non-CF causing variant. This annotation was based on

clinical information of patients carrying this variant, exper-

imental data generated from this variant, and on groups of

healthy individuals that carry p.Ile1027Thr. CFTR2 also

reports that there are 36 patients carrying this variant in its

database. Concerning ClinVar, p.Ile1027Thr is a benign or

likely benign variant.

One important limitation that we encountered was the

lack of missense variants reported in the variant annotation

databases. When the comparison between predictions and

variant annotation databases started, the most updated list

of CFTR variants available on CFTR2

(“CFTR2_17March2017.xlsx”), a curated database spe-

cific to the CFTR locus, contained the 322 most common

variants, and approximately 80 were missense. Currently,

the up-to-date list of CFTR variants

(CFTR2_8December2017_2.xlsx) contains the 374 most

common variants in the CFTR gene, and the number of

missense variants has increased to almost 120. It represents

an improvement concerning the intrinsic difficulty of mak-

ing functional analyses to evaluate the activity of this chlo-

ride channel and the rarity of most CFTR missense variants

in the population. Besides, CFTR2 only presents informa-

tion about variants that have been reported in one of the

88,664 patients currently registered in the database

(CFTR2, 2011). Regarding ClinVar, variant classification

is provided by different submitters (CFTR2 being one of

them). In this database, about 600 CFTR missense variants

have available information about their pathogenicity,

which would increase the sample size of annotated variants

in this study. However, almost half of them are variants of

unknown significance (VUS), and there are cases of con-

flicting interpretation of pathogenicity, many of them

among the 779 missense variants submitted to prediction

analysis in this study. This limitation had an impact on the

sample size of our validation, since most reported variants

had already been used in the training datasets of the evalu-

ated predictors.

Since we chose predictors that were available on

PredictSNP as a model, the inclusion of other predictors

would require a sophisticated mathematical study, which

would deviate from the clinical/practical scope of this

study. Although there are more current predictors available,

like CADD, MutPred, VEST, FATHMM, REVEL (Ioan-

nidis et al., 2016), the ones that were included in our study

are in fact listed by Richards and colleagues as suitable pre-

dictors to evaluate the pathogenicity of missense variants in

monogenic and mitochondrial diseases (Richards et al.,

2015).

These results ratified that predictors not only diverge

when predicting the pathogenicity of these variants but can

also agree to assign the wrong annotation to variants that

clearly have the opposite effect, mainly corroborating pre-
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vious studies that showed the low specificity of in silico

predictors and the overprediction of deleterious variants

(Choi et al., 2012; Richards et al., 2015). Overall, the cate-

gorical classification as “neutral” or “deleterious” for mis-

sense variants in a gene that encodes for a transporter,

which function can range from zero to 100%, poses signifi-

cant limitation for its use. Hence, in silico analysis, as part

of the molecular analysis of CFTR, should always be corre-

lated with clinical – signs and symptoms – and physiologi-

cal data in order to determine CF diagnosis. Concomitantly,

the further determination of pathogenicity and the reevalua-

tion of missense variants curated in annotation databases

like CFTR2 are fundamental, mainly because there are

those cases of positive newborn screening, inconclusive di-

agnosis, and CFTR-related metabolic syndrome (Farrell et

al., 2017), where CF diagnosis is very difficult to achieve.

This study employed a consensus predictor to evalu-

ate a large number of CFTR missense variants and compare

these predictions to publicly available variant annotation

databases (CFTR2 and ClinVar). As shown by the results

presented in previous sections, predictors should be used

carefully under a critical point of view, since in silico data

are only a supporting evidence of pathogenicity. They have

less power as an evidence when classifying a variant than

clinical and population data (Richards et al., 2015). Further

studies and validation of other predictors are necessary in

order to identify prediction tools more suitable for helping

clinicians and genetic counselors on decision making about

the pathogenicity of CFTR missense variants.
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