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Charcoal evidence that rising atmospheric oxygen
terminated Early Jurassic ocean anoxia
Sarah J. Baker1, Stephen P. Hesselbo2, Timothy M. Lenton3, Luı́s V. Duarte4 & Claire M. Belcher1

The Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the

global carbon(C)-cycle, and depleted oxygen in Earth’s oceans resulting in marine mass

extinction. Numerical models predict that increased organic carbon burial should drive a rise

in atmospheric oxygen (pO2) leading to termination of an OAE after B1 Myr. Wildfire is

highly responsive to changes in pO2 implying that fire-activity should vary across OAEs. Here

we test this hypothesis by tracing variations in the abundance of fossil charcoal across the

T-OAE. We report a sustained B800 kyr enhancement of fire-activity beginning B1 Myr after

the onset of the T-OAE and peaking during its termination. This major enhancement of fire

occurred across the timescale of predicted pO2 variations, and we argue this was primarily

driven by increased pO2. Our study provides the first fossil-based evidence suggesting that

fire-feedbacks to rising pO2 may have aided in terminating the T-OAE.
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I
t has been suggested that projections of anthropogenic
C-emissions likely exceed levels that have initiated Oceanic
Anoxic Events (OAEs) in Earth’s past1,2, implying that

anthropogenic forcing of the Earth System may cause a future
OAE, with implications for food security and for the oceans as a
net C sink. OAEs are identified in the rock record by globally
traceable organic-rich sediments and excursions within the d13C
record3,4, representing periods of major disturbance to the global
C-cycle4. The study of OAEs therefore provides a geological test
bed for understanding the functioning of global biogeochemical
cycles under extreme conditions and rapid shifts in C-emissions.

Burial of organic carbon (C(org)) and reduced sulfur (pyrite)
burial generate long-term build-up of oxygen to Earth’s atmo-
sphere5–10. It has thus been predicted that during an OAE,
where increased burial of Corg and pyrite11 occur, that pO2

concentrations should have risen12 (Fig. 1). Wildfire responds
strongly to pO2 (refs 13–15) and has been implicated in providing
an essential long-term negative feedback, counteracting rising
pO2 throughout geological time (for example, see refs 5,12,16).
We therefore hypothesize that fire-activity should track projected
pO2 changes across an OAE (Fig. 1).

Variation in the occurrence and abundance of charcoal
throughout Earth history is taken to represent changes in fire-
activity and appears to correlate with broad trends in the
abundance of pO2 (refs 13,17). A few studies have looked at the
fossil-charcoal record within Devonian marine black shales and
related them to changes in pO2 and fire-feedbacks18,19. However,
fossil charcoal has not been studied across events such as OAEs in
order to test the hypothesis that fire-feedbacks to pO2 may have
acted together to rebalance the Earth system during these
events9,12. Here we test this hypothesis by assessing the
charcoal content of sediments from two sites deposited in the
southern Laurasian Seaway, at Mochras in Wales, UK and
Peniche, Portugal.

In this study, we find that charcoal abundances and therefore
inferred wildfire-activity at both study locations are enhanced
B1 Myr after the onset of the T-OAE. The enhancement of fire-
activity is sustained for B800 kyr and peaks during the OAE
termination. Variations in pO2 are anticipated to occur over Myr
timescales6,16,20 due to the long residence time of oxygen within
the ocean-atmosphere system12,20. The major enhancement of
fire-activity occurring B1 Myr after the start of the T-OAE and
lasting over B800 kyr is strikingly similar to the Myr timescale
required for predicted global pO2 variations. Our findings

therefore provide the first fossil-based evidence to support the
postulation that OAEs are terminated by a rise in pO2 levels.

Results
Palaeo-wildfire. We find background charcoal abundances range
between 22,000 and 75,000 particles per 10 g rock at Mochras,
and 37,000 and 122,000 at Peniche prior to the T-OAE. Charcoal
abundance rises briefly above background levels during the onset
of the T-OAE, evidenced by 950,000 particles at Peniche
(10.4 m log height) and 133,000 at Mochras (842 m depth), the
start of which is widely identified in the rock record by a shift
towards negative d13C values at the culmination of a positive
d13C trend3 (Fig. 2). Charcoal abundances then decline to
background values during the period of the negative carbon
isotope excursion (CIE). Abundances remain at/below
background levels until the final stages of the OAE (22.4 m at
Peniche and 809 m at Mochras), where abundances increase to
293,000 particles at Peniche and 350,000 at Mochras. Although
there appears to be variability within the charcoal abundance
data, at both study locations abundances remain above
background levels for B9.6 m at Peniche (between log heights
22.4 m and 32 m); and 23 m at Mochras (between core depths
809 m and 786 m), with the exception of one point at 803 m at
Mochras, where abundances decline to 45,000 particles per 10 g of
rock. Once the T-OAE has terminated, identified by the d13C
values returning to towards pre-excursion levels, abundances
return to background levels as evidenced at Peniche from a mean
of 411,000 particles between log heights 22.20 m and 32 m to a
mean of 62,000 particles between 32 m and 38.2 m; and at
Mochras from a mean charcoal abundance of 307,000 particles
between core depths 809–786 m to a mean of 113,000 particles
between depths of 785 m and 771 m.

Palynofacies. The reported variations in charcoal abundance do
not appear to be an artefact of preservation or changes in ter-
restrial organic delivery across the OAE, because variations in
preserved phytoclasts (comprising terrestrial vegetal matter
including charcoal, plant cuticles, pollen and spores and coalified
material), show little correlation with the variations in charcoal
abundance at either site (Fig. 2). This is further statistically
supported by higher than 0.05 P values of P¼ 0.384 for the
Mochras section (where Pearsons R equalled � 0.0186), and
P¼ 0.195 for Peniche (where R equalled � 0.2153), indicating
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Figure 1 | Summary of published data collected across the early Toarcian oceanic anoxic event. (a) Carbonate carbon isotope profile from Peniche and

the organic carbon isotope profile from Yorkshire illustrating the step-wise nature of the negative excursion, and postulated pulses of light carbon release

from Kemp et al.25 Plotted alongside are the osmium isotope profile from Mochras and total organic carbon content from the Yorkshire section. (b) Handoh

and Lenton’s12 hypothesized model changes in atmospheric oxygen and wildfire frequency across an oceanic anoxic event, with period of modelled peak

oxygen and wildfire frequency highlighted.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15018

2 NATURE COMMUNICATIONS | 8:15018 | DOI: 10.1038/ncomms15018 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


that the correlation between charcoal abundance and phytoclast
abundance throughout the sections is not significant.

Discussion
Fluctuations in the abundance of terrestrial phytoclasts have been
used to indicate shifts in proximal palaeo-shoreline distance from
the depositional site, as well as changes in preservation, for
example, due to a switch from anoxic to an oxic environment21.
At Mochras, the depositional site is anticipated to have gradually
deepened, beginning at the OAE initiation and continuing
throughout the falciferum ammonite zone into the bifrons
ammonite zone beyond the studied section22. Interestingly,
phytoclast abundances do not appear to reflect this deepening
trend, suggesting that the site may have continued to experience a
similar influx of terrestrial material throughout the OAE and
beyond. Therefore this deepening is unlikely to explain enhanced
charcoal abundance towards the end of the OAE; if anything
deepening might be expected to decrease the amount of charcoal
reaching the depositional environment at this site. Furthermore
the lack of correspondence between variations in phytoclast
abundance and charcoal abundance, implies that the enhanced
number of fossil-charcoal particles that occur during the final
stages of the OAE are unlikely to be due to a change in organic
preservation, and therefore most likely reflect a real change in
fire-activity. The charcoal is further unlikely to have been
reworked up-section as there is no evidence of reworking in the
biostratigraphic record of the sites, nor evidence for enhanced
bioturbation at the onset of this phase of the OAE. Because
charcoal abundance is limited below this point, reworking of the
older sediments appears an unlikely source for the abundant
charcoal that appears in the final phases of the OAE.

Published astronomically calibrated timescales for the Peniche
section23,24, estimate a total duration of between B900 kyrs and

B1.7 Myrs for the T-OAE, respectively. These timescales have
previously been compared and correlated with Toarcian
sediments exposed in Yorkshire, UK, which also illustrates a
strong astronomical forcing within the d13Corg record25. The
section we have studied at Mochras provides twice the thickness
and is considered to be stratigraphically more complete than that
exposed in Yorkshire26,27. For the purpose of this study, we have
used the most up-to-date published correlation of the Peniche
and Mochras section,28 plotted alongside the most up-to-date
published cyclostratigraphically calibrated timescale from the
Peniche section24.

Using the published timescale, we estimate that background
charcoal abundances persisted for the duration of B600 kyrs (ref. 24)
prior to the initiation of the OAE. The sustained increase in
charcoal abundances at 22.4 m at Peniche and 809 m at Mochras,
occurs at an estimated B1 Myrs after the OAE onset (Fig. 2),
remaining elevated for an estimated 800 kyrs–1 Myrs before
declining towards background abundances after the OAE
termination. The major change in inferred wildfire-activity
estimated at B1 Myrs after the OAE onset appears to corroborate
the hypothesis of Handoh and Lenton12, suggesting that a rise in
pO2 may have assisted in terminating the T-OAE by ventilating
the ocean. However, while Handoh and Lenton12 predict that pO2

and thus fire-activity should be at a minimum at the start of the
OAE and gradually rise throughout (Fig. 1), our analysis reveals a
brief rise in fire-activity during the T-OAE initiation at both study
sites, although albeit a much smaller rise in abundances at the
Mochras site. Calculation of the Z scores for this brief rise in
charcoal abundances (Z¼ 10.43 at Peniche and Z¼ 3.39 at
Mochras) indicates that this increase in charcoal abundance at the
onset, is statistically significant (larger than the critical Z value of
1.645) when compared to the background counts at both study
sites. While, this observation is based on only one data-point in
each section and requires corroboration, the brief rise in charcoal
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Figure 2 | Charcoal and Phytoclast abundances across the T-OAE. Charcoal and phytoclast data collected in this study, plotted against published wood
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abundance occurs at the culmination of a positive d13C trend.
This could imply that the positive d13C trend is indicative of an
earlier prolonged increase in C(org) burial, and therefore that pO2

began rising before the OAE.
Fire responses to rising pO2 are non-linear (see Fig. 4 in ref. 29);

therefore, depending on the timing of the onset of C(org) burial
and the abundance of pO2 prior to the OAE, the fire responses
could be variable throughout the OAE29. The pO2 estimates for
183 Ma range between 16 and 21% (ref. 17). If background pO2

were B19%, and the onset of C(org) burial were capable of leading
to a rapid 1% rise in pO2 by the start of the OAE, there would be a
rapid rise in fire-activity as pO2 transitioned between 19 and 21%
(ref. 29). Beyond 21% the fire response would slow but still
continue to rise throughout the OAE with rising C(org) burial and
pO2, reaching a peak towards the end. However, most models
estimate baseline pO2 at B20% (refs 16,30), which would
generate a slower fire response at the onset of enhanced C(org)

burial, with fire-activity gradually rising throughout and peaking
at the end of the OAE. Therefore the initial peak in fire-activity
would require a different explanation.

A study by McElwain et al.31 on a T-OAE section at Bornholm,
Denmark, reveals that during the initiation, significant climatic
changes occurred. Although, this sequence31 preserves only the lower
part of the negative CIE, and was conducted at a higher resolution
than that captured here, a rise in global temperatures and drying of
the regional climate is inferred due to increased abundance of
thermophilic plant taxa immediately before the first negative d13C
shift. Past Mesozoic global warming events have been shown to

enhance fire activity15 and warm, dry periods are commonly linked
with increased fire probability and large fire events32,33, which tend to
be enhanced when dry periods succeed wetter periods that are
favourable to fuel accumulation. Thus the brief enhancement of fire-
activity may have been influenced by climatic changes occurring over
timescales of a few hundred to thousand years close to the onset of
the OAE; either driven directly by the climate change or from a
resulting change in vegetation, the fuel for fires.

Following the brief rise in fire-activity, charcoal diminishes to
near background levels, rather than rising gradually throughout
the OAE. During the negative CIE, pulses of isotopically light C
suggest enhanced input of CO2 into the atmosphere from
volcanic sources25 leading to increased global temperatures34,
sufficient to provoke methane (CH4)-hydrate dissociation3. This
combined with an increase in terrestrial methanogenesis and a
potential positive feedback associated with the decomposition of
plant litter enabling further release of CO2 and CH4 from
terrestrial sources (for example, refs 35,36), thus created the large
negative CIE and enhanced CH4 driven global warming. Coupled
ocean-atmosphere models suggest an increase in global
precipitation rates of þ 9 cm per year driven by the subsequent
rises in CO2 (ref. 37). Increased continental weathering rates of
up to B3 times larger than before the excursion38, have also been
suggested based on a positive excursion in 187Os/188Os within the
Jet Rock beds of Yorkshire and at Mochras38 (Fig. 1). These imply
a warmer but wetter world; an expected feedback response to
greenhouse induced warming31. Hence suppression of the rise in
fire-activity throughout the negative CIE may be due to a
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significantly wetter climate, damping any pO2-fire response. Of
significance however, is the ability of fire-activity to continue at
background levels, which may indicate rising pO2 enabling fuels
with higher moisture contents to continue to burn at a similar
level to before the event13–15.

Towards the end of the T-OAE the d13C record rises to more
positive values again. At the same time, charcoal abundances at
both sites increase, and remain elevated until the point of the
T-OAE’s termination. This synchronous rise begins at an
estimated B1 Myr (ref. 24) after the start of anoxia, with
charcoal abundances remaining elevated for an inferred
B800 kyr (ref. 24), before returning to near background values
(Fig. 2).

Following the negative CIE, palaeoclimatic conditions are
hypothesized to have gradually cooled and dried, continuing well
beyond the point of the T-OAE termination34,39. Climatic drying
will have likely aided any pO2 driven enhancement of fire-activity,
removing the suppression of fire under the wetter conditions of the
CIE. Importantly however, beyond the OAE termination, charcoal
abundances no longer track the inferred climate changes and
instead decline despite the hypothesized climate continuing to dry
and cool. Instead, after an inferred B800 kyr (ref. 24) of enhanced
fire-activity the system appears to return to near background
functioning, evidenced by the decline in charcoal at Peniche between
33.2 m and 38.2 m, and at Mochras between 785 m and 771 m.

Variations in pO2 are anticipated to occur over Myr time-
scales6,16,20, due to the long residence time of oxygen within the
ocean-atmosphere system12,20, which is set by the large reservoir
of oxygen in the atmosphere,B3.7� 1019 mol (ref. 20), divided
by the relatively small flux of oxygen from C(org) burial
B18� 1012 mol oxygen per year1,20 (and corresponding
removal largely by oxidative weathering). The major
enhancement of fire-activity for B800 kyr is strikingly similar
to the Myr timescale required for hypothesized global pO2

reservoir variations12,20. In the model of Handoh and Lenton12,
increased C(org) burial across the OAE should lead to a gradual
rise in pO2 and an increase in fire-activity, which leads to
suppression of vegetation and a decline in chemical weathering
rate (particularly of phosphorous) towards the end of the OAE
(ref. 12). The latter prediction appears to be supported by the
rapidly declining 187Os/186Os towards the end of the T-OAE
(refs 38,40). Some Earth system models (for example, COPSE
(ref. 30)) depend on the sensitivity of fires to pO2 and the impact
that fires have on vegetation biomass16,30 to regulate pO2. Fire is
estimated to suppress Earth’s present day vegetation biomass by
50% (ref. 41) at pO2 B21%, yet fire cannot be sustained (and
therefore cannot suppress vegetation) below pO2 B15–17% (ref.
13). Even a modest increase in pO2 driven by enhanced C(org)

burial during the T-OAE, from, for example, the base level of pO2

(B20%) estimated for the Jurassic16,30 to 21%, could have led to a
5% increase in burn probability due to the rapid response of fire

to pO2 around this baseline level13. This in turn could have
significantly enhanced the suppression of vegetation by fire16 by
the end of the T-OAE. The resulting fire suppression of plant-
driven phosphorus weathering may have assisted in terminating
the T-OAE by reducing the input of phosphorus to the ocean and
therefore productivity and oxygen demand in the water column.
This effect would have combined with the direct effect of rising
pO2 re-oxygenating the ocean and in turn causing phosphorus
to be more efficiently removed to sediments12. Specifically, as
the ocean starts to re-oxygenate this is predicted12 to increase the
removal of phosphorus adsorbed to iron oxide minerals (Fe–P)42

and that preserved in organic matter (Org-P)43,44, lowering the
ocean PO4 concentration and thus lowering oxygen demand
in the water column—a strong positive feedback amplifying
the re-oxygenation of the ocean. The data presented here provides
the first fossil evidence that pO2 driven fire-feedbacks may have
played a significant role in terminating ocean anoxia. We note
that further work at additional study site(s) away from the Tethys
region would be required to provide evidence that this fire
response to rising pO2 was global in extent.

In conclusion, the observed increase in abundance of fossil
charcoal, taken as a proxy for fire-activity occurring towards the
end of the T-OAE is hypothesized to be primarily driven by
increased pO2, providing the first fossil-based evidence to support
the postulation that OAEs are terminated by a rise in pO2 levels.
Thus the response of fire to Earth system perturbations across the
T-OAE appears to capture a geologically rapid enhancement of
pO2 implying that relatively small but significant changes in this
key atmospheric gas may be possible over the timescale of an
OAE. Such rapid C-cycle driven changes to pO2 suggest that new
higher time-resolution models of pO2 over Earth’s history may be
required to explore the relationship between changes in C-cycling
and Earth system functioning. This is critical because it appears
that oxygen-fire feedbacks have the ability to regulate key
processes that help re-oxygenate the ocean during perturbations
to C-cycling and return the Earth system to background
functioning. Given that the modern ocean is ‘on the edge of
anoxia’12 and observations that the Earth system may take
millions of years to regain background function if the ocean is
tipped into an anoxic state, it will be critical to manage
anthropogenic disruption to the C-cycle and maintain the
natural functioning of wildfire-activity in order to regulate the
Earth system within habitable bounds.

Methods
Study locations. Two sites were studied that record the T-OAE, deposited within
the southern Laurasian Seaway; Peniche in Portugal and Mochras in the UK
(Fig. 3). At Peniche, the Pliensbachian-Toarcian carbonate ramp succession is
particularly well exposed, including the Toarcian GSSP (for example, see ref. 45).
The deepest part of the ramp (B200 m), represented by the Praia do Abalo sample
locality, was bounded by the high-relief Berlenga–Farilhões horst, which provided
terrestrial material to the sample site46. The site is unlikely to be influenced by a

10 μm 10 μm

Figure 4 | SEM images of charcoal fragments from the Peniche section. The fragments show the preservation of cellular anatomy and fused/

homogenized cell walls—a key feature in charcoal identification.
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rise in sea level, as the horst would not have become more distal from the
depositional area3. In Wales, UK, the Llanbedr (Mochras Farm) core, referred to as
Mochras, drilled in 1967–1969, provides a complete section of mostly Early Jurassic
sediments dating from the Late Rhaetian to Late Toarcian47,48. The sediments were
deposited within a basinal marine setting, which became deeper during the
initiation of the OAE, continuing throughout the falciferum zone into the bifrons
zone (beyond the studied section)22 influenced by nearby terrigenous sources
around the Cardigan Bay area48. Both sites are within the Laurasian Seaway (see
Hesselbo and Pieńkowski49 and references therein), and are anticipated to capture
regional signals of burning from the nearby emergent land.

Sample collection and processing. Rock samples were collected from the exposed
cliff sections in Peniche, and from the Mochras core, stored at British Geological
Survey, Keyworth. The samples were picked from marl units, characterized by
minor lithological changes and are considered to have been deposited within
relatively uniform palaeoenvironments, minimizing the distortion of any
fire-signals observed. Fossil charcoal was extracted from the Peniche and Mochras
rock samples (48 samples in total were processed and analysed) using standard
palynological acid maceration techniques. The remaining organic particles were
sieved using a 125 mm mesh, where both size fractions were collected. The
4125mm size fractions were analysed using a binocular microscope, where all
charcoal particles in each 20 g sample were quantified. The o125 mm fraction
retained was quantified by evenly dispersing the organic particles in a known
quantity of water. A known volume was then pipetted and made into slides using
standard palynological techniques. Two transects of each slide were quantified,
and scaled up to the known quantity of the o125 mm sample50. Selected particles
were studied using a scanning electron microscope (SEM) to confirm their
identification as charcoal (Fig. 4). To ensure changes in fossil charcoal
concentrations were not biased by a change in nature or abundance of terrestrial
organic material, a palynofacies analysis of each sample was conducted, quantifying
the abundance of pollen and spores; plant cuticle, amorphous organic matter and
coalified particles (Supplementary Data 1).

Data availability. All data generated and analysed in this study are included in this
published article and its supplementary information file.
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