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In recent years, the prevalence of technological advances has led to an enormous and ever-increasing amount of data that are
now commonly available in a streaming fashion. In such nonstationary environments, the underlying process generating the
data stream is characterized by an intrinsic nonstationary or evolving or drifting phenomenon known as concept drift.
Given the increasingly common applications whose data generation mechanisms are susceptible to change, the need for
effective and efficient algorithms for learning from and adapting to evolving or drifting environments can hardly be
overstated. In dynamic environments associated with concept drift, learning models are frequently updated to adapt to
changes in the underlying probability distribution of the data. A lot of work in the area of learning in nonstationary
environments focuses on updating the learning predictive model to optimize recovery from concept drift and convergence
to new concepts by adjusting parameters and discarding poorly performing models while little effort has been dedicated to
investigate what type of learning model is suitable at any given time for different types of concept drift. In this paper, we
investigate the impact of heterogeneous online ensemble learning based on online model selection for predictive modeling
in dynamic environments. We propose a novel heterogeneous ensemble approach based on online dynamic ensemble
selection that accurately interchanges between different types of base models in an ensemble to enhance its predictive
performance in nonstationary environments. ,e approach is known as Heterogeneous Dynamic Ensemble Selection based
on Accuracy and Diversity (HDES-AD) and makes use of models generated by different base learners to increase diversity to
circumvent problems associated with existing dynamic ensemble classifiers that may experience loss of diversity due to the
exclusion of base learners generated by different base algorithms. ,e algorithm is evaluated on artificial and real-world
datasets with well-known online homogeneous online ensemble approaches such as DDD, AFWE, and OAUE. ,e results
show that HDES-AD performed significantly better than the other three homogeneous online ensemble approaches in
nonstationary environments.

1. Introduction

Ensembles of classifiers have been successfully used in a
variety of applications including text classification and ex-
traction such as keyword extraction in text classification [1],
text classification based on supervised clustering [2], text
genre classification based on language function analysis, and
feature engineering [3]. Applications that generate data from
nonstationary environments, where the underlying phe-
nomenon changes over time, are becoming increasingly

prevalent [4]. Examples include sensor networks, spam
filtering systems, and intrusion detection systems. ,e
prevalence of data stream applications makes the area of
learning in nonstationary environments increasingly im-
portant, and one of the biggest challenges in data stream
learning is to deal with concept drift; that is, the underlying
concept may drift dynamically over time. ,e non-
stationarity can be a result of, for example, seasonality or
periodicity effects, changes in the user’s habits or prefer-
ences, and hardware or software faults affecting a
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cyber-physical system. In such nonstationary environments,
where the probabilistic properties of the data change over
time, a nonadaptive model trained under the false statio-
narity assumption is bound to become obsolete in time and
perform suboptimally at best or fail catastrophically at worst
[4]. An avalanche of approaches based on homogeneous and
heterogeneous ensembles to handle concept drift can be
found in the literature and are focused on how to quickly
detect or adapt to concept drift. An ensemble of classifiers
for handling concept drift can be active or passive. Active
ensemble approaches use drift detection methods to ex-
plicitly detect concept drift. If a drift is detected, new pre-
dictive models are typically created to learn the new concept,
thus helping the system to recover from concept drift.
Passive ensemble approaches do not use concept drift de-
tection methods but maintain an ensemble of predictive
models. Even though it is well known that various types of
predictive models can provide a very different predictive
performance depending on the problem being tackled, little
work has been dedicated to the investigation of what type of
predictive model is most adequate over time in nonsta-
tionary environments where each example is learned sep-
arately upon arrival and then discarded [5]. When delivering
online learning, it is difficult to identify which type of
machine learning algorithm is suitable to use as a base model
due to the different amounts of data available to evaluate the
base models. With the availability of more data, ensemble
learning algorithms must be capable of identifying the type
of base learners that work best for the application domain. A
combination of different types of models creates diversity
and often leads to better predictive performance.

,erefore, this paper proposes an adaptive online het-
erogeneous ensemble learning algorithm for nonstationary
environments based on dynamic ensemble selection, known
as Heterogeneous Dynamic Ensemble Selection based on
Accuracy and Diversity (HDES-AD).

HDES-AD automatically selects the most representative
models for a particular concept or emphasizes the selection
of the most diverse and accurate base models to be used over
an extended period of time in dynamic environments as-
sociated with concept drift. ,is enables the algorithm to
store base models of different forms of diversity and ac-
curacy and use them to optimize prediction performance to
accurately adapt timeously to concept drift. HDES-AD is
evaluated on artificially generated data streams and real-
world data streams. ,e predictive performance of HDES-
AD is compared with existing and representative homo-
geneous ensemble approaches such as DDD, OAUE, and the
Active Fuzzy Weighting Ensemble (AFWE). Empirical ex-
periments conducted indicate that HDES-AD performs
significantly better than DDD, OAUE, and AFWE in the
presence of concept drift in data streams. HDES-AD le-
verages the power of diversity by intelligently switching its
base classifiers and exploiting its heterogeneity to maximize
diversity. ,e use of more than one learning algorithm al-
lows us to maximize diversity and control the diversity
required for each concept. It also allows heterogeneity to be
maintained for an extended period of time. In nonstationary
environments, there is little time to perform any resampling

of the data when training models, generally precluding the
use of bagging, boosting, or related methods that resample
training data [6].

,is paper is further organized as follows. Section 2
presents related work. Section 3 provides a description of the
proposed approach. Section 4 outlines the experimental set-
up and provides an empirical evaluation of the HDES-AD
algorithm on homogeneous online ensembles. Section 5
provides an analysis of the results and Section 6 sets out
concluding remarks.

2. Related Work

Scenarios associated with concept drift are not uncom-
mon, and a number of contemporary approaches have
been proposed to address recurring concepts with min-
imum overheads. Many machine learning predictive
models have emerged in the literature as candidate so-
lutions and ensemble classifiers have demonstrated the
ability to handle drifting concepts in nonstationary en-
vironments and Pratama et al. [7] provide good con-
ceptual reviews.,e focus is on online learning algorithms
for handling concept drift. In terms of diversity, the
ensembles are broadly classified into homogeneous and
heterogeneous, taking into consideration the drift han-
dling approaches, and the ensemble classifiers are further
categorized into active and passive approaches. Most
existing heterogeneous ensemble techniques rely on
metalearning [8], and this helps in deciding which
learning technique works well on what data. Xia et al. [9]
proposed a novel heterogeneous ensemble credit model
based on bstacking approach. ,e approach integrates the
bagging algorithm with the stacking method. Chai et al.
[10] proposed a heterogeneous ensemble consisting of a
least-squares support vector machine and two radial basis
function networks to enhance the reliability of ensembles
of uncertainty estimators in surrogate-assisted evolu-
tionary optimization of computationally expensive
problems. However, the computation time for con-
structing heterogeneous ensembles may become exces-
sively long when the number of training samples
increases. A two-stage consumer risk modeling system
that uses heterogeneous ensemble learning was proposed
by Hajek and Papouskova [11]. ,e approach integrates
class-imbalanced ensemble learning for predicting credit
scoring. ,e two-stage ensemble is computationally ex-
pensive with prohibitive overheads. Nguyen et al. [12]
included the fuzzy if-then rule-based metalearner in a
heterogeneous ensemble system to capture the uncer-
tainty in the outputs of the base classifiers. ,e algorithm
was evaluated on thirty datasets and was shown to sig-
nificantly outperform other algorithms that were homo-
geneous in nature. Idrees et al. [13] proposed the
Heterogeneous Dynamic Weighted Majority (HDWM)
ensemble that makes use of model learners of different
types that are weighted to maintain ensemble diversity
and includes a drift detection mechanism. ,e algorithm
exhibited responsive adaptation, dealing appropriately
with changing environments to increase the reliability and
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predictive accuracy of the algorithm. ,e algorithm as-
signs weights to classifiers and removes weak classifiers
from the pool, compromising its ability to handle re-
curring concepts. ,e use of weights makes the algorithm
slow in reflecting new concepts. ,e algorithm heavily
depends on human predefined parameters. Most passive
homogeneous ensemble learning approaches, that is,
those that do not rely on a drift detection method, handle
concept drift by maintaining an ensemble of base models
and use weights to emphasize the models believed to best
represent the current concept [10]. Among the passive
homogeneous approaches is the Online Accuracy
Updated Ensemble (OAUE) [14], which combines chunk-
based and online ensemble methods. ,e prediction ac-
curacy of the algorithm is heavily dependent on window
size, and a small window size may lose track of sudden
concept drift and a large window is susceptible to false
concept detection. Dominant among the active homo-
geneous approaches is the Diversity for Dealing with
Drifts (DDD) [15]. DDD is an online active ensemble
learning approach that creates different ensembles with
different levels of diversity to achieve robustness for
different types of drifts. ,e approach uses one learning
algorithm and uses a drift detection mechanism. ,e use
of one base learner makes the algorithm to be devoid of
much-needed diversity. Fan et al. [16] proposed a novel
adaptive ensemble algorithm, the Active Fuzzy Weighting
Ensemble (AFWE), to handle data streams involving
concept drift. ,e algorithm uses a drift detection
mechanism and assigns weights to instances. Experi-
mental results on seven datasets indicate that the algo-
rithm can shorten the recovery time of accuracy drop
when concept drift occurs, adapt to different types of
concept drift, and obtain better performance with less
computational cost than the other adaptive ensembles.
AFWE is devoid of diversity, and the use of weights makes
it slow in converging to new concepts. ,e task of learning
in nonstationary environments has also been tackled
lately using deep learning. Among the work carried out
using deep learning is the work of Ashfahani and Pratama
[17] who proposed a deep learning continual learning
algorithm called Autonomous Deep Learning (ADL).
ADL uses a drift detection mechanism, and the Network
Significance (NS) formula is used as a pruning strategy.
,e drift detection is likely to introduce false alarms.
Models that are likely to handle recurring contexts may be
pruned with the algorithm. Pratama et al. [7] presented a
Neural Network with Dynamically Evolved Capacity
(NADINE). Its network structure evolves automatically.
NADINE uses soft forgetting and adaptive memory ap-
proaches to cater to catastrophic forgetting. Models that
can be relevant in the future might be forgotten. ,e
learning process with deep learning is slow, and the draw
of concept drift is that for a high volume of nonstationary
data streams where the actual drift is unknown in advance,
the time it takes to predict may grow indefinitely [18]. To
perform better than other supervised machine learning
techniques, deep learning requires very large amounts of
data. Complex data models make deep learning to be

extremely expensive. To execute efficiently, deep learning
requires expensive devices thereby increasing cost to the
users.

2.1. Heterogeneous Dynamic Ensemble Selection with Accu-
racy and Diversity (HDES-AD). ,e Heterogeneous Dy-
namic Ensemble Selection with Accuracy and Diversity
(HDES-AD) maintains a dynamic pool of learners. Learners
are selected based on accuracy and diversity using the dy-
namic ensemble selection criteria. ,e learners in the dy-
namic pool are tested in a prequential way on the current
instance in the data stream to check if they are representative
of the current concept. ,e same current instance is used to
train the dynamic size pool of learners. In the event of a
wrong global prediction or concept drift by the entire en-
semble, the latest data instance is used to train a new
classifier and that classifier is used to update the entire pool
of learners, and learners that are diverse and representative
of the current concept are selected. ,e size of the dynamic
pool of learners is controlled by a predefined parameter.
HDES-AD implements both active and passive approaches
to handle concept drift, reduce the convergence time of new
concepts, and efficiently handle different types of drifts. To
implement a passive approach, HDES-AD removes learners
with the least accuracy and diversity from the dynamic pool
once their accuracy and diversity fall below a predefined
measure. Both passive and active approaches restrict the
ensemble size from growing indefinitely and thus reduce the
computational costs and overheads while enabling the en-
semble to remain heterogeneous. ,e active approach is
implemented via drift detection, and when the global pre-
diction of the ensemble is wrong, as indicated by a drift
detection mechanism, HDES-AD resets the entire learning
system. ,e predictions generated by the base learners are
transferred into the drift detection mechanisms to detect
concept drift and warnings. ,e learner with the least
amount of accuracy and corresponding diversity is removed
from the dynamic pool.

,e HDES-AD is outlined in Algorithm 1. Each learner
in the dynamic pool is assigned an accuracy and diversity
measure. Each learner in the dynamic pool makes a pre-
diction on an instance at each time step, where the instance
is a vector representing attributes in a data stream. Accuracy
and diversity values are reset and recalculated upon reset.

3. Drift Detection and Adaptation

Algorithm 2 provides an outline of active drift handling in
HDES-AD. ,e learners in the dynamic pool are reset once
drift is detected. Each learner in the dynamic pool is assigned
the accuracy level and the amount of diversity to prevent the
domination of previously learned models over the newly
created models. When the warning state is detected, the
learners in the dynamic pool are retrained and the accuracy
and diversity numbers are recalculated. HDES-AD uses
Yule’s-Q Statistic [19] as a diversity measure to minimize the
ensemble error. ,e diversity measure is recommended due
to its simplicity and ease of interpretation.
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HDES-AD uses the drift detection method (DDM) to
detect drift. If concept drift is detected, the preserved models
are adapted to fit the current data. DDM is an online
learning system since it does not store the training instances
for posterior use.

Algorithm 3 implements the passive drift handling
mechanism in HDES-AD. In the event of a globally wrong
prediction, a new learner is trained on the new data instance

and added to the dynamic pool. ,e accuracy and diversity
of new learners are computed.

4. Experimental Results and Analysis

,is section investigates the efficiency of the HDES-AD in
handling concept drift and compares its accuracy and drift
handling capabilities with ensemble algorithms of a

Input: Stream of examples and class labels
ε: set of diverse and accurate learners
Bmax: Max size of ensemble
λ: global and local predictions

(1) For learner� 1 to n//loop over learners
(2) For j� 1 to m//loop over instances
(3) λ� classify (ε)//classify with dynamic pool
(4) If (i mod ρ� 0) then
(5) If (λ≠yi)
(6) ε⟵ reset
(7) Divi,Acci⟵ recalculate
(8) end if
(9) If (divi < θ and Acci < β) then
(10) εi⟵ remove I//delete learner with least Accuracy and Diversity
(11) End if Call Active Drift Handler (λ, δ)
(12) End for
(13) If (i mode ρ� 0) then
(14) ε⟵ update accuracy and diversity
(15) If (λ≠yi), then Call Passive Drift handler
(16) End if
(17) If size (ε)� βmax, then
(18) (ε, m)⟵ remove (Acci,Divi)min
(19) End if
(20) For i� 1 to n

(21) Train (ε, m)
(22) End for
(23) End if

ALGORITHM 1: HDES-AD algorithm.

Input: ε: set of accurate and diverse learners
λ: local prediction from base learners
δ: Drift Detection Method

(1) δlocal⟵Drift Detection Method (λ)
(2) Detect Concept Drift with DDM
(3) If (driftlocal � true)
(4) For learner� 1 to n

(5) εl⟵ reset
(6) For learner� 1 to n

(7) Compute accuracy and diversity
(8) End for
(9) End if
(10) If (δlocal warning� true)//warning detected
(11) For j� 1 to n//loop over learners
(12) Train new learner with new instance
(13) End for
(14) End if

ALGORITHM 2: HDES-AD active drift handling.
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homogeneous type such as DDD, OAUE, and AFWE
designed to handle concept drift. Friedman tests with their
corresponding post hoc tests are performed to support the
comparison of the algorithms on multiple data streams. ,e
second set of experiments conducted concern the evaluation
of computational resource usages such as CPU time and
memory.

HDES-AD is developed in Java programming language
using the Massive Online Analysis (MOA). All other al-
gorithms are already included in theMOA framework which
is used in an experimental environment. MOA is an open-
source framework for learning data streams in evolving
environments. ,e base learners used in HDES-AD are
Multilayer Perceptrons and Hoeffding Trees with the idea of
generating maximum diversity and controlling it.

4.1.Datasets. ,e artificial and real-world data streams used
in the experiments are generated through the MOA
workbench. We provide the characteristics of the artificial
data streams for the MOA framework.

(i) Random Tree Generator (Recurring) generates a
stream based on a randomly generated tree and
builds a decision tree by randomly selecting at-
tributes as split nodes and assigning random
classes to them. ,e Random Tree Generator al-
lows customizing the number of nominal and
numeric attributes as well as the number of classes.

(ii) ,e SEA Generator (sudden and gradual drift) is a
synthetic data stream generator that aims to
simulate concept drift over time. It generates
random points in a three-dimensional feature
space, but only the first two features are relevant.

(iii) LED Generator (sudden drift) generates a stream
defined by 7-segment LED display, and the task is
to predict the digit 0–9. Concept drift is simulated
by interchanging relevant attributes. Such a stream
is generated by emulating a sudden drift by
combining two distributions. We generate the first
distribution with the LEDGenerator and the sec-
ond distribution is generated using the LEDGe-
neratorDrift and one attribute comprises a drift.

(iv) Waveform (sudden drift) Generator is a 3-class
problem defined by 40 numerical attributes and
shares its origin with the LED dataset.,e problem
is to predict one of the three waveform types.

(v) Covertype dataset. ,e dataset consists of the ob-
servations determined from the US Forest Service
Region 2 Resource Information System (RIS) data.
It contains 581,012 instances, 54 attributes, and no
missing values. ,e task is to predict the type of
forest cover based on cartographic variables such as
elevation, slope, and soil type.

(vi) ,e Spam e-mail dataset. It contains input attri-
butes that represent a gradual concept drift from
the SpamAssassin collection. ,e dataset consists
of 500 attributes and two target classes, and the
task is to predict whether an e-mail is spam or
legitimate. ,e attributes represent the presence of
a given word in the e-mail.

(vii) KDDcup99. ,is dataset was used in the ,ird
International Discovery and Data Mining Tools
Competition. ,e competition task was to build a
network intrusion detector, a predictive model
capable of distinguishing between bad connections
(intrusion or attack) and good (normal) connec-
tions. ,e KDD99 Cup dataset contains a standard
set of data to be audited, which includes a wide
variety of intrusions simulated in a military net-
work environment. ,e dataset contains 42 attri-
butes and 23 classes.

(viii) Poker Hand dataset. ,e dataset consists of
1,000,000 instances and 11 attributes. Each record
of the Poker Hand dataset is an example of a hand
consisting of five playing cards drawn from a
standard deck of 52. Each card is described using
two attributes (suit and rank), with a total of 10
predictive attributes. ,ere is one class attribute
that describes the ‘pokerhand’.

4.2. Evaluation Configuration. ,is section investigates the
behavior of our proposed adaptive heterogeneity ensemble
classifier, HDES-AD in nonstationary environments

Input: ε: Set of accurate and diverse learners
m: Ensemble size of dynamic learners

(1) Learners⟵ bestlearner {ε, m}
(2) Dynamicpool⟵ initialised learners
(3) Calculate global prediction
(4) If globalprediction is wrong
(5) Compute accuracy and diversity of Dp

(6) Train new classifier with new data chunk N
(7) ε⟵ ε∪N//add classifier to dynamic pool
(8) M�m+ 1
(9) Discard classifier with least diversity measure
(10) End for
(11) End if

ALGORITHM 3: Passive handle drift.
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associated with concept drift and compares its prediction
accuracy, switching capabilities, and drift handling capa-
bility with the existing homogeneous ensemble-based ap-
proaches, namely, DDD [15], OAUE [5], and AFWE [16].

,e prediction performance of our adaptive heteroge-
neity ensemble classifier and its ability to handle the concept
is tested on artificial data streams and real-world datasets,
and the corresponding ranks are determined and higher
averages correspond to lower ranks. To validate the hy-
pothesis, significance tests and post hoc comparison of ranks
are carried out to determine the significance level and critical
difference (CD). ,e predictive accuracies of HDES-AD,
DDD, HEFT, and OAUE are presented in Table 1. ,e chi-
square and p value are calculated according to the method
described by Demsar [20]. At the level of significance of 0.05,
the value of p indicates significant differences. ,e Nemenyi
test is applied for pairwise comparison. It is evident from the
prediction accuracy table that HDES-AD performs signifi-
cantly better than the other 3 homogeneous ensembles in
nonstationary time series data.

Table 1 shows the prediction accuracies and rankings of
the four algorithms and the CPU time in seconds.

4.3. Evaluation of HDES-AD. ,e predictive capabilities of
HDES-AD together with its model switching capabilities and
drift handling capabilities are compared against existing and
representative homogeneous ensembles such as DDD,
OAUE, and AFWE tested on artificial and real-world
datasets, and corresponding ranks are determined in such a
way that higher averages represent lower ranks. Significant
tests and post hoc comparisons on ranks are performed to
determine significance level and critical differences. ,e
predictive accuracies and CPU time of HDES-AD, DDD,
OAUE, and AFWE are shown in Table 1.

As shown in Table 1, HDES-AD achieved the best ac-
curacy in both synthetic and real-world datasets with all the
three active and passive homogeneous ensembles. ,e en-
semble size of the HDES-AD is dynamic; that is, they are
growing and shrinking based on the predictive performance
and the drift handling detection and capabilities. HDES-AD
achieved higher accuracy on both synthetic and artificial
datasets, and this can only be attributed to its heterogeneity.
HDES-AD retains highly diverse classifiers, thus preserving
previously learned concepts, and this helps HDES-AD to
deal appropriately with recurring concepts. HDES-AD pe-
riodically includes new classifiers from the latest data
chunks, and this helps it to deal with concept drift appro-
priately and to maintain and improve its predictive accuracy.
DDD maintains a static ensemble and discards classifiers if
the ensemble size reaches a predefined size, making it unable
to handle recurring concepts.

Consistent performance trends across the two ensemble
approaches can be observed. However, to draw meaningful
conclusions, it is critical to determine if the performance
differences are statistically significant. To accomplish this,
we employ the standard methodology given by Demsar [20]
to test for statistically significant performance differences
among the four ensemble approaches over all datasets.

In this study, the nonparametric Friedman test [21] is
firstly used to determine if there is a statistically significant
difference between the rankings of the compared techniques.
,e Friedman test reveals how statistically significant dif-
ferences are (p< 0.05) for each ensemble generation strat-
egy. As recommended by Demsar [20], we perform the
Nemenyi post hoc test on average rank diagrams. ,e best
ranking algorithms are on the rightmost side of the diagram.
,e algorithms that do not differ significantly (α� 0.005) are
connected with a line. From the CD plots, HDMES-AD
outperforms the other homogeneous ensembles most of the
time. Using the Friedman/Nemenyi approach with a cut-off
of α� 0.05, the pairwise comparison between heterogeneous
and homogeneous ensembles is provided.

Figure 1 shows the critical difference plots from post hoc
Nemenyi tests on all the datasets.

,e nonparametric Friedman test was carried out to
compare multiple classifiers over multiple datasets. Fried-
man’s test was first used to determine if there is a statistically
significant difference between the rankings of the compared
techniques. ,e Nemenyi post hoc test on the average rank
diagram was performed. ,e ranks are depicted on the axis
in such a manner that the best ranking algorithms are at the
rightmost side of the diagram. ,e algorithms that do not
differ significantly (at p � 0.05) are connected with a line.
,e critical difference (CD) is indicated above the graph. As
can be observed from the CD plot, HDES is ranked first.
However, its performances are not statistically distin-
guishable from the performances of OAUE, AFWE, and
DDD according to the post hoc test despite the fact that the
nonparametric statistical tests that were used are very
conservative.

4.4. Kappa Evaluation Measures. Apart from the accuracy
measure, MOA also provides the Kappa measure. ,e Kappa
evaluationmeasure is widely used for learning data streams in
evolving environments and has the ability to handle both
multiclass and imbalanced class problems. A larger value of
the Kappa evaluation measure is an indication of a more
generalized classifier. Negative Kappa values are a sign of low
prediction accuracy. Kappa values for both artificial and real-
world datasets were positive for the heterogeneity ensemble
and the other three homogeneous ensembles. Statistical tests
were applied to the Kappa Temporal on both synthetic and
real-world datasets, and significant differences were shown.
Statistical test for Kappa M was also applied to both synthetic
and real-world datasets and demonstrated significant dif-
ferences with default values. ,e Nemenyi test [22] was
applied for both Kappa Temporal and Kappa M for pairwise
comparison. HDES-AD performed significantly better than
the homogeneous ensemble approaches of AFWE, DDD, and
OAUE. Even though DDD is an active homogeneous en-
semble, it performs poorly inmost of the datasets as a result of
a weak drift detection mechanism that is not augmented by
ensemble diversity. Apart from this, there was no significant
difference between AFWE andOAUE.,is makes HDES-AD
independent of any base learner for classification problems in
nonstationary time series data.
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Tables 2 and 3 provide the Kappa measures for the
experiments conducted.

,e Kappa evaluation measure is widely used in evolving
data streams as it can handle bothmulticlass and imbalanced
class problems. ,e two tables indicate high values of the
Kappa, a sign of a more generalized classifier. No negative
values of the Kappa were recorded, and the prediction ac-
curacy was on the higher side as the number of attributes in
the datasets was of a reasonable number.

Table 3 shows the values of the Kappa M. ,e statistical
tests applied to Kappa Temporal on artificial and real-world
datasets showed significant differences. Statistical tests for
Kappa M on both artificial and real-world datasets indicate
significant differences.,eNemenyi test [22] was applied for
both Kappa Temporal and Kappa M for pairwise compar-
ison. ,e critical difference indicates that HDES-AD per-
forms significantly better than the three homogeneous
algorithms. Even though DDD is an active homogeneous
ensemble, it performs poorly for predictable drifts and re-
curring concepts. Apart from this, there was no significant
difference between OAUE and AFWE, OAUE, and HDES-
AD.

,e ensemble size in the HDES-AD algorithm is dy-
namic; that is, the ensemble is growing and shrinking based
on the predictive performance and drift handling detection
and capabilities. HDES-AD achieved higher accuracy on
both synthetic and real-world datasets, and this can only be
attributed to its heterogeneity. HDES-AD retains highly
diverse classifiers, thus preserving previously learned con-
cepts, and this helps HDES-AD to deal appropriately with
recurring concept drifts. HDES-AD periodically includes
new classifiers from the latest data chunks that are repre-
sentative of the current concept to appropriately deal with
concept drift and to maintain and improve predictive

accuracy. DDD maintains a static ensemble and removes
classifiers if its ensemble size reaches a predefined size,
making it unable to handle recurrent and predictable drifts.

4.5. Accuracy over Time Plots. As shown in Figure 2, ADES
achieved the highest predictive accuracy on SpamAssassin,
KDD99, and Poker Hand.,e average ranking of ADES-AD
in real-world datasets is 1.5, OAUE is 3.25, AFWE is 3.25,
and DDD is 3.0.

,e accuracy over time plots of artificial data streams is
shown in the figures that follow.

Figure 3 shows the accuracy over time plot of the four
algorithms on the Random Tree dataset which is devised to
evaluate the algorithm’s ability to adapt to recurring con-
cepts.,e prediction performance trend of all the algorithms
is not different. Among them, HDES-AD adapts well to
concept drift, followed by OUAE. AFWE performs the
worst. HDES-AD adapts well to recurring concepts as it
stores previously learned concepts for future use.

Figure 2 shows the accuracy over time plot of the four
algorithms on the SEA dataset which is associated with
sudden concept drifts. Although all algorithms experienced
instantaneous fluctuations, OAUE performed well after the
first 40000 observations were processed, followed by HDES-
AD. ,e prediction performance of DDD and AFWE is
almost identical although DDD is slightly less accurate.

Figure 4 demonstrates the accuracy of the four algo-
rithms on the LED dataset which exhibits sudden concept
drift. As can be observed, HDES-AD is the best, followed by
OAUE. As the number of processed instances increases,
DDD performs better than AFWE.

Figure 5 demonstrates the accuracy of the four algorithms
on the Waveform dataset which is devised to evaluate the

Table 1: Predictive accuracies (%) of HDES-AD, DDD, OAUE, and AFWE.

Dataset
HDES-AD DDD OAUE AFWE

Acc CPU Acc CPU Acc CPU Accuracy CPU
Random 89.12 (1) 101.2 81.27 (2) 106.2 78.69 (4) 104.6 80.33 (3) 103.4
SEA 83.23 (1) 89.3 74.35 (3) 103.4 80.43 (2) 93.5 73.89 (4) 106.7
LED 81.34 (2) 134.6 76.54 (4) 159.6 82.34 (1) 148.3 76.67 (3) 138.4
Waveform 84.47 (1) 119.3 72.87 (3) 126.2 73.27 (3) 134.2 79.65 (2) 118.2
Covertype 85.59 (1) 108.3 78.43 (4) 114.6 82.35 (2) 113.4 71.23 (4) 139.3
SpamAssassin 78.93 (1) 120.2 73.17 (3) 128.3 69.74 (4) 142.7 74.43 (2) 134.4
KDD99 80.37 (1) 112.4 73.89 (4) 125.3 74.38 (3) 122.3 76.34 (2) 138.2
Poker Hand 76.87 (2) 104.6 78.67 (1) 115.2 7325 (3) 116.9 71.26 (4) 139.4
Average ranks 1.25 3.0 2.75 3.0

CD = 2.0139

1234567

DDD HDES-AD
OAUEAFWE

Figure 1: Average rank diagram on real-world datasets.
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ability to adapt to sudden drifts. HDES-AD adapts to sudden
drifts well as compared to the other three algorithms. ,e
performance of the other three in adapting to sudden drifts is
almost identical although AFWE is less accurate. ,e accuracy
rates of all four algorithms fluctuate and suffer accuracy drops.

,e accuracy over time plots of the four algorithms on
real-world datasets is shown in the figures that follow.
Figure 6 shows the accuracy over time plot of the four al-
gorithms on the Covertype dataset. As more instances are
observed, AFWE generalizes well to unseen instances. De-
spite fluctuations experienced by all algorithms, HDES-AD
performs better than the other three algorithms. AFWE

improves the accuracy as more instances are observed. DDD
has the least performance in terms of accuracy.

Figure 7 shows the accuracy over time plot of the four
algorithms on the SpamAssassin dataset. After the obser-
vation of more than 40000 instances, the accuracy of all the
four algorithms drops but HDES-AD maintains a higher
stable accuracy. AFWE is second after HDES-AD. After
more instances are observed, DDD accuracy fluctuates
significantly.

HDES-AD
OAUE

AFWE
DDD
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Random tree dataset

0 10000 20000 30000 40000
Training instances processed

Figure 2: Predictive accuracy of the four algorithms on the SEA
artificial data stream.

Table 2: Kappa temporal evaluation measures on both artificial and real-world datasets.

Stream HDES-AD DDD OAUE AFWE
Random tree 76.48 (1) 71.34 (4) 74.23 (2) 72.43 (3)
SEA 81.37 (1) 74.38 (4) 76.43 (3) 78.35 (2)
LED 76.47 (1) 71.45 (2) 71.23 (4) 73.38 (3)
Waveform 68.34 (2) 69.42 (3) 70.48 (1) 66.48 (4)
Covertype 66.47 (3) 62.39 (4) 64.48 (3) 69.37 (2)
SpamAssassin 87.36 (1) 69.43 (3) 80.39 (2) 78.46 (4)
KDD99 Cup 83.42 (1) 72.48 (2) 69.23 (4) 71.13 (3)
Poker Hand 89.47 (1) 76.36 (3) 71.42 (2) 69.38 (4)
Average ranks 1.75 3.13 2.63 3.12

Table 3: Kappa evaluation measures on both artificial and real-world datasets.

Stream HDES-AD DDD OAUE HEFT
Random Tree 68.43 (1) 62.33 (4) 65.43 (2) 62.38 (3)
SEA 48.37 (1) 37.53 (4) 44.37 (3) 46.64 (2)
LED 66.48 (1) 64.38 (2) 62.48 (3) 59.38 (4)
Waveform 76.64 (1) 68.33 (3) 66.37 (4) 69.43 (2)
Covertype 64.38 (1) 59.36 (4) 63.46 (2) 61.34 (3)
SpamAssassin 84.46 (1) 78.37 (2) 74.56 (4) 76.37 (3)
KDD99 Cup 66.47 (3) 62.39 (4) 73.37 (1) 71.63 (2)
Poker Hand 64.45 (1) 47.64 (3) 49.43 (2) 47.83 (4)
Average ranks 1.25 3.25 2.63 2.88
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Figure 3: Predictive accuracy of the four algorithms on Ran-
domTree artificial data stream.
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Figure 8 demonstrates the accuracy of the four algo-
rithms on the KDD99 dataset. DDD performs significantly
better in the first observations and the accuracy drops as

more instances are observed. HDES-AD performs the best as
observations increase. AFWE has the worst performance.

Figure 9 shows the prediction performance of the four
algorithms on the Poker Hand dataset. AFWE performs well
when the first batch of observations is processed. HDES-AD
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Figure 4: Predictive accuracy of the four algorithms on the LED
artificial data streams.
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Figure 5: Predictive accuracy of the four algorithms on the
waveform artificial data stream.
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Figure 6: Average predictive accuracy on Covertype dataset.
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Figure 7: Average predictive accuracies on SpamAssassin dataset.
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Figure 8: Average predictive accuracies on KDD99 dataset.
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Figure 9: Average predictive accuracies on Poker Hand dataset.
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performs the best followed by AFWE. DDD and OAUE
performances are almost identical.

5. Analysis of Heterogeneity and
Significance Difference

In this second experiment, the objective is to investigate
the relationship between the heterogeneity of an en-
semble and its predictive performance. We further an-
alyze whether the higher prediction accuracy achieved in
HDES-AD is a result of heterogeneity or is attributed to
its active drift handling capabilities.

In this experiment, HDES-ADP is a variant of HDES-
AD without active drift handling capabilities and relies on a
passive approach similar to OAUE. ,e Friedman statistics
using a heterogeneity test indicate significant differences.
We applied the post hoc test using the Nemenyi test [22] for
pairwise comparison. ,e critical difference (CD) shows
that HDES-ADP performed significantly better than
OAUE-MLP and OAUE-SVM. Table 4 shows the hetero-
geneity test and prediction accuracy of the three
algorithms.

In Figure 10, we show the average rank diagrams of the
compared approaches.

,e algorithms that do not differ significantly are con-
nected with a line. ,e critical difference (CD) is shown
above the graph (CD� 2.0139).

,e difference in prediction performance indicates that
the main difference between HDES-ADP and OAUE is
heterogeneity. ,ese results provide an indication that
heterogeneity plays a key role in improving the HDES-AD
accuracy over OAUE. ,e availability of the model
switching mechanism within the algorithm helps to

maintain accuracy as the base classifiers are not selected
manually.

6. Conclusion

,e development of the Heterogeneous Dynamic Ensemble
Selection based on Accuracy and Diversity (HDES-AD) for
nonstationary time series data has opened new avenues of
research in the area of handling concept drift. A hetero-
geneous online learning ensemble for nonstationary time
series data called HDES-ADwas designed to handle different
types of concept drift using both passive and active ap-
proaches. ,e drift detection method (DDM) was used as a
drift detection mechanism to test the drift handling capa-
bilities. Homogeneous ensemble approaches used for
comparative purposes were based on one learning algorithm
and were selected using both passive and active approaches.
,e results show that, for some datasets, the HDES-AD
algorithm is able to produce better predictive accuracy. ,e
generalization performance of one ensemble approach over
another seems to be highly problem-dependent. However,
homogeneous ensemble approaches take time to reflect new
concepts and require a large number of iterations to con-
verge to new concepts. ,e difference that exists in terms of
the accuracy of the predictions of the two ensemble ap-
proaches is negligible. HDES-AD maintains heterogeneous
ensembles and is able to handle concept drifts due to its
ability to create new learners and delete learners whose
accuracy and diversity levels are below a predefined
threshold. Although one ensemble approach performs better
than the other in some real-world applications, there is no
much significance in the difference in the performance of the
ensemble algorithms under investigation.

Data Availability

,e research used four artificial datasets, namely, Random
Tree Generator, SEA Generator, LED Generator, and
Waveform Generator. ,e real-world datasets used are
Covertype dataset, Spam e-mail dataset, KDD99 Cup
dataset, Poker Hand dataset. ,e artificial and real-world
data used to support the findings of this study have been
deposited in the following repositories and sources: (1)
Random Tree Generator—Cunningham P., Nowlan N.,
Delany S. J., and Haahr M., 2003. A case-based approach to

Table 4: Heterogeneity test and predictive accuracy (%).

HDES-ADP OAUE-MLP OAUE-SVM
Random Tree 84.37 (2) 86.78 (1) 80.43 (3)
SEA 81.34 (1) 77.68 (2) 74.58 (3)
LED 76.84 (1) 71.67 (3) 74.53 (2)
Waveform 74.48 (1) 74.44 (2) 74.41 (3)
Covertype 87.64 (2) 89.43 (1) 85.63 (3)
SpamAssassin 92.48 (1) 83.42 (3) 87.68 (2)
KDD99 Cup 86.78 (1) 82.46 (2) 79.89 (3)
Poker Hand 90.68 (1) 88.49 (3) 85.87 (2)
Average ranks 1.25 2.13 2.63

CD = 2.0139

OAUE-MLP
OAUE-SVM

HDES-ADP
OAUE-MLP
HDES-ADP
OAUE-SVM

7 6 5 4 3 2 1

Figure 10: Average rank diagram for the compared approaches.

10 Computational Intelligence and Neuroscience



spam filtering that can track concept drift. In the Pro-
ceedings of ICCBR-2003 Workshop on Long-Lived CBR
Systems.; https://www.cs.waikato.ac.nz/∼abifet/MOA/API/
classmoa_1_1streams_1_1generators_1_1_random_tree_ge
nerator.html; (2) SEA Generator—https://moa.cms.waikato.
ac.nz/details/classification/streams/; Wang H., Fan W., Yu
P. S., and Han J., 2003. Mining concept-drifting data streams
using ensemble classifiers, In proceedings of 9th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining KDD-2003, ACM Press, pp: 226–235; (3) LED
Generator—Cunningham P., Nowlan N., Delany S. J., and
Haahr M., 2003. A case-based approach to spam filtering
that can track concept drift. In the Proceedings of ICCBR-
2003Workshop on Long-Lived CBR Systems; (4)Waveform
Generator—Cunningham P., Nowlan N., Delany S. J., and
HaahrM.,2003. A case-based approach to spam filtering that
can track concept drift. In the Proceedings of ICCBR-2003
Workshop on Long-Lived CBR Systems: Covertype dataset
is available at https://archive.ics.uci.edu/ml/datasets/Cover
type; Spam e-mail dataset at http://spamassassin.apache.
org/;KDD99 dataset at http://kdd.ics.uci.edu; and Poker
Hand dataset at https://archive.ics.uci.edu/ml/datasets/
Poker+Hand.
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