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Abstract

Identifying agricultural disaster risk regions before the occurrence of climate-related disas-

ters is critical for early mitigation planning. This paper aims to identify these regions based

on data from the Food and Agriculture Organization of the United Nations (FAO), the bilat-

eral and multilateral trade network data of the World Integrated Trade Solution(WITS) and

the agent-based economic model Acclimate. By applying a uniform forcing across agricul-

tural sectors of some breadbasket regions (US, EU and China), when single and simulta-

neous extreme weather events occur, such as the 2018 European heatwave, production

and consumption value losses and gains are calculated at regional and global levels. Com-

paring the FAO data sets, WITS, and Acclimate’s production value losses, the results show

a strong dependence of agricultural production losses on a region’s output and connectivity

level in the global supply and trade network. While India, Brazil, Russia, Canada, Australia,

and Iran are highly vulnerable, the imposition of export restrictions to compensate for

demand shortfalls makes Sub-Saharan Africa the most vulnerable region, as it is heavily

dependent on agricultural imports. In addition, simultaneous extreme weather events can

exacerbate the loss of value of agricultural production relative to single extreme weather

events. Agricultural practices to increase production such as smart farming, increased

investment in plantation agriculture, and diversification of trading partners can help mitigate

future food security risks in Sub-Saharan Africa and other agricultural import-dependent

regions.

1 Introduction

The continuous injection of anthropogenic greenhouse gasses into the earth’s atmosphere has

significantly contributed to increasing global mean temperature [1–9]. This has led to the

intensification and recurrent of other meteorological phenomena such as hurricanes,

typhoons, extreme rainfall and floods, heatwaves. Increasing sea level rise has equally been

associated with anthropogenic contribution [10–12]. Which has resulted in economic and

infrastructural repercussions, with coastal cities being the hardest hit. Researchers have

recently found that two or more of these extreme weather events now occur near-simulta-

neously in space and time. These concurrent events are becoming more frequent and growing

in magnitude under increasing global mean temperature [2, 13–18].
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The economic and environmental disasters of these concurrent events will therefore be

more severe than the single extreme events [19]. The agricultural sector is the most vulnerable

economic sector to climate change and climate-related disasters [20–22] with extreme weather

events capable of significantly disrupting agricultural production. As this sector is linked to

other regional economic sectors such as transport, industry, finance [23–25], shocks due to

agricultural production losses can spread to other sectors thereby amplifying their overall eco-

nomic impact [19]. For regions where the agricultural sector is the backbone of the economy,

the impact of climate-related disasters such as heat stress-induced multiple harvest failure will

gravely affect the economy [26]. As the global supply and trade network becomes increasingly

complex, the economic impact of climate-related disasters can be felt in some regions far from

their epicenters through the propagation of shocks down supply and trade networks. These

shocks are capable of interfering with each other thereby amplifying their overall economic

impact over a region [23]. Since extreme weather events are usually unpredictable, regions that

experience the most impact but are not directly hit by the unprecedented event are considered

here to be at risk.

The effects of extreme weather events such as heatwaves on crop yield and productivity,

animal reproductivity, and their corresponding socio-economic impacts have been widely

studied in the literature [27–34]. E. R. Jordan [28] investigates the effects of heat stress on

reproduction. He found that, when dairy cattle are subjected to heat stress, reproductive effi-

ciency declines. J. W. West [29] in his paper on the effects of heat-Stress on production in

dairy cattle, found that increasing air temperature, temperature-humidity index, and rising

rectal temperature above some critical thresholds are related to decreased dry matter intake

(DMI) and milk yield and equally reduces the efficiency of milk yield. These two interesting

findings in the meat and milk sectors, will lead to production shocks that can spread around

the globe through supply networks. Sergei. S et al [34] investigated the effects of drought on

hay and feed grain prices. By making use of an empirical example from Germany and focus on

the prices of hay as well as feed wheat and barley, their results show that regional and national

droughts substantially increase hay prices by up to 15%, starting with a delay of about 3

months and lasting for about a year. A thorough assessment of the evolving fragility of the

global food system to price shocks was carried out by Michael J Puma et al [26]. They found a

greater absolute reduction in global wheat and rice exports along with larger losses in network

connectivity as the networks evolve due to disruptions in European wheat and Asian rice pro-

duction. Importantly, their findings also indicate that least developed countries suffer greater

import losses in more connected networks through their increased dependence on imports for

staple foods. Additionally, L. Parker et al [20] investigated the vulnerability of the agricultural

sector to climate change with emphasis on the development of a pan-tropical Climate Risk

Vulnerability Assessment to inform sub-national decision making. The concept of agriculture

losses in a telecoupled world has equally been investigated. Bren d’Amour et al [35], investigate

which countries are most vulnerable to teleconnected supply shocks. They found that the Mid-

dle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply

shocks in maize, and Western Africa to supply shocks in rice. Vogel et al [36] had similar

results when they investigated the effects of climate extremes on global agricultural yields.

Connors et al [37] equally investigated agricultural losses in a telecoupled world by making use

of an integrated assessment model. They demonstrated how shocks to production in one loca-

tion may have profound impacts on land use and emissions in geographically distant areas.

The agent-based economic model Acclimate has widely been applied in the literature to

assess first order and higher-order economic losses from natural and climate-related disasters.

Wenz et al [24] made use of Acclimate to find that the increasing connectivity of international

trade networks has the potential to amplify climate losses if no adaptation measures are taken
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while Willner et al [25] showed that the total economic losses due to fluvial floods will increase

in the next 20 years globally by 17% despite partial compensation through market adjustment

within the global trade network. Kuhla et al [38] equally using Acclimate, recently showed that

output losses due to heat stress alone are expected to increase by about 24% within the next 20

years if no additional adaptation measures are taken.

The concepts of agricultural losses in a telecoupled world [20, 26, 35–37, 39] and making

use of Acclimate [23–25, 38] for simulating shock propagation in the global supply chain net-

work are not new. But combining data sets from the FAO, WITS, and Acclimate to identify

agricultural vulnerable regions before climate-related disasters occur is what is unique in this

work. To adapt this phenomenon to a real-life scenario, the economic impacts of the 2018

European heatwave are considered. These extreme weather events in early summer 2018 were

found to be connected by a recurrent hemispheric wave-7 pattern [2]. These heatwaves cov-

ered North America, Western Europe, and the Caspian Sea region, and there were also a lot of

rainfall extremes in South-East Europe and Japan that occurred near-simultaneously.

Researchers equally found that two or more weeks per summer spent in these waves events

have been found to associate with a 4% reduction in crop production when averaged across

the affected mid-latitude regions, with regional decreases of up to 11% [40]. To model the eco-

nomic impact of this climate disaster scenario, a special case where the extreme weather events

induce a 4% reduction in agricultural production per month spent under the extreme events

when averaged over the affected breadbasket mid-latitude regions (Fig 1) is considered. To

assess and identify regions at risk, the production and consumption value losses for seven dif-

ferent forcing scenarios including three single extreme events(USA, EU, and CHN) and four

concurrent extreme events (EU-US, EU-CHN, US-CHN, and ALL (EU-US-CHN)) are com-

puted and compared. Where USA is the single extreme event over the USA and USA-CHN

represents concurrent extreme event over the USA and China. The degree of connectivity of a

particular region in the global supply chain network is associated to its share of production

value losses by making use of the bilateral and multilateral trade network data WITS and the

Fig 1. The major breadbasket regions under study and regions affected by the defined events. This figure was generated with the

Mapping package in python.

https://doi.org/10.1371/journal.pone.0260430.g001
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FAO. This work is new as a strong dependency is found between the agricultural production

value losses of a region to its connectivity in the global trade network. The rest of the section is

as follows, in section 2, the source of the FAO data used, the bilateral global trade network

data, the EORA economic network, and the agent-based economic model Acclimate are pre-

sented. The method of computing economic production and consumption value losses from

their baseline production/consumption is presented and discussed. In section 3 and 4, the

results of the numerical experiment are equally presented and discussed and a conclusion in

section 5.

2 Materials and methods

Data

The agricultural data set used in this study are from the Food and Agriculture Organization of

the United Nations (FAO), freely available online at https://www.fao.org/faostat/en/#data/

QCL. This data set covers all crops and livestock primary production quantities in tonnes for

the year 2018. The year 2018 was selected to model the global impact of the 2018 heatwave.

The list of Crops and Livestock primary used in this study and covered by the FAO are pre-

sented in Tables 4 and 5 in S1 File respectively while the data visualization is presented in Fig 3

in the form of a bubble map and bar charts.

The bilateral and multilateral global trade network data used are from the World Integrated

Trade Solution (WITS) freely available online at WITS with the United States as the Reporter

for the year 2016 (most recent on the website) aggregated over all products. Here, export is

considered for trade flow at a threshold of 0.01 with the buyer as a viewpoint. The Buyer’s

viewpoint shows the role of each country as a source of demand in the selected sub-network.

The node size (Weighted in degree) is proportional to the relevance of each country as a buyer

in the selected sub-network which we also consider here as the degree of entanglement in the

global supply chain network. A sample structure of the WITS network is shown in Fig 2.

Acclimate model

Acclimate is an agent-based economic model that simulates the propagation of production

losses induced by local demand, supply, or price shocks in the global supply network. Its global

economy is assumed to be demand-driven with nodes in a complex network of trade and sup-

ply relations representative of firms (or regional sectors) and consumers as economic agents.

Being based on local optimization principles, the model accounts for local price effects such as

demand surges which are important for a comprehensive assessment of the total costs of disas-

ters. The full description of the model is found in the paper by Otto et al [23]. This model is

made up of highly interconnected regional sectors with regions representing each country in

the world and the sectors are the various economic sectors that make up the economy of a

country such as the agricultural sector, Food, Hotels, and Restaurants, Wholesale trade, Oil

and Gas, Wood, Transport, Finance, Mining, and quarrying, etc. The economic network used

in this study is the Eora26 2013 economic network which consists of 15,909 sectors across 188

countries. The multi-regional Input-Output data describe annual monetary flows between 26

major sectors and final demand in 188 countries. More about the Eora global supply chain

database can be read here https://worldmrio.com/.

To simulate the spreading of economic losses caused by concurrent extreme weather events

in the agricultural sector, a particular case where the extreme weather events occur near-simul-

taneously across very important agricultural regions of the world is assumed. The agricultural

sectors of the US, EU, and China individually are shocked with a 4% forcing strength corre-

sponding to a regional average reduction in crop production of 4% under these blocking
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events as reported in another research [40]. This individual forcing symbolizes the occurrence

of an extreme weather event either over the US, EU, or China. Secondly, the agricultural sec-

tors of two regions are equally simultaneously shocked such as the US and EU, US and China,

and the EU and China representing the occurrence of concurrent extreme events over two

breadbasket regions. Finally, the agricultural sectors of all three regions simultaneously are

perturbed with same forcing strength. The simulation run time is 30 days signifying the dura-

tion of the extreme events. For each case, the direct agricultural production and consumption

value losses in the directly affected regions and globally are computed. Comparative studies of

the impact of each forcing scenario are also carried out. This helps in assessing which forcing

has the greatest economic repercussions. To uncover which regions are more vulnerable to

production value losses, the production value losses are mapped to the quantity of agricultural

production and the degree of connectivity in the global supply chain network by making of the

bilateral and multilateral trade network data from the World Integrated Trade Solution

(WITS) and the FAO data.

Direct economic losses

Since the agricultural sector is directly hit by extreme weather events such as heat stress and

extreme precipitation, the effects of these events on crop growth and productivity, and the

mental health of farmers are often severe. This sector will, therefore, experience direct eco-

nomic losses such as multiple harvest failures and farmers’ inefficiency due to poor mental

health. These damages may also flow directly from insufficient product quality [41]. Hence,

direct economic loss includes ordinary loss of bargain damages which is the difference

between the actual value of the goods accepted and the value they would have had if they had

been as warranted [41]. Regions that are directly hit by these disasters will experience direct

Fig 2. A screenshot of the structure of the WITS total trade network for 2016. Which is the most recent on the site WITS. Link thickness is

proportional to country export share while the node size (Weighted in degree) is proportional to the relevance of each country as a buyer in the selected

sub-network. Country names are in ISO3 format. This figure is used for the purpose of illustration.

https://doi.org/10.1371/journal.pone.0260430.g002
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economic losses this also includes regions that import more from the affected countries than

they export and produce locally such is the case in Sub-Saharan Africa while other countries

will experience indirect economic losses due to trade relations with the affected countries. The

total economic losses are the sum of the direct and indirect economic losses.

For each single extreme event scenario, I investigate its global economic impact by comput-

ing its production value and consumption value losses by using the expression,

PVL ¼ BPV � PVF ð1Þ

and

CVL ¼ BCV � CVF; ð2Þ

where PVL = Production value losses, BPV = Baseline production value, PVF = Production

value under forcing, CVL = Consumption value losses, BCV = Baseline consumption value,

CVF = Consumption value under forcing. We should note that, since we are computing losses,

negative values imply production value under force is higher than baseline production value.

Signifying a rise in production/consumption value while positive values imply a drop.

3 Results

Let us begin this section by looking at the top ten (10) agricultural producing regions of the

world in 2018 in terms of the total crop, livestock, and total agricultural output as shown in Fig

3. Here, the share of aggregated agricultural production for the year 2018 is presented. This fig-

ure shows top agricultural producing countries. (a), (c), and (e) are bubble maps showing top

crops, livestock, and total (crop + livestock) producing regions while (b), (d), and (f) are bar

charts indicating the top ten crop, livestock, and total (crop + livestock) producing regions.

Countries such as China, India, Brazil, the USA, Indonesia, Thailand, Russia, Nigeria, Argen-

tina, and Vietnam lead in crop production while China, India, the USA, Brazil, Russia, Mexico,

Pakistan, Japan, Germany, and Indonesia lead in livestock production. Climate-related disas-

ters that affect any of these breadbasket regions, will have significant regional and global reper-

cussions. To assess and identify the most vulnerable regions to climate disasters, the median

production value losses when concurrent extreme weather events hit the agricultural sectors of

the EU, the USA, and China are computed. Comparing these production losses to the degree

of connectivity of a particular region in the global supply chain network (Table 1), we see that

India with smaller production output and degree of connectivity compared to China, has a

much larger share of the production losses even when it is not directly hit by the extreme

weather event. This might be due to their greater import of agricultural products from these

directly affected breadbasket regions than China. A similar scenario is observed between the

United States and Brazil as Brazil turns to import more losses than the United States that is

directly affected. Similarly, Nigeria with a much larger production output but with a smaller

degree of connectivity in the global supply chain network suffers a lesser share of losses when

compared to South Africa and Canada which are both highly interconnected regions. In gen-

eral, this table shows that regions with a larger share of production output and a degree of con-

nectivity above 1.0, suffer a greater share of the production losses. The case of countries such

as India, Brazil, Russia showing a higher share of production value losses than the directly

affected USA and China, tells us that, regions that depend more on the import of agricultural

products from these directly hit breadbasket regions to meet their food demand such as the

Sub-Saharan African countries are the most vulnerable regions to climate-related disasters.

The Median production and consumption value losses over all concurrent forcing scenarios

are presented in Fig 4. Here, the top 10 countries with the most production value losses (a) and
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least production value losses/gains (b) show the most vulnerable and least vulnerable regions.

Additionally, Fig 4(c) and 4(d) are top 10 consumption value losers and gainers respectively.

This figure shows that India, Brazil, Russia, Canada Iran are very vulnerable regions. The USA,

China, and the EU show to experience increasing in consumption value which will be trans-

ferred to consumers in the form of price hikes.

Fig 3. Share of aggregated agricultural production for the year 2018. This figure shows top agricultural producing countries. (a), (c), and (e) are

bubble maps showing top crops, livestock, and total (crop + livestock) producing regions while (b), (d), and (f) are bar charts indicating top ten crop,

livestock, and total (crop + livestock) producing regions. Names of countries in the bar charts are in ISO3 format. A list of country names, their ISO3

codes and continents can be found in Tables 6–9 in S1 File. The maps are generated using the Basemap package in python.

https://doi.org/10.1371/journal.pone.0260430.g003
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Table 1. Comparative study to assess the effects of higher degree of entanglement in global supply and trade net-

work and total agricultural production on cascaded agricultural production value losses from concurrent extreme

weather events.

Regions Total production(%) share losses(%) Degree of connection(Weight)

China 21.06 9.14 10.69

India 11.96 15.15 4.57

Brazil 9.6 6.80 1.183

USA 8.3 1.48 18.28

Russia 2.47 5.50 2.32

Thailand 2.05 1.7 1.5

Mexico 1.78 1.82 0.73

Pakistan 1.7 0.3 0.69

Nigeria 1.67 0.2 0.38

Canada 1.01 3.29 1.52

South Africa 0.5 0.82 3.71

https://doi.org/10.1371/journal.pone.0260430.t001

Fig 4. Median production and consumption value losses over all concurrent forcing scenarios. Top 10 countries with most production value losses

(a) and least production value losses/gains (b). (c) and (d) are top 10 consumption value losers and gainers respectively. This figure shows that India,

Brazil, Russia, Canada Iran are very vulnerable regions. The USA, China, and the EU shows price hikes.

https://doi.org/10.1371/journal.pone.0260430.g004
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Next, a comparative study to investigate the strength of each forcing scenario on the agri-

cultural and economic production and consumption value is carried out. In Table 2, the aver-

age production value and consumption value losses in the agricultural sectors for all forcing

scenarios (EU, US, CHN, EU-US, EU-CHN, US-CHN, and EU-US-CHN (ALL)) are pre-

sented. A comparative analysis is done over the key agricultural regions and the World. Values

are in Billion USD. Here, we see that the EU agricultural sector suffers the highest production

value losses when the EU is individually shocked by the extreme weather event while the high-

est production value rise in this region is experienced when all three regions are simulta-

neously forced. For the US, the US agricultural sector suffers the highest production value

losses when the US is individually shocked by the extreme weather event while the highest pro-

duction value rise in this region is experienced when the EU and China (EU-CHN) are simul-

taneously forced. For China, the Chinese agricultural sector suffers the highest production

value losses when the US and China are simultaneously forced while its highest production

value rise comes when the EU and the US are simultaneously forced. Globally (World), the

agricultural production value rises in all forcing scenarios with the greatest rise seen when all

three regions are simultaneously forced.

In this same table (Table 2), we see that the EU agricultural sector suffers the highest con-

sumption value losses when the EU is individually shocked by the extreme weather event while

the highest consumption value rise in this region is experienced when the US and China are

simultaneously forced. For the US, the US agricultural sector suffers the highest consumption

value losses when the US and China are simultaneously shocked by the extreme weather event

while the highest consumption value rise in this region is experienced when the EU and China

are simultaneously forced. For China, the Chinese agricultural sector suffers the highest con-

sumption value losses when the US and China are simultaneously forced while its highest con-

sumption value rise comes when the EU and the US are simultaneously forced. Globally

(World), the agricultural consumption value drops in all forcing scenarios with the greatest

drop seen when all three regions are simultaneously forced.

In Table 3, the cascading average production value and consumption value losses in all eco-

nomic sectors for all forcing scenarios (EU, US, CHN, EU-US, EU-CHN, US-CHN, and

EU-US-CHN (ALL)) are equally presented. A comparative analysis is done over the key agri-

cultural regions and the World. Values are in Billion USD. Here, we see that the EU economy

suffers the highest production value losses when the EU is individually shocked by the extreme

weather event while the highest production value rise in this region is experienced when the

US and China are simultaneously forced. For the US, the US economy suffers the highest pro-

duction value losses when all three regions are simultaneously forced by the extreme weather

event while the highest production value rise in this region is experienced when the EU and

Table 2. Average production value and consumption value losses in the agricultural sectors for all forcing scenarios. A comparative analysis is done over the key agri-

cultural regions. Values are in Billion USD.

Parameters Key regions EU US CHN EU-US EU-CHN US-CHN ALL

Production value losses EU28 57237.3 -31000.2 -2807.45 -3243.69 -108907.88 -245458.79 -172373.58

USA -24972.65 54086.47 -2021.31 42978.49 -119000.99 3864.0 -33448.95

CHN -49072.59 -44116.58 456.63 -142373.9 -81471.75 14405.99 -101610.68

World -128416.55 -103252.57 -14997.73 -358013.30 -976266.56 -936079.85 -1222640.33

Consumption value losses EU28 47466.83 -3715.05 36.8 35800.91 40156.09 -21421.66 36247.22

USA -4566.21 36355.54 -147.0 40152.94 -8811.98 50901.5 46592.79

CHN -9125.91 -6919.30 2046.11 -10925.74 78680.59 103044.01 93661.27

World 22841.38 26242.94 1812.67 53737.89 86180.55 89814.065 126860.13

https://doi.org/10.1371/journal.pone.0260430.t002
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China are simultaneously forced. For China, the Chinese economy suffers the highest produc-

tion value losses when the US and China are simultaneously forced while its highest produc-

tion value rise comes when the EU and the US are simultaneously forced. Globally (World),

the global economy suffers the highest production value drop when the US alone is forced

while the highest rise in production value comes when the EU and China are simultaneously

forced.

In this same table (Table 2), we equally see that the EU economy suffers the highest con-

sumption value losses when all three regions are simultaneously shocked by the extreme

weather event while the highest consumption value rise in this region is experienced when the

US and China are simultaneously forced. For the US, the US economy suffers the highest con-

sumption value losses when all three regions are simultaneously shocked by the extreme

weather event while the highest consumption value rise in this region is experienced when the

EU alone is forced. For China, the Chinese economy suffers the highest consumption value

losses when the US and China are simultaneously forced while its highest consumption value

rise comes when the EU and the US are simultaneously forced. Globally (World), the global

economy suffers the highest consumption value drop when all three regions are simulta-

neously forced while the highest rise in consumption value comes when the EU and China are

simultaneously forced.

In Fig 5, a share of the median agricultural production and consumption value losses when

aggregated over all concurrent extreme weather scenarios is presented. Fig 5(a) is the produc-

tion value losses while Fig 5(b) is the corresponding consumption value losses. Details of the

global effects of the each concurrent forcing scenario is presented in Fig 7 in S1 File. From Eqs

(1) and (2), negative values(red) implies a rise in production/consumption value while positive

values (blue) imply a drop in production/consumption value. Here, we see that there is a global

drop in production value and a global rise in consumption value during these extreme weather

events. A drop in production value will lead to losses at the level of the farmers. In other not to

directly bear the losses by the farmers, these losses will be transferred to consumers in the form

of higher prices (price shocks). This figure equally shows India, Brazil, China, Canada, Russia,

Iran will suffer the most production value losses during concurrent extreme weather events

while Brazil, India, Russia, Canada Australia, Iran, South Africa Japan, Indonesia, Argentina

will generally experience price shocks.

In Fig 6, a comparative analysis of the impacts of the various forcing scenarios on the mean

agricultural production Fig 6(a) and consumption values losses Fig 6(b) to test the strength of

the various forcing is performed. Here, we see that concurrent extreme weather events in all

three breadbasket regions will lead to the highest agricultural consumption value losses and

production value gains while the least repercussion is felt when China alone is shocked.

Table 3. Average production value and consumption value losses in all economic sectors for all forcing scenarios. A comparative analysis is done over the key agricul-

tural regions. Values are in Billion USD.

Parameters Key regions EU US CHN EU-US EU-CHN US-CHN ALL

Production value losses EU28 270176.73 24853.214 6707.73 213966.16 124159.72 -130923.8 211502.13

USA -24515.68 157130.23 -288.755 153347.24 -39316.55 239482.13 362005.71

CHN -45947.04 -33253.76 8520.98 -128955.66 111829.99 337713.99 180484.5

World 122660.61 148226.155 12407.3 74851.45 -377620.54 -61217.25 104810.96

Consumption value losses EU28 125557.66 21795.25 5337.77 115114.34 81388.23 -7837.3 160424.93

USA -11219.46 64237.42 -102.64 60825.45 -6528.27 114750.36 195370.45

CHN -13924.12 -15753.06 2734.23 -63012.83 26089.3 154549.6 105844.62

World 99748.86 96257.19 12418.95 83229.71 -85313.04 198638.41 381174.07

https://doi.org/10.1371/journal.pone.0260430.t003
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Moreover, individual forcing over the regions leads to both the agricultural production and

consumption value losses over the directly affected region. From the figure, the EU suffers the

largest agricultural production value hike when the US and China are perturbed by the

extreme weather events, the US greatest increase in production value is experienced when the

EU and China are perturbed. While China’s production value increases the most when the EU

and the US are perturbed. A similar pattern is observed in the agricultural consumption values

Fig 5. A share of the median agricultural production (a) and consumption value losses (b) when aggregated over all concurrent

forcing scenarios. For the consumption value losses, negative areas experience a rise in consumption value while positive areas

experience a drop in consumption value. Ones again, the bread basket regions of India, Brazil, Russia, Canada, Australia, the Middle

East, Eastern Europe and most of South America, shows vulnerability. Countries names are in ISO3 format. A list of country names,

their ISO3 codes and continents can be found in Tables 6–9 in S1 File Figures were generated using Datawrapper online tool.

https://doi.org/10.1371/journal.pone.0260430.g005
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as each region experiences a rise in consumption value when it is not being affected by the

blocking event and a drop in consumption value when directly perturbed.

In the entire economy (Fig 6(c) and 6(d)), we see that concurrent extreme weather events

in all three breadbasket regions lead to the highest economic production and consumption val-

ues losses while the least repercussion is also felt when China alone is forced. Individual forc-

ing over the regions equally leads to both the economic production and consumption value

losses over the directly affected region. From this figure, the EU suffers the largest economic

production value losses when the EU alone is shocked as compared to other concurrent event

scenarios that target the EU but with the economic consumption value losses slightly higher

over the EU when all three regions are perturbed. The US’s greatest economic production and

consumption value are experienced when all three regions are simultaneously perturbed while

China suffers the highest economic production and consumption value losses when the US

and China are simultaneously perturbed. A similar pattern is equally observed in the economic

production and consumption value gains as each region experiences a rise in production and

consumption value when it is not being affected by the blocking event.

Fig 6. A comparative analysis of the various forcing scenarios on the mean agricultural production value losses 6a and consumption values losses 6b.

Economic production value and consumption value losses are presented in 6c and in 6d respectively.

https://doi.org/10.1371/journal.pone.0260430.g006
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4 Discussion

The agricultural sector is no doubt the most vulnerable economic sector to climate change.

This is because of the direct impacts of meteorological extremes such as droughts, heatwaves,

floods, extreme precipitation, and strong winds (hurricanes and tornadoes) on agricultural

productivity and their disruptions to the food supply chain. While droughts exert the most

impacts, heatwaves which are equally associated with increase mean temperature, have also

been found to affect crop yield and productivity. Floods, extreme precipitation, hurricanes,

bush fires, and insect pest will equally destroy cropland, leading to low output from farms. For

regions where the economy largely depends on subsistence agriculture, the impact of climate

change will be heavy, posing a threat to regional food security. Under increasing international

trade linkages, climate-induced agricultural losses in one part of the world can significantly

affect business in another through the propagation of shocks down trade networks. Research-

ers have associated increase network losses with its increasing complexity [24]. This makes

highly inter-connected regions very vulnerable to economic losses. The simulations carried

out in this paper aims at identifying vulnerable agricultural regions to climate change for early

action to mitigate impacts such as designing a more resilient agricultural sector. The findings

show that highly interconnected breadbasket regions such as India, Brazil, Russia, Canada,

Australia, the Middle East, Eastern Europe, and most of South America are vulnerable to net-

work losses with India, Brazil, and Russia showing the highest vulnerability. Very similar

results have been obtained by Bren d’Amour et al [35] and Vogel et al [36] proving that indeed

agricultural losses is the network and output quantity dependent. At the regional level, policies

such as imposing export restrictions to compensate for demand deficits may secure regional

food banks for major food-producing regions but will put the lives of millions of people in

regions that import more than they produce locally. Sub-Saharan Africa is one of those regions

with low agricultural output. Agricultural practices to increase production such as smart agri-

culture, increase investment in plantation agriculture, and diversifying regional and interna-

tional trade partners, may help mitigate future food security risks in Sub-Saharan Africa.

Some of the limitations of this work are that a uniform forcing is considered over the bread-

basket regions where in reality, extreme weather-induced agricultural losses aren’t uniform, as

many affected areas suffer different magnitudes of losses. Moreover, the FAO data used is for

the year 2018 and the WITS network data is for the year 2016. We expect further research that

uses the agricultural and network data of that year including data about the fraction of agricul-

tural losses due to an extreme weather event in that year for a thorough impact assessment.

5 Conclusion

Early disaster warnings usually call for prompt action to mitigate impacts. Identifying agricul-

tural disaster risk zones before climate-related disasters occur helps in designing effective

disaster risk reduction strategies and policies for regional and global food security. In an

increasingly inter-connected world through supply and trade networks, the economic impact

of climate-related disasters can be felt in some regions far from their epicenters through the

propagation of shocks down supply and trade networks. These regions are considered here to

be at risk. Moreover, shocks coming from different trade routes might overlap thereby ampli-

fying their overall economic impact over a region. The agent-based economic model Acclimate

together with the EORA 2013 economic network, the FAO agricultural production data for

the year 2018, and the bilateral and multilateral trade network data from the World Integrated

Trade Solution(WITS) have been employed to assess and identify agricultural disaster risks

zones. A uniform forcing has been applied over some breadbasket regions (USA, EU, and

China) when single and concurrent extreme weather events occur such as the case of the 2018
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European heatwave. The direct agricultural and economic production and consumption value

losses and gains in the regional and global agricultural sectors and the entire economy for all

forcing scenarios have been computed and compared. Results have shown a strong depen-

dence of agricultural production losses on the quantity of production and the degree of con-

nectivity of a region in the global supply and trade network. Additionally, regions with a larger

share of production output and a degree of connectivity above 1.0, suffer a greater share of the

production losses. Breadbasket regions such as India, Brazil, and Russia were found most vul-

nerable. If these regions and other breadbasket regions such as the EU, USA, and China are to

impose export restrictions to compensate for demand deficits, millions of people in Sub-Saha-

ran Africa will be at risk of starvation. This risk in future food security can be mitigated

through agricultural practices to increase production such as smart agriculture, increase

investment in plantation agriculture, and diversifying regional and international trade

partners.

It is equally worth noting that concurrent extreme weather events show a greater impact in

both the agricultural sectors and the global economy compared to a single extreme event sce-

nario. More resilient agricultural systems are recommended to handle the impact of concur-

rent extreme weather events as they are likely to become more frequent and intense under

increasing global mean temperature.
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