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There are 400–500 thousand dopaminergic cells within each side of the human
substantia nigra pars compacta (SNpc) making them a minuscule portion of total brain
mass. These tiny clusters of cells have an outsized impact on motor output and behavior
as seen in disorders such as Parkinson’s disease (PD). SNpc dopaminergic neurons are
more vulnerable to oxidative stress compared to other brain cell types, but the reasons
for this are not precisely known. Here we provide evidence to support the hypothesis
that this selective vulnerability is because SNpc neurons sustain high metabolic rates
compared to other neurons. A higher baseline requirement for ATP production may lead
to a selective vulnerability to impairments in oxidative phosphorylation (OXPHOS) or
genetic insults that impair Complex I of the electron transport chain. We suggest that
the energy demands of the unique morphological and electrophysiological properties
of SNpc neurons may be one reason these cells produce more ATP than other cells.
We further provide evidence to support the hypothesis that transcription factors (TFs)
required to drive induction, differentiation, and maintenance of midbrain dopaminergic
neural progenitor cells which give rise to terminally differentiated SNpc neurons are
uniquely involved in both developmental patterning and metabolism, a dual function
unlike other TFs that program neurons in other brain regions. The use of these TFs during
induction and differentiation may program ventral midbrain progenitor cells metabolically
to higher ATP levels, allowing for the development of those specialized cell processes
seen in terminally differentiated cells. This paper provides a cellular and developmental
framework for understanding the selective vulnerability of SNpc dopaminergic cells to
oxidative stress.

Keywords: dopamine, midbrain development, FOXA, NR4A2, LMX1

INTRODUCTION

Dopaminergic cells of the ventral midbrain that project to the striatum play an essential role in
governing motor behavior in mammals. The small cluster of cells in the substantia nigra pars
compacta (SNpc) release the neurotransmitter dopamine to neurons of the striatum which project
to the basal ganglia. The basal ganglia is connected to the thalamus and motor cortex which
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imparts control over motor output. The loss of the majority
of SNpc cells is the underlying cause of Parkinson’s disease
(PD), a progressive movement disorder characterized by resting
tremor, bradykinesia, rigidity and non-motor symptoms such
as cognitive decline and sleep disturbance (Hayes, 2019). The
causes of PD highlight the critical importance of mitochondria
and cellular respiration because toxins that inhibit mitochondrial
function or mutations in genes that support mitochondrial
function associate with cell loss in animal models and humans
(Park et al., 2018).

Inhibitors of the electron transport chain, the group of
enzymes in the inner mitochondrial matrix that replenishes
adenosine triphosphate (ATP) using oxygen, lead to selective
destruction of SNpc dopaminergic cells (Langston et al., 1983;
Sayre et al., 1991; Betarbet et al., 2000; Morais et al., 2014),
suggesting they are particularly sensitive to inhibition of oxidative
phosphorylation (OXPHOS) or reactive oxygen species (ROS)
created in this process (Jenner, 1993), collectively termed
oxidative stress (Haddad and Nakamura, 2015). This idea
is supported by the discovery that many genetic mutations
associated with PD appear to be associated in some way
with mitochondrial dynamics or oxidative stress (e.g., PARK7,
PARKIN, and PINK1) (Shen and Cookson, 2004). Furthermore,
genetic insults involving other energy pathways also appear to
be basal ganglia-related in that they can affect motor function;
examples include deficiency of glucose transporter SLC2A1
(Leen et al., 2010) (OMIM 606777) or GCH1 (Trender-Gerhard
et al., 2009) (OMIM 128230). The links between oxidative
stress and basal ganglia-related movement disorders lead to the
fundamental question of what drives the underlying cause of
disease. There are many potential explanations for this, but
here we will evaluate the evidence that SNpc dopaminergic
cells have higher ATP requirements than other brain cell
types making them more susceptible to genetic insults or
toxins which impair OXPHOS. The motivation for this piece
came from our recent serendipitous discovery showing that
the dopaminergic midbrain progenitors were operating at full
OXPHOS capacity compared to isogenic glutamatergic forebrain
progenitor cells (Bell et al., 2021). While this was not the
primary concern of that paper, the effect size in healthy,
unbranched, and non-dopamine producing cells was striking.
Might SNpc cells then be programmed to high energy states?
We wanted to pursue this idea more in depth, hence the
current article. Here, we will argue that selective vulnerability
is because SNpc neurons operate at a higher baseline levels
of ATP synthesis/oxygen consumption both because they are
intrinsically programmed that way, and must sustain highly
energy consuming processes due to particular cell properties.
While this idea is not mutually exclusive from other ideas such
as the selective vulnerability to ROS in SNpc, a formal review of
this idea is warranted.

We first define the concept of selective vulnerability in
SNpc DA cells, then review evidence in two parts. In the
first part we focus on morphological and electrophysiological
properties of terminally differentiated SNpc neurons. We review
findings showing that SNpc neurons are more vulnerable to
OXPHOS insults than other dopaminergic cell types, then

discuss the morphological and electrophysiological properties
of SNpc dopaminergic neurons that contribute to increasing
ATP demands. In the second part, we focus on transcription
factors (TFs) required for the development of midbrain SNpc
progenitor cells. We review the role of these TFs in both
SNpc development and metabolism, and suggest that the dual
feature of these TFs is particular to SNpc cells. SNpc cells
may be programmed to a higher energetic state before the
differentiation of morphological and electrophysiological cell
properties emerges. This might suggest that developmental
programming of midbrain progenitors allows for the terminal
differentiation of highly ATP consuming processes, rather than
the other way around.

DOPAMINERGIC CELLS OF THE
SUBSTANTIA NIGRA PARS COMPACTA
AND THE CONCEPT OF SELECTIVE
VULNERABILITY

Dopamine is part of the catecholamine family of monoamines,
defined by the presence of an amine and a catechol group,
derived from phenylalanine or dietary tyrosine. It is synthesized
in several areas in mammals including chromaffin cells of the
adrenal medulla and in at least 11 clusters in brain from the
olfactory bulb to the midbrain (Felten and Sladek, 1983). One
such cluster resides in the ventral tegmental area (VTA) of the
midbrain (A10 area in mouse), where dopaminergic neurons
project to the nucleus accumbens. Another such cluster lies in
the SNpc (A9 in mouse), which is adjacent to the VTA and
comprises neurons that project to the striatum. The million or
so cells that make up the bilateral substantia nigra have an outsize
impact on functional output. Destruction of tens of millions of
cortical cells after a stroke for example, can lead to hemi-paralysis
which in many cases can be partially recoverable (Murphy
and Corbett, 2009), while loss of a majority of the dopamine
producing cells of the midbrain SNpc can lead to significant
motor impairment. While dopamine replacement therapy can
alleviate some PD symptoms in most people, cell destruction and
degeneration are not slowed.

Selective vulnerability refers to the idea that a given
insult affects a given cell type more negatively than another
cell type. For example, the expanded CAG repeat in the
HUNTINGTIN gene causes Huntington’s disease which primarily
affects medium spiny neurons of the striatum (Ehrlich, 2012).
Similarly, there are germline mutations that lead to very
specific cancer types, despite expression of a mutated gene
in all or most areas of the body; one example is that
of RUNX1 germline mutations predisposing to blood cancer
(Avagyan and Brown, 2021). The different molecules that define
a cell state are likely also the same factors that can lead
to selective vulnerability. Since tissue types are different by
definition, it becomes easier to understand how some cell
types can be vulnerable to specific insults (whether genetic or
environmental) than others. In the case of SNpc cells, they
are much more vulnerable to inhibitors of OXPHOS (reviewed
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below). The depletion of ATP might force cells into cell
death programs if they cannot sustain their basic energy needs
(Kushnareva and Newmeyer, 2010).

PART A: MORPHOLOGICAL AND
ELECTROPHYSIOLOGICAL
PROPERTIES OF TERMINALLY
DIFFERENTIATED SNpc
DOPAMINERGIC CELLS

Substantia Nigra Pars Compacta
Dopaminergic Cells Are More Vulnerable
to Electron Transport Inhibitors Than
Other Dopaminergic Cell Types
Mitochondria provide about 93% of the ATP in the brain
(Sokoloff, 1960) and most of the ATP required for neuronal
activity (Hall et al., 2012; Harris et al., 2012) making OXPHOS
critical for global brain function. In rodent studies testing
exposure to MPP+ (5–10 µM) or rotenone (25–50 nM), both
of which inhibit mitochondrial complex 1, loss of dopaminergic
neurons in the SNpc is significantly higher than in dopaminergic
neurons from the VTA, the midbrain area adjacent to the
SNpc (Pacelli et al., 2015; Jaumotte et al., 2016), a result
supported by in vitro human findings (Oosterveen et al.,
2021). The VTA is a favored comparator region (Chung
et al., 2005) because these cells are dopamine-producing,
they are adjacent to SNpc (so presumably follow at least
similar developmental trajectories), but are often preserved in
PD (Hirsch et al., 1988; Maingay et al., 2006). Under low
doses of 6-OHDA, a toxin that also impairs mitochondrial
complex 1 and a commonly used approach to model PD
in animals, SNpc dopaminergic neurons show a loss of 40%
while VTA dopaminergic neurons do not show significant loss
(Giguere et al., 2019; Tanguay et al., 2021). SNpc neurons
seem to be more susceptible to impairment of OXPHOS
compared to dopaminergic cells in the VTA (Subramaniam and
Chesselet, 2013). A complete comparison of VTA and SNpc
cells in the respect to selective vulnerability has been described
(Brichta and Greengard, 2014).

Substantia Nigra Pars Compacta
Dopaminergic Cells Have More Energy
Consuming Synaptic Contacts
Compared to Other Dopaminergic Cell
Types
A single SNpc neuron has a very large number of projections
into the striatum (Anden et al., 1966), and it has been possible to
trace these large structures in a dissected brain over long distances
and branch points. Matsuda et al. (2009) showed that one single
SNpc neuron can form connections with, on average, 2.7 ± 1.5%
of striatal neurons (Matsuda et al., 2009; Bolam and Pissadaki,
2012). Comparing subtypes of dopaminergic cells in rat shows
that SNpc TH-positive neurons are 69 and 326% larger than that

of VTA and OB TH-positive neurons (Pacelli et al., 2015) and that
a single SNpc neuron forms from 100,00 to 250,000 connections
in the rat striatum (Bolam and Pissadaki, 2012) whereas a single
VTA DA neuron makes 12,000 to 30,000 connections. Based
on these numbers and the known differences between rat and
human brains, it is estimated that one single human SNpc
neuron could have 1 million to 2.5 million striatal synaptic
sites (Bolam and Pissadaki, 2012). This work is supported by
diffusion tensor imaging studies from human brain suggesting
significantly more connections from SN than VTA (Kwon
and Jang, 2014). SNpc DA neurons are thus not only highly
branched, but they are also highly active given the number
of synaptic sites.

Why might extensive branching and connections cause
increased energy burden, as defined by ATP utilization? The
number of ATP molecules required to restore membrane
potential after the propagation of an action potential
exponentially increases as a function of the size and complexity
of arborization (Pissadaki and Bolam, 2013). The high energy
cost associated with sustaining such activity is known to translate
into higher mitochondrial biogenesis, density, and respiration
in cultured primary neurons (Pacelli et al., 2015). Compared
to VTA neurons, SNpc neurons show significantly higher
levels of PGC-1α, a regulator of mitochondrial biogenesis,
and higher mitoDSRed signal, a proxy for mitochondrial
network expression. Furthermore, basal oxygen consumption
rates (OCR) of SNpc neurons are threefold higher than that
of VTA or OB neurons (Pacelli et al., 2015). SNpc neurons
do not significantly differ from the two other DA cell types
in terms of maximal OCR, so the results suggest that SNpc
DA neurons function at maximal capacity under baseline
conditions whereas VTA and OB dopaminergic cell types have
the potential to achieve this high energy state only if required by
metabolic pressures.

Electrophysiological Activity of
Substantia Nigra Pars Compacta
Neurons Require More ATP Than Other
Dopaminergic Cell Types
Substantia nigra pars compacta DA neurons have unique
electrophysiological properties. They are autonomous
pacemakers (Clark and Chiodo, 1988; Grace and Onn,
1989; Hyland et al., 2002), transiently firing broad and slow
action potentials in addition to burst firing, in a process that
is dependent on Ca2+ influx (Puopolo et al., 2007). SNpc
neurons not only have to ensure that their electrochemical
environment allows firing thresholds to be reached, but must
also do so with high frequency, to maintain tonic rhythm.
Ca2+ entry via Ca2+ ATPase channels is essential in sustaining
such electrochemical gradients, but is relatively expensive in
energy as the channels consume one molecule of ATP to pump
one molecule of Ca2+ (Surmeier et al., 2012). In comparison,
one molecule of ATP can be used to pump three Na+ ions and
two K+ ions via Na+/K+ -ATPase channels, which are required
to maintain electrochemical gradients for action potentials in,
for example, cortical pyramidal neurons. Further, SNpc neurons’
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activity involves L-type Cav1.3 Ca2+ channels (Chan et al., 2007;
Guzman et al., 2009), a type of channel that is rarely opened or
lowly expressed in other brain regions and that opens at steep
subthreshold membrane potentials (Wilson and Callaway, 2000;
Puopolo et al., 2007). This causes large amounts of Ca2+ to flow
in the SNpc neurons, which increases the cells’ metabolic load
(Guzman et al., 2010; Goldberg et al., 2012). Support for this idea
can be seen by blocking L-type Cav1.3 Ca2+ channels in rodent
SNpc brain slices which leads to decreased oxygen consumption
and lower levels of ATP (Guzman et al., 2010).

The influx/efflux of calcium is costly, but required in
SNpc cells. In VTA DA neurons, Ca2+ can be sequestered
by Ca2+ -buffering proteins which are not ATP-dependent
and thus “energetically cheap” to maintain (Surmeier et al.,
2012), so SNpc cells have a particular need for readily
moveable Ca2+ across the membrane and cannot benefit as
much from cheap Ca2+ buffering used in VTA neurons.
SNpc neurons do buffer calcium but this is low relative to
their Ca2+ influx during pacemaking activity (Foehring et al.,
2009), so SNpc cells may rely on a more costly mechanism
to regulate Ca2+ levels. An example of such mechanism is
Ca2+ sequestration by the ER network, which also requires
ATP-dependent transporters and mitochondrial Ca2+ uniporter
[reviewed in (Surmeier et al., 2012)].

PART B: DEVELOPMENTAL
PROGRAMMING OF VENTRAL
MIDBRAIN DA CELLS

Substantia Nigra Pars Compacta Cells
Are Induced via a Series of Transcription
Factors With Known Roles in Metabolism
Several TFs are required to induce, differentiate, or maintain
SNpc neurons throughout development, and many of these
are not specific to SNpc but rather are specific to dorsal-
ventral or anterior-posterior patterning. What defines an SNpc
neuron is not any one TF but rather the combination of
TFs at a given time and 3D position on these axes. In this
way, an organism uses the same TFs, in for example, ventral
patterning, such as LMX1A to contribute to specification of
both motor neurons and SNpc neurons. Some of the TFs that
contribute to SNpc fate specification are very well known for
their roles in metabolism, a function presumably unrelated to
their developmental patterning roles, although it is possible that
their metabolic function is in fact patterning these cells as well.
Here, we describe several TFs important in SNpc neurons at
different developmental stages and described both their role in
SNpc fate specification and metabolism. We note that studies
investigating the metabolic roles of genes described here are
mostly conducted in liver, kidney, pancreas, and muscle. Studies
showing the direct relationship between midbrain patterning TFs
and energy expenditure/storage in the brain have not yet, to our
knowledge, been investigated.

Recently, we found strong evidence that undifferentiated
but committed cells that can give rise to SNpc cells have much

higher baseline OXPHOS and ATP levels than forebrain cells
that were developmentally comparable and isogenic (Bell
et al., 2021). This suggested to us that SNpc cells may be
programmed to a high energy state prior to the differentiation of
morphological or electrophysiological properties characteristic
of SNpc neurons described in the first section of this paper.
If this were true, it may imply two things: (1) That the TFs
that induce cells to become committed progenitors of SNpc
fate are programming the cells very early on to high ATP
consumption and high OXPHOS levels, and (2) The high
ATP-requiring processes of SNpc cells may have been able
to develop only because of this programming step; that is,
they are a consequence of the developmental programming,
rather than high ATP consumption being a consequence
of particular cell morphology and electrophysiological
characteristics.

LMX1A/B, NR4A2, EN1/2, OTX1/2, CORIN, PITX3, and
FOXA1/2 are probably the best described TFs that have a role
in SNpc fate specification (Asgrimsdottir and Arenas, 2020), and
some of these have a role in metabolism, which are the TFs
we focus on here. Our purpose in this section is to highlight
that ventral midbrain programming uses TFs that have both a
metabolic role and a cell patterning role. While we cannot rule
out that other TFs that drive cell fate for other neuronal cell types
also have roles in metabolism that have yet to be discovered (e.g.,
PAX6 or FOXG1 in forebrain), the well-known role of the ventral
midbrain neuronal factors in metabolism is possibly unique to
TFs that drive SNpc neuron development.

FOXA1 and FOXA2 are part of the FoxA subfamily of the
forkhead/winged-helix family. They are key regulators of neural
tube patterning (Monaghan et al., 1993; Sasaki and Hogan, 1993)
and are expressed both in ventral midbrain progenitors early
in development (E8.5 onward in mouse) (Ang et al., 1993) and
in terminally differentiated neurons (Ferri et al., 2007), so may
have both an inductive and maintenance function. Homozygous
deletion of Foxa2 in mice results in the absence of a notochord,
and thus the absence of a floor plate and abnormality in the
dorsal-ventral patterning of the developing neural tube (Ang and
Rossant, 1994), but brain specific knock-outs have better refined
their role in the ventral midbrain. Specifically, Foxa1/2 regulate
the extent of neurogenesis and thus the final number of SNpc
neurons, as well as the activation of other important TFs in
midbrain and described here (Ferri et al., 2007). In later stages of
development, brain specific knock-out of both Foxa1/2 results in
less tyrosine hydroxylase and less burst firing specifically in SNpc
neurons (Pristera et al., 2015).

With respect to metabolic function, Foxa1 and Foxa2 are
required for regulating glucose homeostasis (Kaestner et al., 1999;
Lantz et al., 2004; Friedman and Kaestner, 2006). Foxa1-null
mice, despite being fed, show glucose levels similar to that of
starved animals, which results in death of the animals due to
hypoglycemia (Kaestner et al., 1999). This is due to inefficient
glucagon signaling likely due to poor Gcg gene expression in
response to hypoglycemic conditions, a result supported by
in vitro studies (Philippe et al., 1994). Under fasting conditions,
mice hepatocytes deficient in Foxa2 show significantly lower
cAMP and glucocorticoid signaling and blunted efficiency of a
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cAMP target protein (CREB) binding to its target sites (Zhang
et al., 2005). In pancreatic beta cells, cell-specific ablation of
Foxa2 results in the complete loss of K-ATP channels, which
normally couple glucose metabolism with insulin secretion
(Lantz et al., 2004). Specifically, Foxa2 mutant mice (Sund
et al., 2001; Lantz et al., 2004) show significant reductions of
both K-ATP channel subunits, Abcc8 and Kcnj11 (Reis and
Velho, 2002; Vaxillaire et al., 2004), genes that are also markers
of midbrain dopaminergic cells (Liss et al., 1999; Schiemann
et al., 2012). FOXA1/2 may program both pancreatic beta cells
and ventral midbrain NPCs and use the same molecular tools
(e.g., K-ATP subunit genes) in different tissue types to achieve
different ends (presumably insulin secretion and regulation of
calcium transients, respectively). Finally, Foxa2 is regulated
by insulin itself (Wolfrum et al., 2003) and several single
nucleotide polymorphisms (SNPs) in the gene are significantly
associated with different metabolic indicators, such as fasting
blood glucose levels [e.g., rs6048205 (Manning et al., 2012;
Wojcik et al., 2019; Sinnott-Armstrong et al., 2021), rs3833331
(Chen et al., 2021; Sakaue et al., 2021), rs1209523 (Xing et al.,
2010; Wojcik et al., 2019), rs72470563 (Chung et al., 2021),
rs1337918 (Chen et al., 2021)].

NR4A2 is a nuclear receptor that belongs to the nuclear
receptor subfamily 4 group A (NR4A) and is also known as
NURR1. Knockout of Nurr1 in mice results in complete loss of
midbrain dopaminergic cells, implying that Nurr1 is required
for induction of ventral midbrain cell fate (Zetterstrom et al.,
1997) and the survival of SNpc neurons (Zetterstrom et al.,
1997; Saucedo-Cardenas et al., 1998). In metabolism, Nr4a2 is a
key regulator in glucose metabolism, lipid metabolism, and the
TCA cycle [reviewed in Herring et al. (2019)]. In isolated mouse
primary hepatocytes, gluconeogenesis stimulates the expression
of Nurr1, and fasting mice show increased Nr4a2 expression in
extracted livers. NR4A family members can bind the promoters of
the gluconeogenesis genes and a glucose transporter gene Glut2
(Pei et al., 2006). Outside of the liver, Nr4a2 is upregulated in
skeletal muscle following endurance exercise (Mahoney et al.,
2005; Catoire et al., 2012) and has a critical role in glucose uptake
(Amoasii et al., 2016, 2019).

LIMX1A/B are part of the LIM homeodomain family of
genes and knockout in mice strongly links them the SNpc
dopaminergic cell development (Yan et al., 2011). During brain
development, at around embryonic day 9.5 in mice, Lmx1a is
expressed in the roof plate of the neural tube and is responsible
for neural tube specification (Millonig et al., 2000; Chizhikov
and Millen, 2004). Lmx1a specifically mediates the differentiation
of floor plate dopaminergic progenitors (Deng et al., 2011),
whereas Lmx1b is involved in the establishment of the midbrain-
hindbrain boundary and mediates the differentiation of lateral,
non-floor plate, dopaminergic progenitors (Guo et al., 2007;
Deng et al., 2011). Recent evidence shows that Lmx1b is required
for the autophagic-lysosomal pathway and neuroprotection of
post-mitotic dopaminergic neurons (Laguna et al., 2015; Doucet-
Beaupre et al., 2016).

In pancreatic beta islet cells, Lmx1a regulates the expression
of insulin via a synergistic interaction with the basic helix-
loop-helix protein E47/Pan-1 at the promoter of the insulin

gene (German et al., 1992, 1994). Lmx1b might also regulate
genes that respond to a diet switch (from normal food diet
to a restricted food diet) in drosophila (Whitaker et al.,
2014). In humans, several polymorphisms in LMX1B have
been associated with metabolic diseases. The polymorphism
rs10733682 is associated with BMI (Locke et al., 2015) and
the AA genotype of rs10733682 interacts with intake of total
energy, fat, and carbohydrate in determining risk of developing
elevated triglycerides levels, which is associated with higher
obesity incidence (Zhu et al., 2020). Numerous other LMX1B
variants have been associated with BMI or fat body mass in
genome-wide association studies, such as rs867559 (Speliotes
et al., 2010), rs7027304 (Tachmazidou et al., 2017; Sakaue
et al., 2021), rs3829849 (Costa-Urrutia et al., 2020), rs2235056
(Akiyama et al., 2017), rs1336980 (Vogelezang et al., 2020),
rs7030609 and rs2275241 (Richardson et al., 2020).

CONCLUSION

We provide several lines of evidence that SNpc cells have
higher metabolic activity than other cell types including other
dopaminergic cell types outside the SNpc. In part A of this work,
we looked at the cellular properties of these cells. The evidence
reviewed might suggest that SNpc cells require more ATP and
thus more OXPHOS to sustain and maintain these particular
functions than other cells and so are selectively vulnerable to
genetic or metabolic insults, such as mutations in genes that
support mitophagy or chemicals that interfere with Complex I
of the electron transport chain. We do not necessarily consider
this idea exclusive from other hypotheses of SNpc selective
vulnerability, namely the creation of ROS from OXPHOS or the
oxidation of dopamine itself.

In Part B, we proposed a new idea for the association between
SNpc cells and a heightened energy state. We suggest that
SNpc neurons may be programmed to this state prior to the
development of potentially energy intensive cellular activities.
Committed ventral midbrain progenitor cells are unbranched,
have no synaptic contact, and do not fire action potentials, yet
we previously found that OXPHOS capacity is much higher
than comparator forebrain progenitor cells (Bell et al., 2021).
This could be direct evidence that high levels of OXPHOS are
already present in progenitor cells prior to the development of
electrophysiological or cellular properties. We suggest that this
state may come about due to the unique assortment of TFs
required to induce SNpc development. Specifically, we highlight
TFs that are also known actors in metabolic programming with
essential roles in insulin and glucose maintenance. It may be that
the metabolic role of these TFs is in fact the programming step,
and it is not that these TFs have independent and dual roles in
metabolism and SNpc development.
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