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Abstract: Inherited arrhythmogenic syndromes are the primary cause of unexpected lethal cardiac
episodes in young people. It is possible that the first sign of the condition may be sudden death.
Inherited arrhythmogenic syndromes are caused by genetic defects that may be analyzed using
different technical approaches. A genetic alteration may be used as a marker of risk for families
who carry the genetic alterations. Therefore, the early identification of the responsible genetic defect
may help the adoption of preventive therapeutic measures focused on reducing the risk of lethal
arrhythmias. Here, we describe the use of massive sequencing technologies and the interpretation of
genetic analyses in inherited arrhythmogenic syndromes.
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1. Introduction

Cardiovascular diseases are the leading global cause of death, accounting for 30% of documented
mortality (www.who.int/health-topics/cardiovascular-diseases). Sudden cardiac death (SCD) is
responsible for most cardiovascular deaths, and coronary artery disease accounts for more than 80% of
all SCD cases [1]. SCD accounts for 20% of deaths among young individuals, and results from familial
genetic cardiomyopathies. Further, 5% to 10% of SCDs result from inherited arrhythmogenic syndromes
(IASs) caused by channelopathies with alterations in ion channels or associated proteins [2]. IASs are
usually autosomal-dominant, but autosomal-recessive, X-linked, and even mitochondrial-inheritance
cases have been reported, and are usually associated with highly lethal episodes or syndromic
phenotypes. Near Mendelian inheritance has been proposed, demonstrating a strong genetic factor
modulated by additional genetic variants [3].

Channelopathies are IASs characterized by malignant electrical heart disturbances leading
to ventricular fibrillation, syncope, and SCD. Because SCD is often the first sign of disease,
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early identification is critical to implement preventive measures. This is especially important in
asymptomatic individuals for whom genetics are the only sign of risk. The four predominant
IASs are long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic
ventricular tachycardia (CPVT), and short QT syndrome (SQTS) [4]. These inherited disorders are
characterized by incomplete penetrance and variable expressivity, usually impeding definite diagnosis.
Phenotypic overlap may be observed due to a combination of genetic variants and the additive effect
of multiple independent variants [5]. Further, relatives from the same family can have different clinical
presentations, from asymptomatic, to SCD with previous syncope, or even the first manifestation of
disease without any previous symptoms. Initial phenotypic alterations may not be visible at autopsy,
can be unspecific, or can be within the normal range [6]. Thus, almost 40% of SCD cases do not present
cardiac anomalies after complete autopsy, and lethal IAS is often designated as the most plausible cause
of death [7]. Clinical assessment and genetic analysis of relatives of an individual diagnosed with IAS
is strongly recommended to determine the risk of malignant arrhythmia and SCD [8,9]. In this review,
we discuss genetic approaches used to identify nonsynonymous variants in IAS and considerations for
their interpretation.

2. Long QT Syndrome

LQTS is an IAS with an estimated prevalence of 1 in 2000. LQTS is characterized by
electrocardiographically corrected QT (QTc) interval prolongation in the absence of a secondary
cause for prolonged QTc, such as drugs or electrolyte disturbances. This arrhythmogenic disease
is associated with ventricular arrhythmias, particularly “torsade des pointes”, leading to syncope
and SCD. Further, LQTS is a common cause of sudden-infant-death syndrome [4]. LQTS can also be
diagnosed in an individual with a risk score (modified Schwartz score) of >3.5 or upon identification
of an unequivocally pathogenic variant in a LQTS-related gene.

There are currently 26 genes associated with congenital LQTS (Figure 1), and comprehensive
genetic analysis, including copy-number variants (CNV), identifies the genetic risk in nearly 90%
of cases. However, more than 80% of cases are associated with rare nonsynonymous variants in
genes encoding potassium or sodium ion channels (KCNQ1, KCNH2, and SCN5A). Current guidelines
recommend analysis of only these three genes [10], and a recent international study concluded that
only these three genes are linked to LQTS [11]. However, four other genes (CALM1, CALM2, CALM3,
and TRDN) have strong causality for LQTS, but with atypical features such as sinus bradycardia
or atrioventricular block, QT prolongation, seizures, or developmental delay in infancy or early
childhood. Therefore, both congenital and acquired (typically drug-induced) LQTS represent distinct
but intertwined arrhythmogenic disorders characterized by QT interval prolongation [12].J. Clin. Med. 2020, 9, x FOR PEER REVIEW 3 of 10 
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3. Brugada Syndrome

BrS is a rare IAS with a prevalence of 1 in 2500 characterized by electrocardiographic ST-segment
elevation with successive negative T waves in at least one right precordial lead without structural
cardiac abnormalities. A characteristic Type 1 Brugada pattern, observed spontaneously or induced
during drug challenge, is considered definitively diagnostic. The most severe clinical symptom of
BrS is ventricular fibrillation and SCD, which can be the first manifestation. Further, BrS is a main
cause of SCD in children and young adults, although some patients remain asymptomatic for life [4].
Currently, 28 genes have been linked to BrS (Figure 1), and most follow an autosomal dominant pattern
of inheritance, although some studies support autosomal recessive [13] or X-linked inheritance [14].

Comprehensive genetic analysis identifies genetic associations in nearly 35% of BrS cases, and
up to 30% of genetic alterations are in SCN5A. Current guidelines recommend analysis of SCN5A
as the most cost-effective approach [10]. SCN5A is considered pathogenic [15] despite only a few
nonsynonymous variants that are considered deleterious [16]. Beyond SCN5A, pathogenic variants
associated with BrS are in four minor genes: SLMAP, SEMA3A, SCNN1A, and SCN2B [17].

4. Catecholaminergic Polymorphic Ventricular Tachycardia

CPVT is a rare (prevalence of 1 in 10,000) highly lethal IAS with a 30% mortality rate in untreated
patients. It is characterized by adrenergically stimulated polymorphic ventricular tachycardia in the
presence of a structurally normal heart. CPVT is usually diagnosed in patients younger than 40 years
old [18]. The diagnostic hallmark is induced ventricular arrhythmias during exercise, particularly
bidirectional ventricular tachycardia. A key feature of CPVT is a normal baseline electrocardiogram
and echocardiogram. Without exercise stress testing, diagnosis can be missed [19].

Nine genes are associated with CPVT (Figure 1), and genetic alteration (noncommon variants
and CNV) is a potential cause in almost 65% of cases, although 60% of cases are attributed to rare
nonsynonymous variants in the cardiac ryanodine receptor (RYR2) [20]. Current guidelines recommend
analysis of RYR2 in CPVT diagnosis [10]. Further, a recent international calmodulinopathy registry
identified that nearly 28% of patients diagnosed with CPVT had alterations in calmodulin genes
(mainly CALM2). All CALM–CPVT patients were symptomatic with early age of onset (around 6 years
old) [21]. Identification of a pathogenic variant implies that genetic testing should be extended to
first-degree relatives since CPVT is highly lethal.

5. Short QT Syndrome

Short QT syndrome (SQTS) is rare, with a prevalence of 1 in 10,000. SQTS is associated with
paroxysmal atrial and ventricular fibrillation, syncope, and SCD, and is characterized by a short QT
interval on the electrocardiogram, lack of normal changes in QT interval with heart rate, peaked T
waves (particularly in precordial leads), and short or absent ST segments. The most common initial
symptom is cardiac arrest in one-third of cases. Lethal episodes usually occur in infants and young
children with no structural heart abnormalities [22]. SQTS is a genetically heterogeneous disease
with eight associated genes (Figure 1). Comprehensive genetic analysis identified a genetic cause in
40% of cases, with most diagnosed cases resulting from alterations in KCNH2, KCNQ1, and KCNJ2.
Current guidelines recommend analysis of these three genes [10]. Our group recently reported that
rare variants in other genes are associated with electrical alterations concomitant with shortened QT
intervals, but do not guarantee a diagnosis of SQTS [23]. Thus, other genetic alterations may explain
cases without definitive genetic diagnosis. Additional large studies are needed, but low prevalence
and high mortality rates impede comprehensive genotype–phenotype studies.

6. Genetic Diagnosis

First, it is important to remember that the human-genome sequence was obtained nearly
20 years ago at an estimated cost of $3 billion. Next-generation sequencing (NGS) has changed
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the landscape of genetic testing in the past 10 years, and introduced newer, faster, and cheaper
genetic sequencing. However, the rapid evolution of genetic screening has outpaced its clinical
translation [24]. Current genetic technology facilitates comprehensive analysis of all genes associated
with IAS using a resequencing panel. The current price of a panel is EUR 1500 or less, depending on
the inclusion of genetic interpretation, and the cost is similar if one large (>50 exons) or two medium
genes (25 exons) are amplified using Sanger technology. For a similar price, whole-exome sequencing
(WES) or whole-genome sequencing (WGS) can be used (Figure 2). In addition, new genetic technology
can perform WGS for USD 500, albeit without genetic interpretation, with expected progressive cost
reduction (www.technologyreview.com/s/615289/china-bgi-100-dollar-genome).J. Clin. Med. 2020, 9, x FOR PEER REVIEW 5 of 10 
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Despite the availability of WES/WGS, it is important to consider that massive genetic analysis
implies the identification of many rare variants in unknown genes not related to clinical diagnosis,
as well as false-positive variants due to low coverage [25]. Further, the genetic interpretation and
clinical translation of results are challenging, as most genetic variants remain of unknown/ambiguous
significance. Identification of incidental findings derived from WES/WGS is well-accepted, and what
to do with them is a current matter of discussion. It has been recommended that at least results
from 59 genes (definitely associated with severe diseases), should be returned in clinical genomic
sequencing [26]. The impact of variants in noncoding regions is not well-understood despite the
influence on expression and mRNA splicing affecting protein abundance and isoforms. Following Mayo
Clinic recommendations, WES is currently recommended for analysis of patients with negative results
in conventional genetic tests or panel-based NGS, and provides a potentially cost-effective alternative
to establishing molecular diagnosis compared to multiple independent molecular assays (www.
mayocliniclabs.com/test-catalog/Overview/64580). Further, WES combined with phenotype-driven
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gene lists (virtual panel) will soon be the most appropriate approach, offering the advantage of
reanalyzing new genes discovered in the near future [27].

Despite having similar cost, the genetic yield of analyzing five genes associated with IAS (KCNQ1,
KCNH2, SCN5A, KCNJ2, and RyR2) is similar to that in large panels, including more than 100 genes [28].
Therefore, current guidelines for IAS recommend analysis of these five genes [10], although every year,
new genes are associated with IAS. Further, recent studies showed that larger panels, including genes
with limited association with IAS, provided minimal diagnostic yield, but increased the detection of
variants classified with ambiguous clinical significance (variant of unknown significance, VUS) [11,17].
Therefore, careful interpretation of genetic tests is critical to appropriately care for patients and
their relatives.

7. Genetic Translation

American College of Medical Genetics and Genomics and the Association for Molecular Pathology
(ACMG/AMP) guidelines classify all variants associated with arrhythmogenic diseases and SCD [29].
However, more than 50% of rare variants recently changed classification according to updated ACMG
guidelines due to modifications performed in the current guidelines [30,31]. Genetic alterations with
potential deleterious roles, classified as pathogenic (P) or likely pathogenic (LP), in an individual
diagnosed with IAS, allow familial screening via cascade testing to identify at-risk individuals.
Reporting of P and LP variants should thus be accompanied by functional data as proof of accuracy
despite, existing limitations that should be considered [32]. Ultimately, functional analysis of IAS
variants is an important but not definitive tool due to variants that often remain ambiguous after
classification following ACMG guidelines. Therefore, different tools such as in silico predictions may
help clarify the variants’ roles [32,33]. Functional studies can also help clarify the role of each VUS,
but are not routinely performed. Family segregation is the most important information required to
unravel the actual role of a VUS in each family member. In families with multiple affected individuals,
genetic testing for the VUS in other affected relatives may help clarification by determining whether
the variant segregates with disease. Therefore, an update in the current guidelines should be published
in order to clarify several items that still remain unclear.

A VUS is an inconclusive result when there is either insufficient or conflicting evidence regarding
a variant’s pathogenicity. A VUS does not provide the molecular confirmation of a diagnosis, but
it cannot be discarded. Therefore, families should be counseled regarding the limits of the current
ability to provide reliable clinical interpretation. Further, both clinicians and patients should be aware
that a variant may be reclassified as additional evidence accumulates [16,34]. In the future, periodic
re-evaluation of rare variants, especially if previously classified as VUS, should be performed for IAS
assuming clinical consequences.

In previous years, common variants in IAS were proposed to have a role as phenotype
modifiers [35], and more recently as potential causative variants in association with rare alterations.
Therefore, a single rare variant may not be enough to cause the phenotype due to the increasing
number of common variants now thought to be clinically relevant. Thus, an oligogenic model should
replace the traditional Mendelian model for BrS [36]. It was also suggested that the only potential role
of common variants was as causative agents in IAS [37], despite the lack of definite data concerning
this point. Recently, it was demonstrated that a single synonymous codon substitution may alter
a protein-folding mechanism in vivo, leading to changes in cellular fitness causing a disease [38].
Hence, common variants also underlie susceptibility to drug-induced QT prolongation, but do not
cause overt LQTS [12]. As in LQTS, common variants have been suggested to shorten the QT interval,
but no common variants have been reported as being definitely causative. Further, few drugs are
associated with the QT interval [39]. Despite these facts, large studies are needed to clarify the role
of synonymous variants in IAS. Finally, it is important to mention that due to the low genetic yield
after comprehensive genetic analysis focused on Mendelian inheritance in exonic regions, alternative
genetic analysis of regulatory regions has also been performed in IAS, such as in BrS [40]. WGS is the
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proper approach to analyze these regions, but subsequent functional interpretation using in vitro and
in vivo models is needed before clinical translation.

8. Technical Data

Technical and bioinformatic data are crucial in NGS analysis. The filtration and annotation of
genetic variants include multiple components, and the diagnostic decision depends on the data resources
used. Recent studies recommended NGS coverage of at least 20× for diagnostic purposes [41]. Despite
the high coverage obtained using gene panels, Sanger technology should be used to confirm all variants
included in a genetic report and to discard false positives, especially concerning insertions/deletions
(indels). In clinical diagnosis, all exons included in a genetic report with coverage of less than 30×
(included, not covered) should be amplified using Sanger sequencing. If not analyzed, these exons
should be specified in the genetic report, as any rare variants associated with disease could exist in
incorrectly amplified regions. There is an increased rate of false positives in areas not sufficiently
amplified [25]. Thus, Sanger confirmation is important in all DNA extracted from blood, saliva,
or fresh/frozen tissue, and crucial in DNA extracted from formalin-fixed paraffin-embedded tissue
(FFPE) [42]. In DNA from FFPE fixed for more than 8 days, high ratios of both false positives and false
negatives were identified, and reanalysis of samples obtained from different areas of the FFPE block
is recommended.

Technology focused on genetic panels usually obtains high coverage. This improvement allows
the bioinformatic identification of other structural alterations such as rearrangements and CNVs,
which are associated with 2–10% of diagnosed IASs [43,44]. However, WES does not provide enough
coverage for exhaustive CNV analysis. Alternative techniques such as multiplex ligation-dependent
probe amplification (MLPA) or real-time polymerase chain reaction (rtPCR) should be used to identify
CNVs after WES, or to confirm CNVs identified in gene panels. A similar situation occurs in WGS,
but with lower coverage. A genetic report including WES or WGS results from families with IAS has
yet to be established [43] despite that, in the near future, both genetic approaches will be the main
technologies in genetic diagnosis (Figure 3). Nonetheless, panels encompassing all genes associated
with IAS are the best approach for the genetic diagnosis of both living patients and postmortem cases
of unexplained sudden decease with suspected arrhythmia.
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9. Conclusions

Nowadays, different approaches are available to perform genetic analyses. IAS may lead to
sudden death, sometimes as the first symptom of the disease. Identification of genetic defects may
be used as markers of patients at risk. The characterization of genetic factors associated with IAS
and the proper clinical translation of genetic data are crucial for clinical diagnosis and adoption
of personalized therapeutic measures. Further, early identification of genetic alterations in family
members may prevent lethal episodes, especially in asymptomatic individuals. Appropriate genetic
testing should be used in each case, focused on the identification of definite genetic variants associated
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with the diagnosed clinical condition. This proper approach provides informative genetic data in
diagnosis. Personalized interpretation should be done in multidisciplinary centers specialized in
cardiovascular genetics.
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