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Abnormally high expressi
on of POLD1, MCM2,
and PLK4 promotes relapse of acute
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Abstract
This study aimed to explore the underlying mechanism of relapsed acute lymphoblastic leukemia (ALL).
Datasets of GSE28460 and GSE18497 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes

(DEGs) between diagnostic and relapsed ALL samples were identified using Limma package in R, and a Venn diagram was drawn.
Next, functional enrichment analyses of co-regulated DEGs were performed. Based on the String database, protein–protein
interaction network and module analyses were also conducted. Moreover, transcription factors and miRNAs targeting co-regulated
DEGs were predicted using the WebGestalt online tool.
A total of 71 co-regulated DEGs were identified, including 56 co-upregulated genes and 15 co-downregulated genes. Functional

enrichment analyses showed that upregulated DEGs were significantly enriched in the cell cycle, and DNA replication, and repair
related pathways. POLD1, MCM2, and PLK4 were hub proteins in both protein–protein interaction network and module, and might
be potential targets of E2F. Additionally, POLD1 and MCM2 were found to be regulated by miR-520H via E2F1.
High expression of POLD1, MCM2, and PLK4 might play positive roles in the recurrence of ALL, and could serve as potential

therapeutic targets for the treatment of relapsed ALL.

Abbreviations: ALL = acute lymphoblastic leukaemia, BP = biological process, DEGs = differentially expressed genes, GEO =
Gene Expression Omnibus, GO = gene ontology, miRNA = microRNA, PPI = protein–protein interaction.
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1. Introduction

Acute lymphoblastic leukemia (ALL) is a heterogeneous group of
disorders originating from B and T progenitor cells [1], and
accounts for the most frequent blood malignancy of childhood.[2]

Although the survival rate of childhood malignancy has increased
to approximately 90% compared to 10% in the 1960s with the
development of medical technology,[3,4] relapsed ALL remains the
leading cause of cancer-related mortality during childhood.[5,6] It
has been reported that theoverall survival rate of relapsedB-ALL is
only 35% to 40%, even treated with stem cell transplantation or
intensified chemotherapy[7,8], and this condition shows a lower
survival in adults than in children.[9] Therefore, it is important to
reveal themolecularmechanisms of relapsed ALL to developmore
effective therapeutic methods for improving the survival rate of
patients suffering from relapsed ALL.
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With the development of sequencing techniques, genome
sequencing has been widely used to identify potential biomarkers
and therapeutic targets based on variations in gene expression.
Yang et al[10] have identified that children with ALL with the CC
genotype at rs116855232 of NUDT15 have higher mercaptopu-
rine resistance (83.5%) than those with the TT and TC
genotypes. Perez-Andreu et al[11] have reported that the risk
allele at rs3824662 GATA3 is one of the most frequent in
Philadelphia chromosome (Ph)-like ALL, which also increases
susceptibility to non-Ph-like ALL in adults and adolescents.
Additionally, Paulsson et al[12] have documented that the RTK-
RAS pathway and its modifiers perform critical roles in the
hyperdiploid 51–67 chromosomes ALL, which is one of the most
frequent types of ALL. Moreover, Fischer et al[13] have
demonstrated that enriched stem cell and myeloid characteristics
in TCF3-HLF signatures may result in strong drug resistance to
traditional chemotherapeutics, but sensitivity to glucocorticoids
in ALL. Besides, microRNAs (miRNAs) are also identified to be
involved in the pathogenesis of ALL. Agirre et al[14] have
demonstrated that miRNA-124a confers a poor prognosis in
ALL, and Schotte et al[15] have documented that miR-196b and
miR-708 are closely associated with the subtypes of ALL.
However, few studies have examined relapsed ALL, and only a
very small number of genes have been identified to be
differentially expressed between diagnosis and relapse of ALL.[16]

To reveal the potential molecule mechanism of relapsed ALL, 2
datasets of GSE28460 and GSE18497 were deposited by Hogan
et al[17] and Staal et al,[18] respectively. For GSE28460, Hogan
et al[17] have revealed that diverse genetic changes from diagnosis
to relapse, and methylation analysis showed that the Wnt and
mitogen-activated protein kinase pathway may be involved in
these variations. Additionally, for GSE18497, Staal et al[18] have
not only found that differentially expressed genes (DEGs)
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between diagnosis and relapsed ALL are strongly associated with
the changes in cell cycle, DNA replication and repair, and that
upregulated genes in ALL are involved in colon cancer and
ubiquitination. Other studies utilized these 2 datasets to identify
DEGs,[16] potential markers,[19] and therapeutic methods for B-
ALL.[20] However, how these changes occur remains unclear. In
the present study, to further uncover the underlying mechanism
of relapsed ALL, DEGs were screened between diagnosis and
relapsed based on the GSE28460 and GSE18497 datasets;
biofunctional enrichment and transcriptional factor prediction
were performed to provide insight into the understanding and
treatment of relapsed ALL.
2. Materials and methods

2.1. Data sourcing

The gene expression files for GSE28460[17] and GSE18497[18]

were downloaded from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) database. Specifically, 98
ALL bone marrow samples were included in GSE28460,
including 49 diagnosis cases and 49 relapse cases. Construction
of this dataset was approved by the institutional review board of
all participating institutions, and informed consent was obtained
from all patients. There were 41 matched diagnosis and relapse
pairs of ALL bone marrow samples included in GSE18497,[18]

and microarrays performed according to consensus guide-lines
described for leukemia analyses by 3 European networks. Both of
these 2 datasets were sequenced on the platform of GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.
2.2. Identification of DEGs

Raw data in CEL format was downloaded from the GEO
database, and Affy package in R (Version 1.54.0, http://www.
bioconductor.org/packages/release/bioc/html/affy.html)[21] was
used for data preprocessing, including background correction,
normalization, and expression calculation. According to the
annotation files, unmatched gene probes were removed, and
expression of matched genes was calculated. For several probes
matched to a specific gene, the mean value of different probes
was computed, and used as the expression value of the gene.
Next, the Bayes method provided by Limma package in R
(version 3.10.3, http://www.bioconductor.org/packages/2.9/
bioc/html/limma.html)[22] was used to compare gene expression
between diagnosis and relapse samples, and DEG was
considered when P< .05.

2.3. VENN diagram

Venn diagram is a R package that allows to visualize all aspects
of the generated diagram.[23] In the present study, the online tool
VENNY (Version2.1, http://bioinfogp.cnb.csic.es/tools/venny/
index.html)[24] was used to Venn diagram analysis to identify
co-regulated DEGs between the analyzed datasets.

2.4. Gene ontology (GO) and pathway enrichment
analyses

DAVID is an online tool commonly used for bioinformatics
analysis. In the present study, DAVID (version 6.8, https://david-
d.ncifcrf.gov/)[25] was used to perform GO- biological process
(BP) enrichment analysis of co-regulated DEGs. Significant GO
enrichment was considered at a gene count ≥2 and P< .05.
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Additionally, based on the Reactome Pathway database
(Reactome version 61, http://reactome.org/), [26] pathway
enrichment analysis of co-regulated DEGs was conducted using
DAVID.
2.5. Protein–protein interaction (PPI) network and module
analyses

According to the PPI pairs provided by the STRING (version
10.0, http://www.string-db.org/) database,[27] PPIs among pro-
teins encoded by co-regulated DEGs were predicted with PPI
score ≥0.15 as a threshold to obtain the greatest number of PPI
pairs. Followed by this, the PPI network was visualized using
Cytoscape (version 3.2.0, http://www.cytoscape.org/). For the
parameter without weight, the topological properties of nodes
involved in this network were analyzed using plug-in CytoNCA
(version 2.1.6, http://apps.cytoscape.org/apps/cytonca)[28] in
Cytoscape. According to the final score, the hub nodes were
screened in this network. Bio-functional modules in the PPI
network were screened using a plug-in MCODE (version 1.4.2,
http://apps.cytoscape.org/apps/MCODE) in Cytoscape with an
enriched score >5 as the threshold.
2.6. Transcription factor (TF)-target regulatory network
analysis

The WEB-based Gene SeT Analysis Toolkit (WebGestalt,
http://www.webgestalt.org/option.php) is a functional enrich-
ment analysis online tool used for bioinformatics analysis.[29]

In the present study, WebGestalt was used to perform TF
enrichment analysis of co-regulated DEGs, and P< .05 was
considered significant. Based on the significant enriched
regulatory pairs, the TF-target regulatory network was
visualized using Cytoscape.
2.7. Construction of miRNA-TF-target regulatory network

Using WebGestalt, co-regulated DEG-related miRNAs were
predicted using the threshold of P< .05. Additionally, regulatory
relationships betweenmiRNAs and TFswere predicted. Next, the
miRNA-TF-target regulatory network was visualized using
Cytoscape.

3. Results

3.1. Identification of DEGs and co-regulated DEGs

According to the selected criterion, DEGs of the 2 datasets were
screened. Specifically, a total of 1674 DEGs were identified in
GSE28460, including 1014 upregulated genes and 660 down-
regulated genes. Additionally, 508 DEGs were identified in the
GSE18497 dataset, including 234 upregulated genes and 274
downregulated genes.
Subsequently, based on the identified DEGs, co-regulated

DEGs were screened between these 2 datasets using the VENNY
tool. A total of 71 co-regulated DEGs were identified, including
56 co-upregulated DEGs (Fig. 1A) and 15 co-downregulated
DEGs (Fig. 1B).

3.2. GO and pathway enrichment analyses

For further analysis, functional enrichment analyses of co-
regulated DEGs were conducted using the DAVID online tool. As
a result, co-upregulated DEGs were significantly enriched in 15
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Figure 1. Venn diagram for co-regulated DEGs. (A) Co-upregulated DEGs and
(B) co-downregulated DEGs. DEGs=differentially expressed genes.
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GO-BP terms, and most were mitosis- and cell cycle-related
biological processes, including the G1/S transition of mitotic cell
cycle (P=2.20�10�4), cell cycle (P=4.13�10�04), DNA
replication (P= .0011), and so on. The top 10 are tabulated in
Table 1. However, only 1 GO-BP term was significantly enriched
by the co-downregulated DEGs, namely protein glycosylation
GO-BP term (P= .040) (Fig. 2A).
The co-upregulated DEGs were significantly enriched in 43

pathways, mostly mitosis- and cell cycle-related pathways,
such as cell cycle, mitotic (P=3.28�10�09), cell cycle (P=
4.25�10�09), and mitotic prometaphase (P= .00012). The
top 10 are tabulated in Table 2. As in the GO-BP analytical
results, only 1 pathway was significantly enriched by co-
downregulated DEGs, the genetic transcription pathway
(P= .041) (Fig. 2B).
Table 1

The top 10 GO-BP terms enriched by co-upregulated DEGs.

Term

GO:0000082—G1/S transition of mitotic cell cycle
GO:0007049—cell cycle
GO:0006260—DNA replication
GO:0007062—sister chromatid cohesion
GO:0051301—cell division
GO:0000086—G2/M transition of mitotic cell cycle
GO:0009157—deoxyribonucleoside monophosphate biosynthetic process
GO:0007059—chromosome segregation
GO:0031536—positive regulation of exit from mitosis
GO:1990001—inhibition of cysteine-type endopeptidase activity involved in apoptotic proce

GO=gene ontology, BP=biological process, DEG=differentially expressed gene.
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3.3. PPI network and module analyses

Based on the STRING database, the PPI network was
constructed, including 50 nodes (co-regulated DEGs encoded
proteins) and 253 regulatory relationship pairs (Fig. 3A).
Additionally, a significant functional module was screened out
from this PPI network with a module score=18.423 (Fig. 3B).
According to the node degrees, the top 10 nodes in PPI are
tabulated in Table 3, including FOXM1 (degree=25), TYMS
(degree=25), POLD1 (degree=25), MCM2 (degree=22), PLK4
(degree=22), and so on. There were 20 nodes and 175 regulatory
relationship pairs included in this module, and all proteins
involved in this module were encoded by co-upregulated DEGs.
According to the node degrees, the top 10 nodes in themodule are
tabulated in Table 3, including FOXM1 (degree=25), TYMS
(degree=25), POLD1 (degree=25), MCM2 (degree=22), PLK4
(degree=22), and so on.

3.4. Construction of TF-target regulatory network

Based on the relationship pairs predicted by WebGestalt, the TF-
target regulatory network was constructed using Cytoscape
(Fig. 4). There were 20 nodes and 35 regulatory relationships
included in the TF-target regulatory network. Specifically, 8 of 20
were TFs, including NRF1 (degree=7), E2F (degree=6), E2F1
(degree=4), E2F1DP1 (degree=4), E2F1DP2 (degree=4),
E2F4DP2 (degree=4), E2F4DP1 (degree=3), and E2F1DP1RB
(degree=3).

3.5. MiRNA-TF-target regulatory network

According to the results predicted by WebGestalt, the miRNA-
TF-target regulatory network was constructed using Cytoscape
(Fig. 5). In this network, 2 significant miRNAs: miR-520G and
miR-520H were significantly enriched, and both CKS1B and
WDR1 could be targeted by these 2 miRNAs. Moreover, E2F1
was the common target TF of miR-520G and miR-520H.

4. Discussion

In the present study, a total of 71 co-regulated DEGs were
identified between GSE28460 and GSE18497, including 56
upregulated genes and 15 downregulated genes. Functional
enrichment of these DEGs indicated that co-upregulated genes
were significantly enriched cell cycle and DNA replication and
repair related GO-BP terms, as well as cell cycle and mitosis
related pathways. Additionally, downregulated DEGs were
significantly enriched in the protein glycosylation GO-BP term
P value Count Gene

2.20�10�04 5 TYMS, IQGAP3, MCM2, CDCA5, ORC1
4.13�10�04 6 CKS1B, E2F2, FOXM1, CHTF18, MCM2, CHAF1A
.0011 5 POLD1, CHTF18, MCM2, CHAF1A, ORC1
.0034 4 BIRC5, NDC80, CDCA5, CENPH
.0034 6 CKS1B, NCAPH, CENPW, BIRC5, NDC80, CDCA5
.0074 4 PLK4, FOXM1, BIRC5, CDK5RAP2
.015 2 TYMS, TK1
.017 3 CENPW, NDC80, CDK5RAP2
.017 2 BIRC5, CDCA5

ss .026 2 BIRC5, BCL2L12

http://www.md-journal.com


Figure 2. Functional enrichment for co-regulated DEGs. (A) The top 10 significantly enriched GO-BP terms for upregulated DEGs and 1 term for downregulated
DEGs. (B) The top 10 significantly enriched pathways for upregulated DEGs and 1 pathway for downregulated DEGs. Red represents the upregulated terms, and
green represents the downregulated terms. DEGs=differentially expressed genes, GO=gene ontology, and BP=biological process.

Li et al. Medicine (2018) 97:20 Medicine
and genetic transcription pathway. Further analyses showed that
POLD1, MCM2, and PLK4 were hub nodes in the PPI network
and module and could be upregulated by E2F.
POLD1, coding for DNA polymerase delta 1 (POLD1), is a

catalytic subunit of the DNA polymerase d, which is reported to
be an important target of p53 tumor suppressor.[30] Functional
enrichment analyses showed that POLD1 was significantly
enriched in the cell cycle and DNA replication related pathway,
which is consistent with the results described above. A previous
study showed that a deficiency inDNA polymerase d proofread-
ing is strongly associated with a high incidence of epithelial
cancers.[31] Germline mutations in POLD1 perform a critical role
in family colorectal cancer.[32,33] Moreover, Staal et al[18] found
that ALL and colon cancer share some upregulated genes, and the
colon was identified as an important location for relapsed
ALL.[34,35] Thus, POLD1 might play a crucial role in relapsed
ALL, while few studies have examined the role of POLD1 in ALL.
In the present study, POLD1 was identified to be significantly
Table 2

The top 10 KEGG pathways enriched by co-upregulated DEGs.

Pathway

Cell cycle, mitotic
Cell cycle
Mitotic prometaphase
S phase
Mitotic G1-G1/S phases
DNA replication
CDC6 association with the ORC: origin complex
Resolution of sister Chromatid cohesion
G1/S transition
Association of licensing factors with the prereplicative complex

DEG=differentially expressed gene, KEGG=Kyoto Encyclopedia of Gene and Genome.
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upregulated in relapsed ALL than diagnosis, and predicted to be a
target of E2F, a transcription factor targets for the RB
protein.[36,37] A previous study demonstrated that E2F partic-
ipates the regulation of gene promoter methylation,[38] which
may explain the upregulation of POLD1.
MCM2, which codes for minichromosome maintenance

complex component 2 (MCM2), was also identified to be
targeted by E2F and significantly upregulated in relapsed ALL in
this study. Richet et al[39] identified that MCM2 acts as a
chaperone for histone interactions with ASF1 at the replication
fork. Moreover, several studies demonstrated that MCM2
performs a critical role in forming the prereplication complex
and replication fork.[40–42] In the present study, functional
enrichment analyses showed that MCM2 and POLD1 were
significantly in the mitotic G1-G1/S phases and S phase related
pathways. Liu et al[43] documented that the long noncoding RNA
FTX inhibits the proliferation and metastasis of hepatocellular
carcinoma by binding MCM2. Thus, MCM2 might also play an
P value Gene

3.28�10�09 NDC80, PLK4, CDCA5, CKS1B, E2F2...
4.25�10�09 NDC80, PLK4, CDCA5, CKS1B, E2F2...
.00011 NDC80, CDCA5, NCAPH, BIRC5, CENPH
.00015 CDCA5, CKS1B, MCM2, ORC1, POLD1
.00026 CKS1B, E2F2, MCM2, ORC1, TYMS
.00091 E2F2, MCM2, ORC1, POLD1
.00093 E2F2, ORC1
.0010 NDC80, CDCA5, BIRC5, CENPH
.0013 CKS1B, MCM2, ORC1, TYMS
.0017 E2F2, ORC1



Table 3

The top 10 nodes involved in PPI network and module.

PPI Module
Node Change Degree Node Change Degree

FOXM1 UP 25 POLD1 UP 25
TYMS UP 25 FOXM1 UP 25
POLD1 UP 25 TYMS UP 25
TK1 UP 23 TK1 UP 23
ORC1 UP 22 ORC1 UP 22
MCM2 UP 22 MCM2 UP 22
BIRC5 UP 22 BIRC5 UP 22
NDC80 UP 22 NDC80 UP 22
PLK4 UP 22 PLK4 UP 22
CKS1B UP 21 CKS1B UP 21

PPI=protein–protein interaction.

Figure 3. PPI and module analyses for co-regulated DEGs. (A) PPI network and (B) module. Red triangle represents the upregulated protein, and green arrow
represents the downregulated protein. DEGs=differentially expressed genes, PPI=protein–protein interaction.

Figure 4. TF-target regulatory network. Red triangle represents the upregu

Li et al. Medicine (2018) 97:20 www.md-journal.com
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important role in the replication of tumor cells involved in
relapsed ALL. Additionally, in the present study, MCM2 was
found to interact with multiple proteins in the PPI network, such
as FOXM1, POLD1, and PLK4, but whether these proteins could
form a replication complex requires further analysis.
PLK4, which codes of polo like kinase 4 (PLK4), is another

upregulated gene targeted by E2F. Dementyeva et al[44] found
that expression of PLK4 is significantly elevated in multiple
myeloma. Ward et al[45] showed that deregulated methylation of
PLKs, including PLK4, is a potential biomarker in hematological
malignancies. Therefore, high expression of PLK4 in ALL might
contribute to the deregulation of methylation on its promoter by
E2F, which was also suggested as an effect of upregulation of
POLD1 in the current study. Kazazian et al[46] reported that
PLK4 promotes cancer invasion and metastasis via Arp2/3
lated protein, and blue hexagon represents TF. TF= transcription factor.

http://www.md-journal.com


Figure 5. miRNA-TF-target regulatory network. Red triangle represents the upregulated protein, blue hexagon represents TF, and orange diamond represents
miRNA. miRNA=microRNA, TF= transcription factor.
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complex regulation of the actin cytoskeleton. Moreover, several
studies revealed that PLK4 can interact with Cep192, Cep152,[47]

STIL,[48,49] and CDK1,[50] or regulated by others, such as E3
ubiquitin ligase Mib1[51] and KAT2,[52] to affect centriole
biogenesis resulting in abnormalities in cell proliferation. Further
biofunctional enrichment analysis also showed that PLK4 was
significantly enriched in mitotic related pathways. These findings
indicated that high levels of PLK4 promote the relapse of ALL by
facilitating the cell cycle. Thus, PLK4 might be considered as a
potential diagnostic marker or therapeutic target for the treating
relapsed ALL.
E2F1 is another E2F family TF found to target both POLD1

and MCM2 in the current study. Nagel et al[53] revealed that
overexpression of miR-17-92 suppresses the apoptosis of ALL by
decreasing the expression of E2F1. Additionally, Kojima et al[54]

showed that E2F1 and P53 can be significantly induced by the
tryptamine derivative JNJ-26854165 to increase the apoptosis of
ALL. These findings indicated that E2F1 played a negative role in
the development of ALL. In this study, E2F1 was identified to be
regulated by miR-520H. Previous studies revealed that miR-
520Hplays an important role in the stem cell maintenance[55] and
differentiation of HSC,[56] and with lower expressed in T
lymphocytes and high expression in CD34+ cells.[57] Su et al[58]

identified that high level of miR-520H is closely related to the
poor prognosis of breast cancer. Moreover, downregulation of
miR-520H via E1A has an anticancer effect.[59] Bioinformatics
analysis showed that the expression of miR-520H is inversely
correlated with the expression levels of its targets.[56] Hence,
these findings suggested that miR-520H might downregulated
6

the expression of E2F1 to increase the expression of POLD1 and
MCM2, promoting ALL relapse.
There are some limitations that should be strengthened in the

present study. First, the results were obtained using a
bioinformatics analysis. Therefore, some potential important
genes/proteins might have been ignored because the parameters
were selected manually. Second, analysis of the event-free
survival rate of relapsed ALL was limited because of deficiencies
in the clinical data. Finally, because clinical samples were difficult
to collect from relapsed ALL patients, the expression levels of
important DEGs, such as PLK4, POLD1, and MCM2, were not
validated in an experimental manner.
5. Conclusion

In conclusion, POLD1, MCM2, and PLK4 played important
roles in regulating cell cycle- and DNA replication-related
pathways. E2F could upregulate the expression levels of POLD1,
MCM2, and PLK2 by deregulating the methylations of their
promoters to promote the relapse of ALL. Additionally, miR-
520H could upregulate the expression levels of POLD1 and
MCM2 via E2F1. Hence, POLD1, MCM2, and PLK4 might
serve as potential diagnostic markers and therapeutic targets for
treating relapsed ALL.
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