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Abstract

Passive immunotherapies utilising polyclonal antibodies could have a valuable role in preventing and treating infectious
diseases such as influenza, particularly in pandemic situations but also in immunocompromised populations such as the
elderly, the chronically immunosuppressed, pregnant women, infants and those with chronic diseases. The aim of this study
was to optimise current methods used to generate ovine polyclonal antibodies. Polyclonal antibodies to baculovirus-
expressed recombinant influenza haemagglutinin from A/Puerto Rico/8/1934 H1N1 (PR8) were elicited in sheep using
various immunisation regimens designed to investigate the priming immunisation route, adjuvant formulation, sheep age,
and antigen dose, and to empirically ascertain which combination maximised antibody output. The novel adjuvant
CoVaccine HTTM was compared to Freund’s adjuvant which is currently the adjuvant of choice for commercial production of
ovine polyclonal Fab therapies. CoVaccine HTTM induced significantly higher titres of functional ovine anti-haemagglutinin
IgG than Freund’s adjuvant but with fewer side effects, including reduced site reactions. Polyclonal hyperimmune sheep
sera effectively neutralised influenza virus in vitro and, when given before or after influenza virus challenge, prevented the
death of infected mice. Neither the age of the sheep nor the route of antigen administration appeared to influence antibody
titre. Moreover, reducing the administrated dose of haemagglutinin antigen minimally affected antibody titre. Together,
these results suggest a cost effective way of producing high and sustained yields of functional ovine polyclonal antibodies
specifically for the prevention and treatment of globally significant diseases.
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Introduction

Antigen-specific polyclonal antibodies are generated for a wide

array of purposes which range from fundamental laboratory

studies and protocols to passive immunotherapy for life threaten-

ing conditions including snake envenomation [1] and drug toxicity

[2]. Sheep are particularly attractive for the generation of passive

polyclonal immunotherapeutics as ovine antibody fragments have

demonstrated reduced immunogenicity and more consistent

biological function than those derived from other animals [3].

Furthermore, large quantities of serum can be repeatedly obtained

from sheep, with reduced maintenance costs and lower immune

boosting demands than other large animals such as horses [4].

Specifically, polyclonal ovine antibodies in the form of antigen-

binding antibody fragments or ‘Fab’ underlie the use of antibodies

in critical care situations such as snake envenomation and digoxin

toxicity [5]. Potential hypersensitivity reactions often associated

with administration of whole antibody are considerably reduced

by using these Fab fragments or their divalent counterpart F(ab)2.

Hence, this type of treatment has the potential to be readily

transferable to infectious disease management, particularly in light

of the increased incidence of drug resistance to circulating
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pathogens [6,7] and the medley of undesirable side effects often

associated with conventional drug treatments [8,9,10]. Of

particular interest here is the applicability of this approach to

infections with viral pathogens such as influenza, as natural

immunity to many such viruses is facilitated through the action of

neutralising antibodies [3,11,12].

Whilst traditional vaccination reduces influenza-associated

mortality [13], it is least efficacious in the immunocompromised

individuals who are most susceptible to complications and

increased mortality [14,15], and who include pregnant women

[16]. Consequently, immunocompromised individuals make up

the majority of the many thousands of annual influenza-related

deaths [14,17], which provides the rationale for passive immuno-

therapy as influenza prophylaxis or treatment in these individuals

because additional time is not needed to generate an efficient

vaccine-induced adaptive immune response [18]. Indeed, passively

administered influenza-specific antibody has been shown to inhibit

influenza-induced mortality in rodents [19], although the selection

of a suitable clinically applicable passive immunotherapeutic will

be determined by its inherent neutralisation capacity, its safety as

well as its commercial scalability and overall cost effectiveness

[20]. These factors highlight the requirement for optimal efficiency

at every stage of the production process.

Whilst downstream processing methods for existing commercial

ovine polyclonal antibody preparations have been methodically

optimised [21,22,23], there has been limited investigation into the

best way to generate maximal antibody titres and overall yield of

effective antibody from the sheep themselves. Indeed, there are

few reports in the published literature directly comparing the

parameters that can influence humoral immune responses in sheep

[24]. This is particularly important considering that route of

administration, antigen dose and adjuvant are well recognised as

critical parameters in antibody production from other species

[25,26].

The route of immunisation can influence the induction of the

humoral immune responses [27] by dictating which population of

dendritic cells (DCs) interacts with antigen [28,29]. For instance,

subcutaneous immunisation is routinely applied commercially to

produce hyperimmune ovine sera [22,23] and facilitates antigen

interaction with skin-associated DCs, including Langerhans cells,

conventional DCs and macrophage-derived DCs [30]. Alterna-

tively, intraperitoneal immunisation promotes antigen interaction

with conventional DCs macrophages and plasmacytoid DCs,

which may be beneficial depending on the antigen type [31,32].

The functionality of site-specific DC subsets in sheep has not been

well studied and thus empirical assessment is required to

determine an optimal immunisation route. Antigen dose can also

influence the outcome of immunisation; too little antigen may

elicit inefficient responses [33], and too much antigen can promote

adverse effects and immunotolerance [24]. The standard antigen

dose used in generating ovine antisera varies widely (from

micrograms to as much as five grams per animal [24]) and this

uncertainty necessitates investigation of appropriate antigen

dosage for optimal antibody output. The choice of adjuvant is

another key factor in dictating both the quality and quantity of the

humoral immune response [25,34]. Adjuvants prolong and

augment the effects of vaccination through various mechanisms

which include increasing antigen persistence, stimulation of local

inflammation, upregulation of cytokines and immunomodulatory

factors, activation of phagocytic cells and promotion of antigen

presentation [35,36]. The current gold-standard for generation of

a humoral immune responses in animals is Freund’s adjuvant (FA),

a water-in-oil emulsion which is available in ‘complete’ or

‘incomplete’ formulations, that is, with or without heat-killed

Mycobacterium tuberculosis respectively [37]. This adjuvant primarily

works by increasing antigen persistence in the tissues [38] and

stimulating a foreign-body reaction which results in local

inflammation and recruitment of innate and adaptive immune

cells [39]. It is however often associated with the formation of

painful granulomas and can also result in tuberculin-type

hypersensitivity [40]. It is not approved for human use and

concerns with animal welfare have prompted investigation into

alternative adjuvants for use in animals [39].

The current study applies empirical methods to optimise anti-

A/Puerto Rico/8/1934 H1N1 (PR8) haemagglutinin (HA) ovine

polyclonal antibody production using FA and a proprietary

experimental adjuvant, CoVaccine HTTM (CV) [36,41,42,43].

CoVaccine HTTM is in clinical development and consists of

sucrose fatty acid sulphate esters (SFASE) immobilised on the oil

droplets of a submicron emulsion of squalane-in-water [41]. We

show that the age of sheep, the prime immunisation route, and

dose has minimal impact on the antibody titre, although CV

adjuvant induced superior anti-HA antibody titres than immuni-

sation regimens incorporating FA. The influenza-neutralisation

capacity of the anti-HA antibody was subsequently assessed by

haemagglutination-inhibition (HAI) assays and was found to

correlate closely with the antibody titres measured for each of

the variables. Finally, it was demonstrated that high titre ovine

hyperimmune serum can be successfully applied in a lethal in vivo

murine influenza challenge model to prevent mortality in both a

prophylactic and therapeutic context.

Materials and Methods

Recombinant Haemagglutinin Production
The HA sequence of A/Puerto Rico/8/1934 H1N1 (PR8)

H1N1 (NCBI accession: AF389118) from PR8-transfected AB1

malignant melanoma cells (AB1-HA) was PCR cloned into

pGEM-T Easy Vector system (Promega) using primers with

appropriate restriction sites and a C-terminal 6x-His tag.

Confirmed HA sequence was subsequently used to produce

recombinant baculovirus using the Bac-to-Bac expression system

(Invitrogen). Insect cells (Sf21) were maintained in sf900 SFM III

(Invitrogen) supplemented with L-glutamine (100 mg/ml), penicil-

lin (100 U/ml), gentamycin (100 mg/ml) and HEPES (10 mM,

pH 7.2) in roller bottle flasks at 27uC. Protein was produced by

infection of Sf21 insect cells 96 hours prior to protein harvest, and

cultures were supplemented with 100 mg/ml L-glutamine 24 hours

prior to harvest. Expressed protein was purified from cell lysate

using Ni-NTA Agarose beads (Qiagen) according to the manu-

facturer’s instructions before dialysis with PBS. Protein purity was

analysed by SDS-PAGE and anti-HA Western Blot and concen-

tration determined with BCA assay.

Immunisation and Sampling
Purified recombinant HA (rHA) antigen was diluted in PBS and

emulsified with an equal volume of complete FA for prime

immunisation or incomplete FA for boost immunisation (Gibco).

Groups of five 9-month old or 3-year old Border Leicester x

Merino ewes were immunised with 200 or 20 mg rHA in 4 ml

emulsion, either subcutaneously (SC) at 4 axillary sites or as a

bolus intraperitoneal (IP) injection (prime only). Alternatively,

antigen in PBS was gently mixed with an equal quantity of CV

suspension (Protherics Medicines Ltd) and sheep were immunised

with 2 ml emulsion SC at 4 axillary sites. Sheep were administered

a prime immunisation and a boost dose every 14 days for a total of

five boosts. Serum was sampled prior to each immunisation and

stored at 220uC.

Influenza Neutralising Antibodies from Sheep

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e68895



Anti-HA Antibody ELISA
Briefly, EIA/RIA high-binding ELISA plates (Costar) were

coated with 10 mg/ml rHA overnight at 4uC. Plates were blocked

with 2% (w/v) BSA (1 hour, 37uC) and pre-immune or

hyperimmune sheep serum diluted as indicated in Figure S1 was

added to duplicate wells and incubated for 2 hours (37uC). Bound

ovine antibodies were detected with HRP-linked anti-ovine IgG

antibody (Sigma; 1 hour, 37uC). The plates were developed with

OPD substrate (Sigma), the reaction stopped with 3 M HCl and

the absorbance read at 490 nm. Absorbance readings from

negative control wells were subtracted from all readings. ELISA

analysis of serially diluted samples indicated that a dilution of 1/

50,000 could enable accurate comparison of a range of samples in

the linear portion of the curve. A representative figure has been

included in Figure S1.

Haemagglutination-inhibition (HAI) Assay
Diluted pre-immune or hyperimmune serum samples (1/400)

were pre-treated with chicken red blood cells (cRBC) to remove

non-specific agglutinins (2 hours, room temperature) and the HAI

assay was performed using a previously described method [44].

Briefly, treated serum (10 ml) was serially diluted 1/4 in duplicate

wells of a round-bottom 96-well plate before the addition of PR8

influenza virus (5 haemagglutination units in 30 ml). After 30

minutes incubation at room temperature, 0.5% (v/v) cRBC in

PBS (30 ml) was added to each well and gently mixed. Plates were

visualised over a light box after 45 minutes. The endpoint HAI

titre was recorded as the highest dilution of serum that was able to

completely inhibit the agglutination of cRBC by virus in duplicate

wells. Potential non-specific inhibition was discounted by the use of

receptor-destroying enzyme (Table S1).

Murine Model of Influenza Infection
Female 6–8 week old BALB/c mice were housed in PC2

defined pathogen-free conditions following institutional guidelines.

Groups of 5 mice were administered high titre anti-HA ovine

serum (1 ml) or PBS intraperitoneally, and challenged intranasally

24 hours later with 500 TCID50 PR8 influenza virus (32 ml). In the

treatment models, mice were challenged with virus twenty-four

hours prior to intraperitoneal administration of whole or diluted

serum or control PBS as a 1 ml injection. Weight and clinical score

of the mice were monitored and mice were euthanased upon

achieving 20% (w/w) weight loss.

Statistical Analysis
All statistical analysis was performed with GraphPad Prism

V4.00 software.

Ethics Statement
All animal experiments were approved by the SA Pathology/

CHN and, where appropriate, Primary Industries and Resources

South Australia animal ethics committees. All experiments were

conducted in accordance with National and Institutional ethical

guidelines.

Results

Intraperitoneal or Subcutaneous Prime Immunisation
Induces Similar Peak Anti-Haemagglutinin Antibody
Titres

Generally, antigen emulsified with FA is administered subcu-

taneously over multiple sites. However, it has been previously

demonstrated that intraperitoneal prime immunisation can yield

significantly higher antibody titres [45,46]. Therefore, to directly

compare these routes of prime immunisation, groups of sheep

were immunised either subcutaneously (four sites) or intraperito-

neally (bolus injection) with rHA emulsified in complete FA. Both

groups were boosted subcutaneously every two weeks with rHA in

incomplete FA for a total of five boosts.

Serum samples were collected fortnightly and the titre of anti-

HA immunoglobulin G (IgG) was analysed by ELISA. Assessment

of results by two-way repeated-measures ANOVA indicated no

significant difference between antibody titres during the induction

phase (weeks 2–12) of the immune response (Figure 1A). However

when ELISA data from all time points including twelve weeks

post-immunisation were analysed, a significant trend for higher

antibody titres was observed in the subcutaneously primed group

(Figure 1A; P,0.05), which may indicate a slower decline in

antibody titre for this group. Importantly, neither group exhibited

a significant difference in the ability of various serum dilutions to

inhibit haemagglutination of PR8 in an HAI assay (Figure 1B).

Based on these results, the subcutaneous prime immunisation was

selected for all subsequent comparisons.

CoVaccine HTTM Elicits Significantly Higher Ovine Anti-
haemagglutinin Antibody Titres than Freund’s Adjuvant

The experimental adjuvant CoVaccine HTTM is an oil-in-water

emulsion, which is designed with synthetic carbohydrate structures

on squalane microdroplets and which produces proinflammatory

responses through interaction with innate immune receptors,

including TLR-4 [41,47]. This adjuvant offers the advantage of

presenting amphipathic membrane target antigens in native

formation due to the squalane-in-water formulation. It has shown

efficacy in combination with a range of antigens including malarial

antigens [48], influenza glycoproteins [47] and gonadatropin-

releasing hormone [49]. In order to determine if CV is capable of

inducing anti-HA antibody responses comparable to those

generated with FA, sheep were primed with rHA either

traditionally emulsified with complete FA or gently mixed with

CV and boosted fortnightly with rHA in incomplete FA or CV

respectively. Serum samples were collected fortnightly and

analysed via ELISA and HAI assay.

Two-way repeated-measures ANOVA and post-test analysis

indicated that CV elicited significantly higher antibody titres

overall (P,0.01) and at multiple time-points post prime (P,0.05)

compared to FA (Figure 2A). Consistent with the ELISA results,

the CV group sera demonstrated significantly higher HAI capacity

than those from the FA group (P,0.05; Figure 2B), suggesting that

CV may be a good alternative to FA in future immunisation

regimens.

Age of Sheep did not Significantly Alter the Ability to
Generate High Anti- haemagglutinin Antibody Titres

It was hypothesised that younger sheep may produce higher

antibody titres than older sheep due to a potential age-related

decline in immunity in aged sheep. To assess the effect of sheep

age on antibody output, sheep at nine months or three years of age

were immunised subcutaneously with rHA either in complete/

incomplete FA or CV as described above. Serum samples taken

every two weeks were assessed by ELISA and HAI assays

(Figure 3). Analysis of ELISA results by two-way repeated-

measures ANOVA with Bonferroni post-tests revealed no signif-

icant difference between antibody titres overall, or at individual

time points for serum produced in young or old sheep by

administration of rHA emulsified in FA (Figure 3Ai) or CV

(Figure 3Bi). Similarly, there was no significant difference in the

Influenza Neutralising Antibodies from Sheep
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neutralising activity of anti-HA serum from different aged sheep in

HAI assays in either the FA-immunised (Figure 3Aii) or CV-

immunised groups (Figure 3Bii). Consistent with previous results,

HAI titres for either old or young sheep immunised with rHA-FA

emulsion were significantly lower (P = 0.001) than the correspond-

ing CV group (Figure 3Aii and Figure 3Bii respectively). These

results suggest that age does not impact on the quality of the

antigen-induced antibody response.

A Ten-fold Lower Dosage of Antigen did not Yield
Significantly Lower Anti-haemagglutinin Antibody Titres

Cost of antigen is an important factor in any immunisation

regimen, therefore to determine whether economic gains may be

made by immunisation with a lower dose of antigen, sheep were

immunised subcutaneously with 200 mg or 20 mg rHA either in FA

or CV as previously described. Serum samples taken every two

weeks were subsequently analysed by ELISA and HAI assays

(Figure 4). Statistical scrutiny revealed no significant difference in

antibody titre between high-dose and low-dose FA groups as

indicated by ELISA (Figure 4Ai) and HAI results (Figure 4Aii). In

comparison, significant differences were observed within the CV

groups in both the ELISA assay (Figure 4Bi; P,0.05) and HAI

assay (Figure 4Bii; P,0.05), however the magnitude of the

decrease in the low-dose group was comparatively small. Indeed,

Figure 1. Different routes of prime immunisation yield similar
anti-HA antibody titres. Sheep (n = 5) were immunised with 200 mg
rHA SC or IP in complete FA. Sheep were boosted SC every two weeks
to a total of five boosts in incomplete FA (indicated by arrows). Pre-
immune (time 0) or hyperimmune serum samples were analysed for
anti-HA IgG via ELISA (1/50, 000 dilution) (A), and HAI(B). Data are
expressed as the mean 6 SEM. Two-way repeated-measures ANOVA
was applied to evaluate significance which is denoted as thus:
* = P,0.05, ** = P,0.01, *** = P,0.001, ns = not significant.
doi:10.1371/journal.pone.0068895.g001

Figure 2. CoVaccine HTTM adjuvant elicits significantly higher
anti-HA antibody titres than Freund’s adjuvant. Sheep (n = 5)
were immunised SC with rHA (200 mg) in complete FA or CoVaccine
HTTM (CV). Sheep were boosted similarly every two weeks (five boosts
indicated by arrows) with rHA in incomplete FA or CV. Pre-immune
(time 0) or hyperimmune serum samples were analysed for anti-rHA IgG
via ELISA (1/50, 000 dilution) (A) and HAI (B). Data are represented as
the mean 6 SEM. Two-way repeated-measures ANOVA with Bonferroni
post-test was applied to evaluate significance which is denoted as thus:
* = P,0.05, ** = P,0.01, *** = P,0.001, ns = not significant.
doi:10.1371/journal.pone.0068895.g002

Figure 3. Nine-month old and three-year old sheep produce
similar anti-HA antibody titres. Sheep (n = 5) at either nine months
(young) or three years (old) were immunised SC with 200 mg of rHA in
complete FA (A) or CV (B). Sheep were subsequently boosted SC every
two weeks to a total of five boosts in incomplete FA or CV (indicated by
arrows). Pre-immune (time 0) or hyperimmune serum samples were
analysed for anti-rHA IgG via ELISA (1/50, 000 dilution) (Ai, Bi) and HAI
(Aii, Bii). Data are expressed as the mean 6 SEM. Two-way repeated-
measures ANOVA with Bonferroni post-test was applied to evaluate
significance; ns = not significant.
doi:10.1371/journal.pone.0068895.g003

Influenza Neutralising Antibodies from Sheep
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analysis of individual time points by Bonferroni post-test compar-

isons revealed a significant difference in HAI titre at only one time

point. Importantly, HAI results of CV group sera again revealed a

more than ten-fold increase in mean endpoint serum dilution for

both the high and low dose rHA over that observed with FA-

induced sera (Figure 4Bii vs Figure 4Aii). These data supports the

use of a lower antigen dose to elicit comparably high quantities of

anti-HA antibody whilst reducing costs associated with antigen

production.

CoVaccine HTTM Induced Fewer Adverse Site Reactions as
Compared to Freund’s Adjuvant

As FA immunisation often induces site-specific reactions, it was

necessary to determine whether CV similarly induced local

inflammatory reactions at the immunisation site. Observational

data were collected twelve weeks post-prime where the number

and size of palpable subcutaneous lumps at each site was recorded,

and sites were given a rating on a graded system (denoted in

Figure 5). No significant differences in size or number of reactive

sites were observed within adjuvant groups in the age and antigen

dose experiments (data not shown); therefore observational data

from all sheep receiving each subcutaneous immunisation regimen

were pooled and compared. Statistical analysis by Mann-Whitney

rank test revealed a significant difference between the number of

reactive sites, with sheep receiving rHA in FA exhibiting

significantly more reactive sites per animal, many at all injection

sites, than those sheep receiving antigen mixed with CV

(Figure 5A; P,0.05). Interestingly, there was a trend toward

lower reactivity scores of CV sites than of FA sites (Figure 5B),

although altogether, the variation of CV reactivity scores was

greater than (SD = 1.750) than that of FA scores (SD = 1.136).

Prophylactic and Therapeutic Administration of Anti-
haemagglutinin Hyperimmune Serum Protected Mice
from a Lethal Influenza Challenge

Even though hyperimmune serum consistently prevented

influenza-induced haemagglutination of RBC in vitro, we wished

to determine the in vivo potential of this serum to prevent lethal

influenza infection. To assess the protective ability of polyclonal

anti-HA antibodies, mice received pooled hyperimmune serum

from sheep immunised with rHA emulsified in CV or FA, or

pooled non-immune serum or PBS diluent as controls. Twenty-

four hours later, mice were challenged with 500 50% tissue-culture

infective doses (TCID50) of live PR8 by intranasal administration

and the clinical course was closely monitored (Figure 6A). Results

indicated that mice which received prophylactic hyperimmune

serum from either CV- or FA-immunised sheep exhibited some

weight loss immediately after influenza infection, although this loss

was quickly regained (Figure 6Ai and 6Aii respectively). In

contrast, those mice that received non-immune serum or PBS

had sustained weight loss and all had reached their pre-determined

clinical endpoints by day 10 (Figure 6Aiii and 6Aiv respectively).

Mantel-Cox survival analysis showed that both CV and FA

hyperimmune serum prevented the lethal consequences of

influenza infection in contrast to the effects of administration of

non-immune serum or PBS (Figure 6Av; P,0.001).

To determine whether these polyclonal antibodies could treat

an active influenza infection, hyperimmune or non-immune serum

or PBS was administered twenty-four hours after viral challenge

with 500 TCID50 PR8 (Figure 6B). Similarly, results indicated that

infected mice which received hyperimmune serum therapy

Figure 4. Low antigen dose produces similar anti-HA antibody
titres. Sheep (n = 5) were immunised SC with 200 or 20 mg of rHA in
complete FA (A) or CV (B). Sheep were then boosted SC every two
weeks to a total of five boosts in incomplete FA or CV (indicated by
arrows). Pre-immune (time 0) or hyperimmune serum samples at a 1/
50,000 dilution were analysed for anti-HA IgG via ELISA (Ai, Bi) and HAI
(Aii, Bii). Data are represented as the mean 6 SEM endpoint dilution.
Data of both assays were analysed by two-way repeated-measures
ANOVA with Bonferroni post-tests; significance is denoted as thus:
* = P,0.05, ** = P,0.01, *** = P,0.001, ns = not significant.
doi:10.1371/journal.pone.0068895.g004

Figure 5. Repeated subcutaneous immunisation with CoVac-
cine HTTM elicits fewer reactive immunisation sites than
Freund’s adjuvant. Sheep (n = 15) were immunised SC with rHA
antigen either in complete/incomplete FA or CV. Two weeks following
the final boost immunisation, injection sites were examined and
palpable lumps were enumerated (A) and graded (B). A scoring system
was devised based on the size and characteristics of the reaction sites
to rank the level of reactivity of each individual site. Grades of site
reactivity: 0– no reaction; 1– slight skin irregularity; 2– lump,10 mm
diameter or larger skin irregularity; 3– multiple small lumps/single
lump,40 mm; 4– lump,80 mm; 5–$80 mm lump. The data was
analysed by Mann-Whitney rank test; significance is denoted as thus:
* = P,0.05, ** = P,0.01, *** = P,0.001, ns = not significant.
doi:10.1371/journal.pone.0068895.g005

Influenza Neutralising Antibodies from Sheep
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exhibited some weight loss before recovery (Figure 6Bi, 6Bii),

whereas most mice that received non-immune serum or PBS had

sustained weight loss and were euthanased by day 10 (Figure 6Biii,

6Biv). Similar to the effects of prophylactic administration of

hyperimmune serum, Mantel-Cox survival analysis revealed a

significant improvement in survival of the mice that received

hyperimmune serum compared to control mice (Figure 6Bv;

P,0.05). Taken together, it is clear that ovine hyperimmune

serum can protect against and treat lethal influenza infections in

mice.

Hyperimmune Anti-haemagglutinin Serum Elicited with
CoVaccine HTTM Exhibits Greater Potency in vivo as
Compared to that Elicited by Freund’s Adjuvant

Anti-HA serum elicited with CV as an adjuvant had signifi-

cantly better potency in vitro (Figure 2); to determine if this

translated to increased potency in vivo, mice (n = 6) were intrana-

sally inoculated with 500 TCID50 PR8 influenza and twenty-four

hours later treated with different doses of high titre pooled serum

(IP, equivalent to 1000, 500, 250 or 50 ml serum in a 1 ml

injection) elicited with either CV or FA. Groups of mice received

PBS or non-immune sheep serum as controls. Clinical disease

Figure 6. Prophylactic or therapeutic administration of ovine anti-HA serum is protective against lethal influenza challenge. Mice
(n = 5) were prophylactically administered pooled serum (1 ml, IP) from either young sheep receiving 200 mg rHA SC in CV (Ai) or FA (Aii), day zero
pre-bleeds from corresponding sheep from both groups (Aiii) or PBS as a control (Aiv). Twenty-four hours later mice were challenged with a lethal
dose of PR8 (500 TCID50). Mice reaching a predetermined endpoint of 20% weight loss (dotted line) were euthanased as indicated by arrows. Mice
(n = 5) were challenged with 500 TCID50 PR8 and twenty-four hours later therapeutically administered serum or PBS control as above (Bi–iv). In each
panel, data show percentage weight loss of individual mice. Survival curves of mice are also shown (Av, Bv). Mantel-Cox survival analysis was
performed on survival curves; significance between all curves is denoted as thus: * = P,0.05, ** = P,0.01, *** = P,0.001, ns = not significant.
doi:10.1371/journal.pone.0068895.g006

Influenza Neutralising Antibodies from Sheep
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course was monitored and euthanasia performed according to

endpoints described above.

Most notably, mice that had therapeutically received CV serum

were completely protected from lethality from infection

(Figure 7Ai–Di), regardless of dose, whereas the lower doses of

250 ml to 50 ml of FA serum were not completely protective

(Figure 7Cii–Dii). Furthermore, although the 500 and 1000 ml FA

serum dose protected mice from lethality of infection (Figure 7Aii–

Bii) weight loss in these mice was more severe than that observed

in mice receiving equivalent doses of CV serum (Figure 7Ai–Bi).

Mantel-Cox survival analysis revealed a significant difference

between survival curves of all of the CV serum mice and controls

(data not shown). Comparison of the survival curves of FA and CV

serum mice revealed a significant survival advantage of CV serum

at a 50 ml dose (Figure 7Diii; P,0.001). A minimum dose of

500 ml of FA serum was required for complete protection whereas

a ten-fold lower dose of CV serum also offered complete

protection. These data are consistent with the HI results that

demonstrate an approximate ten-fold higher neutralising antibody

titre in serum from sheep immunised with antigen in CV as

compared to FA.

Taken together, these data suggest that lower doses of CV-

elicited sera provide protection against influenza and that

implementation of this adjuvant in ovine polyclonal antibody

production could dramatically increase the efficiency of eliciting

functional neutralising antibodies in sheep.

Discussion

Ovine polyclonal antibodies are frequently generated for

commercial and small laboratory scale applications, yet there

has been limited investigation into maximising the amount of

antibody generated through optimised ovine immunisation regi-

mens. Within this study, methods to improve ovine antibody

production were empirically investigated and demonstrated that

such ovine polyclonal antibodies effectively bound influenza virus

in vitro and prevented the death of mice infected with influenza

virus.

The route of immunisation has been shown to influence the

nature and intensity of the immune response generated to an

antigen [29,45,46]. In the current study, subcutaneous prime

immunisation with antigen in FA yielded significantly higher

overall anti-HA antibody titres when compared to intraperitoneal

prime. These findings are in contrast to an earlier study which

demonstrated that anti-C. parvum antibody titres at parturition [45]

were sixteen-fold higher in the serum when sheep received

intraperitoneal immunisation compared to intramuscular immu-

nisation. Furthermore, at twenty days post-lambing, detectable

anti-C. parvum IgG had stabilised to approximately two-fold higher

in the intraperitoneal-administered group. This discrepancy may

be a consequence of altered immunological function in the sheep

during pregnancy, or the differing nature of the antigens used [46].

It is possible that the rHA antigen is more efficiently presented by

cells of the subcutaneous tissues than those in the peritoneal

environment [28,29], as CD14-positive DCs present in the dermis

are directly involved in the differentiation of antibody-producing

plasma cells [50,51]. Furthermore, the hydrophobic properties of

FA may enable the stable deposition of the antigen-adjuvant

mixture at immunisation sites which is likely to be more favourable

for long term immunity [52]. That is, the sheep subcutaneously

primed may have had more local and stabilised antigen depots

than the intraperitoneally-primed sheep as comparatively the

peritoneal environment allows substances to disperse more freely.

The use of a novel experimental adjuvant CV was compared to

FA, the adjuvant routinely used for the commercial and

experimental production of polyclonal ovine antibodies. Interest-

ingly, CV was found to raise significantly higher specific serum

antibody titres than FA. The CV serum was also confirmed to

exhibit higher potency in vivo. The enhanced efficacy of CV to

induce high functional antibody titres may be partially attributable

to the integrity of the antigen once mixed with this particular

adjuvant. Protein antigens may be fully or partially denatured in

water-in-oil adjuvants such as FA, which may lead to the

deformation of native epitopes [53] resulting in antibodies with a

poor affinity for the native protein. In contrast, CV is an oil-in-

water emulsion of hydrophobic and negatively-charged sucrose

fatty acid sulphate esters formulated with submicron emulsions of

squalane that is combined with aqueous antigen and thus would

result in less protein denaturation than FA [41]. The accessibility

of the antigen to immune cells may also have contributed to

increased efficacy of CV compared to FA. While the tendency of

FA to form viscous deposits of antigen-adjuvant mixture in the

tissues results in sustained slow-release of antigen, it may also result

in limited antigen exposure to the cellular environment. In

contrast, antigen mixed with CV is in an aqueous environment

and this may facilitate dispersal into the tissues and increase the

amount of antigen immediately accessible to antigen processing

immune cells, thus increasing antibody titres. Indeed, recent

preclinical studies have also shown that this adjuvant can enhance

vaccine responses in not only sheep as described here but also in

pigs [41], mice [42,47], ferrets [36] and macaques [43]. The likely

enhanced dispersal of CV as compared to FA may also explain

why CV induced significantly fewer reactive sites that FA, which

importantly suggests a superior safety profile to FA. These

observations highlight CV as a safer and highly effective potential

alternative to FA for adjuvanting antigens, particularly when

factoring in the time-consuming and often hazardous emulsifica-

tion periods needed with FA and other water-in-oil adjuvants prior

to administration. Furthermore, these advantages combined with

the ability to elicit a high titre IgG antibody response in a broad

range of other animal species, favours the future practical

application of CV to the rapid and large scale production of

passive immunotherapeutics for veterinary and clinical use.

There were no significant age-related differences in the anti-HA

antibody titres achieved after immunisation with either CV- or

FA-rHA. Depending on size and growth characteristics, the

quantity of blood routinely obtained from younger sheep may be

upwards of a third less than that obtained from adult sheep [54].

However, the ability to utilise younger sheep for commercial

polyclonal antibody production means that significant increases in

antibody output over the lifespan of the animal would be possible,

thus offsetting agistment costs much sooner. This would be

particularly important if younger sheep were employed together

with adjuvants such as CV that increase overall antibody titre. The

costs associated with ovine antibody production could be

minimised further if high antibody titres could be maintained

with reduced amounts of costly antigen. Here, we showed that a

ten-fold lower dose of antigen than that used conventionally

resulted in only slightly lower (albeit significantly lower with CV

adjuvant) anti-HA antibody titres in sheep. However, the

magnitude of this difference is unlikely to matter particularly

when compared to the difference in the amount of antigen used

and instead reflects the complex relationship between antigen

dosage and antibody titre [33]. Furthermore, the optimal antigen

dosage will be affected by different adjuvants and antigens with

correspondingly different pathways used for antigen processing,

presentation and antibody responses [55]. Our results clearly
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indicate that the lower HA antigen dose induced anti-HA ovine

antibody titres similar to the high titres induced with the higher

antigen dose. Moreover, we expect that this reduced need for

antigen will have the added benefit of markedly reducing

production costs. Importantly, all immunisation regimens tested

here resulted in the production of potent anti-HA antibodies that

were able to treat and prevent lethal influenza infection in mice.

Antigenic variability among influenza strains remains one of the

major challenges facing the development of an influenza-specific

passive immunotherapeutic. However, it has been already been

shown that it is possible to elicit strain cross-reactive anti-influenza

hyperimmune serum by administering different subtypes of

influenza haemagglutinin [56,57]. In addition, administration of

an antigen (whether it be a whole pathogen or parts thereof) to a

live animal benefits from ‘natural selection’ by the host for the

most immunogenic targets and mimics the natural immune

response to infection or vaccination [58]. The widespread

application of passive immunotherapy to treat influenza may be

of particular benefit during pandemic outbreaks of the infection,

such as the recent 2009 H1N1 pandemic [59]. During an

influenza pandemic, a premium is attached to the timely and

large-scale production and distribution of an effective therapy.

Knowing best how to rapidly make at least cost large quantities of

potent ovine neutralising antibodies against influenza virus or

other potential pandemic pathogens could be an important

contribution to reducing the disease burden and its associated

societal and economic costs.

Supporting Information

Figure S1 Preliminary ELISA of anti-HA ovine serum
samples. An ELISA was performed on selected samples for assay

development. Serial dilutions of pre-immune or hyperimmune

sheep serum were added to duplicate wells of a rHA-coated

ELISA plate and specific antibody was detected with HRP-linked

anti-ovine IgG antibody. Signal was developed with OPD

substrate until colour was visible in serum-free wells. Absorbance

readings from blank wells were subtracted from all readings. The

results indicated that a 1/50,000 serum dilution gave OD readings

within the linear portion of the generated curve for hyperimmune

samples. Consequently a 1/50,000 dilution was used in subsequent

assays to assess experimental samples.

(TIF)

Table S1 Assessment of the effects of Receptor Destroy-
ing Enzyme on Haemagglutination-inhibition endpoint
titres. In order to determine the effects of receptor-destroying

enzyme (RDE) on endpoint HAI titres; selected serum samples

were assayed with or without treatment with RDE (Sigma, 37uC,

O/N). Samples were then treated with chicken red blood cells and

assayed as described. Endpoint HAI titres were identical for all

samples tested.

(DOCX)
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