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Cell graph neural networks enable the precise prediction
of patient survival in gastric cancer
Yanan Wang1,15, Yu Guang Wang2,3,4,15, Changyuan Hu1, Ming Li 5, Yanan Fan4, Nina Otter6, Ikuan Sam7, Hongquan Gou7, Yiqun Hu7,
Terry Kwok1,8, John Zalcberg9,10, Alex Boussioutas11, Roger J. Daly 1, Guido Montúfar3,6, Pietro Liò 12✉, Dakang Xu 7✉,
Geoffrey I. Webb 13,14✉ and Jiangning Song 1,14✉

Gastric cancer is one of the deadliest cancers worldwide. An accurate prognosis is essential for effective clinical assessment and
treatment. Spatial patterns in the tumor microenvironment (TME) are conceptually indicative of the staging and progression of
gastric cancer patients. Using spatial patterns of the TME by integrating and transforming the multiplexed immunohistochemistry
(mIHC) images as Cell-Graphs, we propose a graph neural network-based approach, termed Cell−Graph Signature or CGSignature,
powered by artificial intelligence, for the digital staging of TME and precise prediction of patient survival in gastric cancer. In this
study, patient survival prediction is formulated as either a binary (short-term and long-term) or ternary (short-term,medium-term, and
long-term) classification task. Extensive benchmarking experiments demonstrate that the CGSignature achieves outstanding model
performance, with Area Under the Receiver Operating Characteristic curve of 0.960 ± 0.01, and 0.771 ± 0.024 to 0.904 ± 0.012 for the
binary- and ternary-classification, respectively. Moreover, Kaplan–Meier survival analysis indicates that the “digital grade” cancer
staging produced by CGSignature provides a remarkable capability in discriminating both binary and ternary classes with statistical
significance (P value < 0.0001), significantly outperforming the AJCC 8th edition Tumor Node Metastasis staging system. Using Cell-
Graphs extracted from mIHC images, CGSignature improves the assessment of the link between the TME spatial patterns and patient
prognosis. Our study suggests the feasibility and benefits of such an artificial intelligence-powered digital staging system in
diagnostic pathology and precision oncology.
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INTRODUCTION
Gastric cancer (GC) accounted for 768,793 deaths in 2020,
representing the fourth deadliest cancer globally1. The 5-year
survival rate of GC is around 20%2. A more accurate prognosis
can greatly assist clinical decision-making, especially regarding
which patients would benefit from aggressive treatment. The
Tumor-Node-Metastasis (TNM) staging system3 is the most
prevalent cancer staging system primarily used in hospitals and
medical centers worldwide, which reflects information on the
primary tumor, affected lymph nodes, and metastasis. Many
current treatment recommendations and guidelines are based
on the TNM stages. However, significant differences in clinical
outcomes have been observed in GC patients with the same TNM
stage and similar treatment regimens4–6. These findings indicate
the TNM staging system has limitations and accordingly, cannot
be used to accurately predict the prognosis of cancer patients. As
such, new strategies that can provide more tailored staging
information and improve prognosis predictions are highly
desirable.

Recent years have seen numerous data-driven, machine
learning-based studies of cancer prognosis. For instance, Yu
et al.7 introduced prognosis prediction of lung adenocarcinoma
and squamous cell carcinoma of stage I, and their model can
distinguish the shorter-term survivors from longer-term survivors
(p= 0.003 and p= 0.023). Mobadersany et al.8 presented a
survival convolutional neural network (SCNN), and their developed
histology image-based SCNN reached comparable performance
on astrocytomas of grades III and IV with histology grading or
molecular subtyping. In another study, Jiang et al.9 proposed the
GC-SVM classifier as a powerful survival predictor using the data of
immunomarkers and could predict the adjuvant chemotherapy
benefit of gastric cancer patients with stages II and III. Wulczyn
et al.10 conducted a survival prediction study involving multiple
cancers based on deep learning, and as a result, their model was
capable of making significant survival predictions for five out of
ten cancers and could effectively stratify cancer patients of stages
II and III. Jiang et al.11 developed a convolutional neural network-
based classifier from H&E images to predict the prognosis of stage
III colon cancer patients. Dimitriou et al.12 introduced a K-nearest
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neighbor-based method to predict the mortality of stage II
colorectal cancer patients using immunofluorescence images.
Although these prognosis prediction studies achieved promising
performance using H&E staining histology or immunohistochem-
istry staining images, they were often restricted to specific
subtypes or stages of the corresponding cancers. Moreover, these
studies did not consider any spatial information from the tumor
microenvironment (TME).
Cell distribution in the TME is not random but is rather

associated with the underlying functional state13–15. Therefore,
the exploration of the TME of cancer samples would offer critical
insights into the key spatial patterns associated with the growth,
cancer progression, and thus patient prognosis16. The recent
advent of the multiplexed immunohistochemistry (mIHC) stain-
ing technique enables systematic investigation of the TME17,18

and supports extraction of enriched spatial information from the
TME, including the cell location, cell types, cell and nucleus
morphological information, and related optical information16,19.
Researchers have applied the mIHC technique to analyze the
TME of pancreatic cancer and found that spatial distribution of
cytotoxic T cells in proximity to cancer cells correlates with
increased overall patient survival16. Barua et al.19 applied a
statistical scoring based method, G-cross function, to measure
the patterns of two different cell types, such as T-reg and CD8,
and found that high infiltration of T-reg in the core tumor area is
an independent predictor of worse overall survival (OS) in
patients of non-small cell lung cancer. However, these studies
only considered the spatial features of limited cell types and
only used handcrafted features. Therefore, comprehensive and
quantitative methods that assess the relationships between
spatial features descriptive of cell distribution and prognosis are
currently lacking.
Inspired by the concept of the Cell-Graph13,20 and the success

of graph neural networks (GNN)21–23, especially their applica-
tions to the analysis of biology data24,25, we hypothesize that
intricate spatial distribution information of the TME is informa-
tive for the prediction of the OS of GC patients and a GNN model
can effectively capitalize on useful patterns generated by Cell-
Graphs. To validate this hypothesis, we have developed a novel
GNN-based approach for predicting the prognosis of GC
patients using Cell-Graph data, which we call the Cell-Graph
Signature or CGSignature. The overall workflow is illustrated in
Figure 1 and Supplementary Fig. 1. In this study, we formulate
prognosis prediction as a classification problem by predicting
the patient’s survival time interval rather than a continuous time
frame or a risk score and develop a workflow to perform the
following threefold tasks. Firstly, it extracts comprehensive
spatial and morphological information from mIHC images.
Secondly, it further uses the extracted spatial information to
stratify patients into either binary (short-term and long-term) or
ternary (short-term, medium-term, and long-term) classes. Finally,
it conducts the Kaplan–Meier survival analysis to verify the
clinical significance of the CGSignature.
CGSignature represents a powerful survival predictor under

comprehensive and extensive benchmarking tests of gastric
cancer across all subtypes and stages. Specifically, CGSignature can
effectively stratify short-term, medium-term, and long-term GC
survivors at the early diagnosis stage, and achieved area under the
receiver-operating characteristic curve (AUROC) values of 0.960 ±
0.01 in terms of binary classification, and 0.771 ± 0.024 to 0.904 ±
0.012 in terms of ternary classification, respectively. In the follow-
up survival analysis, CGSignature outperformed the AJCC 8th edition
TNM staging system on the testing cohort in terms of Harrell’s
Concordance Index26, Hazard Ratio (HR), and p value.

RESULTS
Clinical characteristics and data-binning of the patient cohort
We collected the gastric cancer patient data between 2008 and
2010 from Shanghai Ruijin Hospital, affiliated with the School of
Medicine, Shanghai Jiao Tong University. After removing patients
labeled as “lost to follow-up”, we ended up with 172 patients in
the cohort for further analysis. All the patients were diagnosed
with gastric adenocarcinoma; no neoadjuvant therapies were
applied prior to curative gastrectomy. All samples were extracted
from surgical samples and were formalin-fixed and paraffin-
embedded. The clinical characteristics of this cohort are illustrated
in Supplementary Table 1. This cohort contains 124 males, 47
females, and one case without gender information. With respect
to the survival status, 113 cases were recorded as “deceased"
while 59 patients as “alive". The OS time of the cohort ranges from
0 to 88 months with a median follow-up time of 27 months. Here,
the survival time of 0 months indicates the death occurred before
the first discharge of the patient from the hospital. The statistical
summary of their TNM (the AJCC 8th edition) stages is provided in
Supplementary Table 1. In particular, the patient numbers of the
TNM stages of I, II, III, and IV are 14, 52, 95, and 3, respectively. Two
data-binning strategies were applied to segment the patient OS
into binary- or ternary-class datasets. More specifically, patients
with OS time shorter than 24 months and longer than 48 months
were categorized as short-term, and long-term in the binary-class
dataset. The patients whose OS time is between 24 months and
48 months were removed from the training dataset but used in
subsequent survival analyses. More details can be found in the
section on “Survival analysis and performance comparison with
the TNM staging system”. In the ternary-class dataset, patients
were classified into short-term, medium-term, and long-term
classes, using the thresholds of 12 and 60 months. Here, the
thresholds for binary and ternary class data-binning were chosen
by considering the relative class balance and the commonly used
follow-up periods of 12, 36, and 60 months. To extend the
classification margin, we used 24 and 48 months as the thresholds
rather than 36 months to divide patients into short-term and long-
term classes in binary data binning. We did not optimize the data
binning threshold, which can be conducted when more data
become available. Model training and subsequent analysis were
performed using these two datasets.

Workflow overview
Figure 1 illustrates an overall workflow and the model architecture
of the proposed CGSignature approach. As shown in Fig. 1a, the
mIHC technique was used to stain the GC tissue samples.
Specifically, the nuclear counterstain, DAPI, was used for cell
nuclei staining, and six antibodies of Pan-CK, CD8, CD68, CD163,
Foxp3, and PD-L1 were used as annotation indicators for six
different types of cells. After digitalization, cell locations, types,
and related optical and morphological features were extracted
using the digital pathology software. After this procedure, we
obtained the CSV files in which each row corresponds to each cell
with the node features shown in Table 1. Based on these CSV files
as the input, we developed a workflow (details can be seen in
Algorithm 1) to process the raw data and build the GNN-based
model to predict the patient OS interval using the features
extracted from mIHC images.
The key steps of the workflow are as follows: (1) Image pre-

processing: Sub-sampling and Cell-Graph generation were per-
formed at this step. Specifically, each mIHC image was firstly
segmented into multiple non-overlapping regions with no more
than 100 cells. For each region, we built a graph where each cell
was represented as a node and the reciprocal of the Euclidean
distance of each cell-cell pair was used to establish edges between
them with a distance of fewer than 20 μm. Detailed information
can be found in the section “Cell-Graph construction” of Methods.
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Then, we extracted a total of 35 features (as shown in Table 1) for
each cell as the node attributes, including five optical features for
each biomarker and five morphological features for each cell. Such
generated cell-based graph is referred to as Cell-Graph13,20. There
are ~90 Cell-Graphs constructed for each mIHC image (for each
patient). Cell-Graphs originated from the same mIHC image share
the same label with the corresponding patient. (2) Data split: After
Cell-Graph construction, the whole dataset was partitioned into
the training, validation, and test sets with the ratio of
0.64:0.16:0.20 at the patient level. In addition, we also generated
the files for performing fivefold cross-validation by generating five
non-overlapping training-validation subsets and evaluating the
model performance on these fivefold subsets. (3) Hyperparameter
optimization: We utilized the Hyperopt toolkit27 from the Ray
software package28 to tune the hyperparameters of GNN models.
The optimized hyperparameters were then used for the follow-up

model training and performance evaluation. (4) Model perfor-
mance evaluation and data visualization: To comprehensively
assess the capability and reliability of our GNN model, we evaluate
model performance using multi-run model training, fivefold cross-
validation, and independent tests. The test results were visualized
by generating the receiver-operating characteristic (ROC) curves,
confusion matrix, and boxplots of Accuracy, F1-Score, and
Matthews Correlation Coefficient (MCC). Performance metrics are
defined in Section “Metrics of model performance evaluation” in
the Supplementary material.

Performance benchmarking of different GNN models for
prognosis prediction
We constructed four different types of GNN models and examined
their performance in predicting the OS of gastric cancer patients,

Fig. 1 An overall workflow of graph neural network-based prognosis prediction using Cell-Graphs. a Specimen processing: the tumor
tissues were extracted from gastric cancer, and stained with seven different biomarkers including DAPI, Pan-CK, CD8, CD68, CD163, Foxp3, and
PD-L1. b Image pre-processing: sub-sampling and cell-graph construction were conducted for image pre-processing. c An illustration for the
cohort, 172 gastric cancer patients were collected. d Data split. The training, validation, and testing datasets were split with the percentages of
64%, 16%, and 20%, respectively. e Model construction: four different GNN model architectures, including GCNSag, GCNTopK, GINSag, and
GINTopK, were constructed and compared. Multi-run model training, fivefold cross-validation, and independent tests were conducted to
evaluate the performance of the constructed GNN models. f Data binning: overall survival time ranged from 0 to 88 months, and two data-
binning strategies were applied to generate binary- and ternary-class datasets. g Model architecture: The four models shared the same
architecture but employed different types of convolutional unit and pooling layer, which consists of four consecutive convolutional layer and
pooling layer blocks, followed by a summary layer and three fully connected layers, prior to the generation of the final classification outcome.
The architecture of the best-performing GINTopK model is illustrated herein, which outperformed the other three model architectures and
also achieved the best performance on the test dataset. The corresponding number of hidden layers or feature dimensions is indicated at the
bottom of each box. Here, FC stands for “fully connected layer”.
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including GINTopK, GINSAG, GCNTopK, and GCNSAG. Here, GIN23,
and GCN29 are two graph convolution computational units
(differences can be seen in Supplementary Fig. 2), whereas
TopKPooling22,30,31 and SAGPooling31,32 are two graph pooling
computational units. The graph convolutional and pooling layers
are the core components of the GNN architecture. Fivefold cross-
validation was conducted to assess the model of each GNN model
on both binary- and ternary-classification tasks. The results are
averaged on ten repetitions of fivefold cross-validation for
GINTopK on binary classification (as shown in Supplementary
Fig. 3) to circumvent the randomness of the model during
training. In this procedure, Accuracy, F1-Score, MCC, and AUROC
were calculated to evaluate the performance. Figure 2a illustrates
the performance results of binary classification on fivefold cross-
validation. As we observe, the median values of both Accuracy

and F1-score for the four GNNs ranged from 0.83 to 0.92, while the
median values of MCC ranged from 0.66 to 0.84, respectively.
Figure 2b shows the performance results of ternary classification
on fivefold cross-validation. We can see that the ternary-class
classification models achieved the median values of Accuracy
ranging from 0.76 to 0.82, F1-score from 0.64 to 0.72, and MCC
from 0.46 to 0.5, respectively. According to the results shown in
Fig. 2a, b, GINTopK slightly outperformed the other three GNN
models on both binary- and ternary classifications. Therefore,
GINTopK was selected as the best-performing GNN model and
employed for subsequent performance benchmarking and
survival analysis.
ROC curves of GINTopK on the binary- and ternary-classification

tasks are illustrated in Fig. 2c, d, respectively. The binary-class
GINTopK model achieved the AUROC value of 0.96 ± 0.01 on
fivefold cross-validation. In contrast, the ternary-class GINTopK
classifier reached the AUROC values of 0.834 ± 0.015, 0.771 ±
0.024, and 0.904 ± 0.012 for short-term (<12 months), medium-term
(>12 and <60 months), and long-term (>60 months) on fivefold
cross-validation, respectively (Fig. 2d). Moreover, the performance
results of the binary class GINTopK model on ten repetitions of
fivefold cross-validation are displayed in Supplementary Fig. 3. We
can see that the median values of both Accuracy and F1-score
were within the range of 0.90-0.93 (MCC values ranged from 0.80
to 0.86), thereby suggesting the stability of our proposed
GINTopK model.
In Fig. 3, the performance results of the GINTopK model on the

independent test are visualized using ROC curves and a confusion
matrix. It can be seen that the model achieved similar
performance to that on fivefold cross-validation in terms of
AUROC values on both binary- and ternary-classification tasks. In
terms of the confusion matrix, 96% and 89% of the short-term and
long-term patients could be accurately predicted using the binary-
classification model. The true positive percentages of the ternary-
class model were 81%, 59%, and 85%, corresponding to the short-
term, medium-term, and long-term classes (Fig. 3).
Taken together, the outstanding performance of the GINTopK

model on both cross-validation and independent test indicate that
our proposed GNN approach is capable of effectively capturing
the underlying prognostic patterns from the well-constructed Cell-
Graphs. The captured prognostic patterns by GNN model are
characteristic of the spatial information of cell locations and types
of the TME, which incorporates more potentially informative
features than the TNM staging system.

Ablation studies and prognostic value of different types of cell
features
To examine the effect of node features of different cell types on
model performance, we further performed ablation studies to
assess the contribution of features to the binary- and ternary-
classification performance by removing each type of feature in an
iterative manner. Thirty-five node features of seven types were
used in this study, including DAPI, Pan-CK, CD8, CD68, Foxp3, PD-
L1, and morphological features. We first evaluated the perfor-
mance of the GNN model trained using all these features, and
then, evaluated the performance of the models trained using the
remaining features after removing each type of feature from the
all-feature set in turn. For each iteration, we trained the models
five times with random initialization of the weights using the same
dataset and calculated the mean and standard deviation of
Accuracy. The results are shown in Table 2, where the feature
contribution was measured by the accuracy change compared
with that of the all-feature model. Note that when a type of
feature is removed, and accuracy increase means that including
the feature type reduced accuracy, and an accuracy decrease
means that the feature type played an important role in attaining
the all-feature accuracy.

Table 1. The list of node attributes and their variable types.

Feature name Feature type

DAPI positive Boolean

DAPI positive nucleus Boolean

DAPI positive cytoplasm Boolean

DAPI nucleus Intensity Float

DAPI cytoplasm intensity Float

PD-L1 (Opal 520) positive Boolean

PD-L1 (Opal 520) positive nucleus Boolean

PD-L1 (Opal 520) positive cytoplasm Boolean

PD-L1 (Opal 520) nucleus intensity Float

PD-L1 (Opal 520) cytoplasm intensity Float

CD68 (Opal 540) positive Boolean

CD68 (Opal 540) positive nucleus Boolean

CD68 (Opal 540) positive cytoplasm Boolean

CD68 (Opal 540) nucleus intensity Float

CD68 (Opal 540) cytoplasm intensity Float

Foxp3 (Opal 570) positive Boolean

Foxp3 (Opal 570) positive nucleus Boolean

Foxp3 (Opal 570) positive cytoplasm Boolean

Foxp3 (Opal 570) nucleus intensity Float

Foxp3 (Opal 570) cytoplasm intensity Float

CD8 (Opal 620) positive Boolean

CD8 (Opal 620) positive nucleus Boolean

CD8 (Opal 620) positive cytoplasm Boolean

CD8 (Opal 620) nucleus intensity Float

CD8 (Opal 620) cytoplasm intensity Float

Pan-CK (Opal 690) positive Boolean

Pan-CK (Opal 690) positive nucleus Boolean

Pan-CK (Opal 690) positive cytoplasm Boolean

Pan-CK (Opal 690) nucleus intensity Float

Pan-CK (Opal 690) cytoplasm intensity Float

Cell area (μm2) Float

Cytoplasm area (μm2) Float

Nucleus area (μm2) Float

Nucleus perimeter (μm) Float

Nucleus roundness Float

Each type of feature is comprised of three Boolean variables and two float
variables. These Boolean variables were identified by the pathology
software based on the float values of Nucleus Intensity and Cytoplasm
Intensity of each biomarker. Moreover, five different morphology features
were extracted as the node attributes.
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According to Table 2, the variant models trained using these
feature subsets and all-feature sets achieved comparable Accuracy
values in both binary and ternary classifications. In the binary
classification, the DAPI features and morphological features made
more important contributions to the model performance com-
pared with other types of features (e.g., the Accuracy dropped by
0.035 and 0.025, respectively), which reflects the nucleus
differences in optical and morphology of the TME. Thus, the
inclusion of these two types of features helped to better
distinguish the long-term from short-term patients. In the case
of ternary classification, we can see that the GNN models trained
without the DAPI and morphology features achieved the lowest

Accuracy, which is consistent with the observation in the binary
classification. In summary, our proposed GNN model can
effectively learn distinguishable spatial features from the TME
and further enhance the performance of prognosis stratification
by combining the DAPI and morphology features.

Survival analysis and performance comparison with the TNM
staging system
To further investigate the prognostic values and clinical impor-
tance of the predictions produced by CGSignature, we conducted
the Kaplan–Meier survival analysis using the patient-level results

Fig. 2 Model performance of four GNNs on fivefold cross-validation. a, b show the Boxplots of performance metrics of Accuracy, F1-score,
and MCC on fivefold cross-validation. c, d illustrate the ROCs of GINTopK binary- and ternary models on fivefold cross-validation. In the
boxplot, the center line marks the mid-point of the data; the top and bottom lines show the maximum and minimum non-outlier data; the
upper and lower bounds of the box indicate the third quartile and first quartile of the data; the height of the notch indicates the 95%
confidence interval of the median point; small circles represent outliers.
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of both binary- and ternary classifications. For each patient, we
first collected the predicted results of all the subsampled Cell-
Graphs. Next, we calculated the class percentages of these
predictions, and took the class with the maximum percentage
as the final patient-level prediction of the corresponding patient.

Using these patient-level predicted results (‘digital grade’) of
binary classification (with predicted class labels of CGSignature= 0
and CGSignature= 1) and ternary classification (with predicted class
labels of CGSignature= 0, CGSignature= 1, and CGSignature= 2), we
conducted the survival analysis and plotted their Kaplan-Meier
curves, shown in Fig. 4. More specifically, when using the binary-
class predictions, the median survival time of patient test cohorts
predicted as CGSignature= 0 and CGSignature= 1 were about
18 months and 42 months, respectively. The HR was 0.217 (95%
CI: 0.108–0.438), the C-Index was 0.699 (95% CI: 0.637–0.762), and
the p value was <0.0001, indicating that CGSignature has statistically
significant prognostic power in separating the two groups of
patient cohorts. When using the ternary-class predictions, the
median survival time of patient cohorts predicted as CGSignature= 0
and CGSignature= 1 were ~7 months and 28 months, respectively.
The endpoint survival rate of CGSignature= 2 was ~92.3% (Fig. 4b).
The HR and C-Index were 0.204 (95% CI: 0.107–0.389) and 0.823
(95% CI: 0.748–0.899), respectively, with the p value < 0.0001.
We further conducted the univariate and multivariate Cox

regression analyses based on the predictions of CGSignature and the
AJCC 8th edition TNM stages. The results are shown in Table 3. In
the TNM staging system, there were eight groups of IA, IB, IIA, IIB,
IIIA, IIIB, IIIC, IVA, and IVB. As no patients of stage IV were included in

Fig. 3 Performance assessment of the GINTopK model in terms of ROC curves and confusion matrix on the independent test. The left
column shows the ROC curves of a binary- and c ternary classification, while the right column displays the confusion matrix of the model
predictions on the b binary- and d ternary classification tasks.

Table 2. Ablation studies of the major types of features used by the
GNN models in both binary and ternary classification.

Feature sets ACC of binary ACC of ternary

All-features 0.917 ± 0.012 0.719 ± 0.020

No-DAPI 0.882 ± 0.022 0.710 ± 0.018

No-PD-L1 0.921 ± 0.014 0.718 ± 0.006

No-CD68 0.911 ± 0.011 0.717 ± 0.010

No-FOXP3 0.918 ± 0.017 0.719 ± 0.016

No-CD8 0.910 ± 0.006 0.732 ± 0.023

No-Pan-CK 0.927 ± 0.023 0.714 ± 0.016

No-morphology 0.892 ± 0.009 0.706 ± 0.021

The relative importance and contribution of the features were measured
by the accuracy change compared with that of the all-feature model.
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Fig. 4 Kaplan–Meier survival analysis of patient overall survival based on the “digital grade” (patient-level predictions) produced by
CGSignature. a Kaplan–Meier survival analysis results based on the binary-classification. b Kaplan–Meier survival analysis results based on the
ternary classification.
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the binary-class test cohort and only one patient of stage IV was
included in the ternary-class test cohort, we excluded the patients
of stage IV and those without OS information. Finally, 51 patients
(including 20 uncategorized patients) and 35 patients were
retained for binary- and ternary-class survival analysis, respec-
tively. The detailed statistical information of the testing cohorts
can be found in Supplementary Table 2.
To make a fair comparison, three specific criteria were adopted

to aggregate the TNM stages into TNM-2 (I, II vs. III), TNM-3 (I vs. II
vs. III), and TNM-6 (I vs. IIA vs. IIB vs. IIIA vs. IIIB vs. IIIC). The survival
analysis results are provided in Table 3 and Figs. S4–S9. According
to the univariate analysis results shown in Table 3 and
Supplementary Fig. 4, the C-Index of the binary-class CGSignature

was 0.699 (p value < 0.0001), outperforming TNM-2 with an
increase of 0.04. We further combined the TNM-2 with binary-
class CGSignature for survival analysis (Supplementary Fig. 6), which
achieved the highest C-Index of 0.748 (p value < 0.0001), which
was higher than TNM-6 by 0.034 (Supplementary Fig. 5). In
ternary-class univariate Cox regression analysis, we compared the
results of TNM-3, TNM-6, and the ternary-class CGSignature. More
specifically, C-Index of the ternary CGSignature was 0.823 (p value <
0.0001, Fig. 4b), which was superior to the TNM-3 (Supplementary
Fig. 8) and TNM-6 (Supplementary Fig. 9) with an increase of 0.191
and 0.142, respectively. Results of multivariate Cox regression
analyses on both binary- and ternary-class test cohorts indicate
that our proposed CGSignature (i.e., the only one with p value < 0.05)
can serve as an independent risk factor compared with other
factors derived from TNM stages (all had p value > 0.05).
Univariate and multivariate analyses demonstrate the CGSignature

is capable of discriminating and stratifying gastric cancer patients
into groups of different prognoses better than the TNM staging
system. Moreover, we note that the prognostic power can be even
further enhanced by integrating the CGSignature predictions and the
TNM stages for survival analysis, such as the CGSignature+ TNM− 2
in Table 3 and Supplementary Fig. 6.
To summarize, by combining the spatial information from the

mIHC images, CGSignature has demonstrated outstanding

performance in survival analysis and achieved a better or at least
comparable performance when compared with the TNM staging
system. The results suggest that effective prognostic features can
indeed be captured by CGSignature, which suggests a powerful
method complementary to the current TNM staging system.

Framelet decomposition for cell-graph
To examine the capacity of Cell-Graph to capture useful spatial
features from mIHC images, we conducted a framelet decomposi-
tion on the whole mIHC images. The framelet transforms
(including framelet decomposition and reconstruction) have
proved an important tool for distilling multi-resolution information
in low-pass and high-passes from the graph data33–37.
We extracted low-pass and high-pass information of six types of

features, corresponding to six different biomarkers DAPI, PAN-CK,
CD8, CD68, FOXP3, and PD-L1. Tables S3–S11 show the low-pass
and high-pass coefficients of the framelet decomposition on mIHC
images of short-term, medium-term, and long-term survivors on
the entire mIHC images. For the selected samples, no significant
differences were observed from the low-pass channel. However,
major differences can be observed from the high-pass channel on
the selected samples. More specifically, remarkable signal
differences can be seen from the high-pass channel-1 and
channel-2 in terms of the features of Cell Area and Nucleus
Perimeter (summarized in Supplementary Tables 6–11). These
differences highlight the important prognostic value of cell
morphological information of the TME, which is consistent with
the prognostic value of different types of cell features.

DISCUSSION
In this study, we developed a GNN-based approach, Cell-Graph
Signature (CGSignature), which is capable of predicting the prognosis
of gastric cancer patients from Cell-Graphs extracted from mIHC
images. Extensive benchmarking tests on multi-run model
training, fivefold cross-validation, and independent tests

Table 3. Univariate and multivariable Cox regression analysis of overall survival (Cox proportional hazards regression model) based on the
predictions of binary- and ternary classification by CGSignature.

Univariate analysis Multivariate analysis

Variable C-Index1 (95% CI) HR2 (95% CI) p value C-Index1 (95% CI) HR2 (95% CI) p value

Binary-class
test cohort

pT - - - 0.363

pN - - - 0.378

TNM-23 0.659 (0.577–0.740) 5.276 (2.147–12.966) <1e-4*** 0.998

TNM-34 - - - 0.998

TNM-65 0.714 (0.623–0.805) 1.873 (1.388–2.529) 8.1e-4*** 0.135

CGSignature
5 0.699 (0.637–0.762) 0.217 (0.108–0.438) <1e-4*** 0.804 (0.728–0.881) 0.037 (0.003–0.422) 0.007**

CGSignature + TNM-
2

0.740 (0.661–0.819) 2.412 (1.650–3.525) <1e-4*** 0.146

Ternary-class
test cohort

pT - - - 0.097

pN - - - 0.053

TNM-23 - - - 0.998

TNM-34 0.632 (0.510–0.753) 3.169 (1.335–7.522) 0.019* 0.998

TNM-66 0.681 (0.535–0.827) 1.708 (1.212–2.407) 0.028* 0.066

CGSignature
7 0.823 (0.748–0.899) 0.204 (0.107–0.389) <1e-4*** 0.883 (0.820–0.947) 0.190 (0.087–0.414) 2.94e-05***

1C-Index: concordance index; 2HR: Hazard ratio; 3I+II vs. III; 4I vs. II vs. III; 5I, IIA, IIB, IIIA, IIIB, IIIC; 6Low vs. high; 7Low vs. medium vs. High.
The classification results were compared with Harrell’s Concordance Index (C-Index), Hazard Ratio (HR), and p value. For the convenience of survival analysis
comparison, the variables of TNM stages were regrouped into TNM-2 (I+II vs. III), TNM-3 (I vs. II vs. III), and TNM-6 (I, IIA, IIB, IIIA, IIIB, IIIC), while “CGSignature+TNM-
2" denotes a four-class variable by combining the classes of TNM-2 and binary-class CGSignature.
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demonstrate that CGSignature can accurately predict the prognosis
on both binary- and ternary-class classification tasks. We designed
and compared the performance of four different GNN architec-
tures, including GINSag, GCNTopK, GCNSag, and GINTopK. As a
result, GINTopK achieved the best performance when compared
with the other three GNN architectures (GINSag, GCNTopK, and
GCNSag) on the same data sets. Feature ablation studies showed
that the nucleus optical feature (DAPI) and cell morphological
features are essential node features and contributed most to the
prognosis prediction, which indicates the potential pivotal roles of
nuclear and cell morphology in gastric cancer progression. In
survival analysis, CGSignature clearly outperformed the AJCC 8th
TNM staging system in terms of C-Index (0.823, 95% CI:
0.748–0.899) using the ternary-classification model. In particular,
we notice that CGSignature achieved better or comparable
performance with the TNM staging system when using the
binary-classification model. These results of survival analysis
indicate that CGSignature provides more prognostic power than
the existing TNM staging system and can help pinpoint patients
who may benefit from more tailored and personalized therapy.
Moreover, wavelet decomposition results suggest that Cell-Graphs
can indeed capture certain important spatial features informative
for classifying patient survival. Although many previous studies of
prognosis prediction also achieved promising results, the majority
of such studies were only limited to a specific subtype or stage of
cancer. Nevertheless, in this study, we show that the proposed
CGSignature method is applicable to gastric cancer patients of all
subtypes across all TNM stages. Moreover, CGSignature achieved
better performance when stratifying test patient cohorts into
different groups of prognosis, which has proven a powerful
prognostic predictor for gastric cancer.
One caveat of the current study is that we could only obtain

mIHC image data for a limited number of patients, and
accordingly, the performance of the CGSignature was only bench-
marked on a gastric cancer patient dataset with a limited size. In
addition, we were not able to collect a sufficient number of stage
IV patients, and thus the model performance needs further
verification and improvement when more data become available
in the future. Thus, in future studies, it would be important to
evaluate the performance of GNNs based on Cell-Graph data from
mIHC images in much larger and/or multi-center patient cohorts,
as well as additional tumor types (in addition to gastric cancer),
when more data become available. Exploration of the prognostic
value of the CGSignature method on datasets of other cancer types
would surely be needed to verify its utility and capability.
Additionally, future extension of the capability of CGSignature by
using whole-slide images and other biomarkers in mIHC/mIF
staining, for example, holds great potential for a more compre-
hensive analysis of the TME17; this will in turn serve to better
inform the training of more accurate GNN models. The continuing
development of cutting-edge, robust, and broadly applicable Cell-
Graph-based biomarker discovery algorithms is valuable and
desirable to better inform and transform the medical care of
cancer patients.

METHODS
Dataset
The gastric cancer samples were collected and stained with mIHC
technique and prepared as two batches of tissue microarray38, in which
all the samples were arranged in the matrix configuration. Then the two
tissue microarrays were scanned by a digital microscope (brand: Vectra
Polaris) under the magnification of ×40 with each pixel representing
0.5 μm. Totally, 181 mIHC images of cancer tissues were curated as the
initial datasets. After excluding patients whose follow-up data were not
available, 172 mIHC images were retained and used for model training and
benchmarking. The OS time of the patients ranges from 0 to 88 months, as
shown in Fig. 1f. Detailed clinical characteristics and a statistical summary

of the cohort are provided in Supplementary Table 1. Fifty-nine patients
were still alive at the time of the last follow-up. All the images were stained
using multiplexed immunohistochemistry of seven colors and reagents to
identify the specific cell types. In this study, cells were stained with
antibodies of Pan-CK, Foxp3, CD8, PD-L1, CD68, CD163, and DAPI. Detailed
information on these antibodies can be found in Supplementary Table 12.
The dataset was randomly partitioned into the training, validation, and test
subsets with the ratios of 0.64, 0.16, and 0.20 at the patient level. In
addition, datasets for fivefold cross-validation were also prepared. The
gastric cancer patient cohort was obtained from Shanghai Jiao Tong
University, Ruijin Hospital. This study was approved by the Ethics
Committee of Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine (ID: 2021-194). Written informed consent was obtained from all
patients.

Label generation
In this study, the survival prediction was formulated as a classification
problem in the form of either binary- or ternary classification. To explore
the prognostic value of the Cell-Graphs extracted from the gastric cancer
TME, the survival time of the cohort was categorized into two and three
classes, and used as labels for training binary- and ternary-classification
models based on GNNs. In binary classification, 82 patients with a survival
time of fewer than 24 months were annotated as short-term while 70
patients with a survival time of longer than 48 months were annotated as
long-term. 20 patients with survival times between 24 and 48 months were
removed from the training data set, and denoted as uncategorized
patients. For the ternary classification, 12 months and 50 months were,
respectively, used as the thresholds to divide patients into short-, medium-,
and long-term, with the corresponding patient numbers of 51, 60, and 61,
respectively.

Cell segmentation
After digitization, the mIHC images were pre-processed using the
pathology software HALO (Indica Labs) for cell segmentation and feature
extraction. The extracted information was subsequently saved as a CSV file
in which each row represents the features of a cell (as shown in Table 1),
including the cell locations, optical features of stained cells, and
morphology features. Thirty-five such features were selected as the node
features for each cell. Detailed information can be found in the “Node
attributes” section.

Sub-sampling
Each mIHC staining image contains around 7000~13,000 cells. In particular,
we conducted the sub-sampling when generating the Cell-Graphs. By
treating each cell as a node in the Cell-Graph, we limited the graph size to
no more than 100 nodes. A non-overlap sliding window was then applied
to extract the local regions that contained ~100 cells from the mIHC
images. As a result, we obtained 16951 Cell-Graphs, which would be used
for GNN model training and testing. The extracted Cell-Graphs from one
mIHC image was annotated with the same label as that of the
corresponding mIHC image. The performance of the GNN models was
firstly assessed at the Cell-Graph level; After that, the prediction outputs of
all Cell-Graphs were aggregated to generate the votes for the final
prediction outcome at the patient level.

Cell-Graph construction
According to the previous study on the TME19, we assumed that the
maximum effective distance was 20 μm between immune and tumor cells
[], which is equivalent to 40 pixels in the magnification of this study. We
calculated the Euclidean distance between any pair of cells, and used this
distance to define the edge weight between them according to the
equations (1) and (2) shown below.
For the ith and jth cells with Cartesian coordinates (xi, yi) and (xj, yj)

(which use pixel as the unit) in the same mIHC image, their Euclidean
distance can be calculated as follows:

dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
: (1)

The weight between the ith and jth cells is assigned as follows:

wi;j :¼
40=dði; jÞ; dði; jÞ � 40 pixel ;

0; otherwise :

�
(2)
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where 0 denotes that there is no interaction between the cell i and j. After
sub-sampling, a number of Cell-Graphs (up to 100 nodes) were extracted
and annotated, with the weight (2) of the edge between a given pair
of cells.

Node attributes
GNN is a powerful deep learning approach that can efficiently extract
features from graph-structured data. In the present study, we focused on
distilling five morphology features and 30 optical features generated by six
staining biomarkers as the attributes of the node for each cell, including
DAPI, PAN-CK, CD8, CD68, FOXP3, and PD-L1. The five morphology features
include cell area, cytoplasm area, nucleus area, nucleus perimeter, and
nucleus roundness. The optical features of each biomarker are comprised
of the positive, positive nucleus, positive cytoplasm, nucleus intensity, and
cytoplasm intensity. As a result, a total of 35 features were extracted for
each cell. The detailed list of the features and their data types is listed in
Table 1. All the features were linearly normalized to the range of [0, 1] prior
to training the GNN models.

Architecture of the designed GNNs
Graph-structured data are usually represented in the form of (xi, Ai), where
xi denotes the feature of the node for the ith graph sample while Ai
represents its adjacency matrix. A GNN has a similar network architecture
to that of the traditional convolutional neural network. To address the
classification task in this study, we designed the GNN model architecture
of CGSignature, which includes four computational units, each with two-
layer graph convolution plus one-layer graph pooling followed by three-
layer fully connected layers (MLP), before generating the prediction
output (Fig. 1).
The graph convolutional layer is responsible for extracting an array of

features from the last output array, which mimics the role of CNN
convolution. It changes the dimension d of the feature array but does not
change the number of nodes Ni. The output of graph convolutional layers
is passed on to the graph pooling which compresses the node number by
a fractional proportion while in this process usually the key structural
information and node features are preserved. The MLP readout will then
output the label class. Graph convolution communicates the structural
information of the data to the deep network model via the message
passing between the neighborhood nodes, which contributes as the key to
successfully capturing the geometric feature of the data. In this work, we
adopted the GINConv23 as the graph convolution and TopKPool22 as the
graph pooling method, respectively. The convolutional layer for GIN can be
aggregated by

Xoutput ¼ MLP Aþ ð1þ ϵÞ � Ið Þ � Xin
� �

; (3)

where Xin 2 RN ´ d is the d-feature matrix on the nodes of the graph with N
nodes for the input layer, and A 2 RN ´N is the adjacency matrix of the
graph. W is the filter weight parameter matrix with the size of m × n to be
learned by the GNNs, where n is the number of hidden neurons. GINConv
is a special neural message passing operator for GNN aggregation.
Our GNN model was trained by connecting multiple layers of graph

convolution activated by a ReLU (Rectifier Linear Unit)39. The graph
pooling, which is used between two consecutive layers, serves to reduce
the dimensionality of the feature map so that the network has appropriate
amounts of parameters to circumvent over-fitting40. Here we used
TopKPooling22 for graph pooling.
There exist different types of GNN models in the machine learning

literature41. Specifically, we tested the performance of the GINConv
+TopKPool model with the other three popular GNN models, i.e., GINConv
+SAGPool, GCNConv+TopKPool, and GCNConv+SAGPool. The results
showed that the chosen model (GINConv+TopKPool) achieved the highest
AUROC value and stable training performance. Refer to Figure 2a, b for a
detailed illustration of the results.

Hyperparameter optimization
We fine-tuned the hyperparameters for the GNN models with the
assistance of HyperOPT27 and Ray28, where the network architecture and
batch size were fixed. The hyperparameters were searched within the
range as shown in Table 4. More specifically, the best-performing model
used the following hyperparameters: learning rate 5 × 10−4, weight decay
rate 10−4, number of hidden neurons 512, pooling ratio 0.5, number of
hidden layers 4, batch size 256, and maximal number of epochs 200 with
the early stopping strategy.

Prediction aggregation to assess the patient-level
performance
The model performance was evaluated at the Cell-Graph level. After the
model was optimized, the patient-level performance of the model was
calculated by aggregating the prediction results produced by the
optimized model. In particular, we fed Cell-Graphs of the test dataset to
the optimal model to predict the label for each of them. Since hundreds of
Cell-Graphs were subsampled from the mIHC images of the patient,
hundreds of the predictions were also made for a given patient. To
generate the patient-level prediction for a patient, we calculated the
proportion of Cell-Graphs belonging to a specific class, and then classified
the patient as the group that received the largest proportion of the Cell-
Graphs.

Framelet analysis to facilitate interpretation of the model
prediction
From the mathematical perspective, the framelet system33–35,37 refers to a
set of functions that provide a multi-scale representation of graph-
structured data, which has a similar property to the traditional wavelets in
the Euclidean space. Using the framelet transforms, we can decompose the
graph features into low-pass and high-pass frequencies as the extracted
features to train network models, via the framelet-based graph
convolution.
Suppose fðλℓ; uℓÞgNj¼1 are the pairs of the eigenvalue and eigenvector for

the graph Laplacian L of a graph G with N nodes. The (undecimated)
framelets at the scale level j= 1,…, J for graph G with the above scaling
functions can be defined, for n= 1,…, r, as follows:

φj;pðvÞ ¼
PN
ℓ¼1

α̂ λℓ
2j

� �
uℓðpÞuℓðvÞ

ψn
j;pðvÞ ¼

PN
ℓ¼1

d
βðnÞ λℓ

2j

� �
uℓðpÞuℓðvÞ;

(4)

where φj,p and ψr
j;p are the low-pass and high-pass framelets translated at

the graph node p. In the framelet analysis above, we have shown the low-
pass and high-pass framelet coefficients vj,p and wr

j;p for a signal f on graph
G. They are the projections 〈φj,p, f〉 and hψr

j;p; f i of the graph signal onto
framelets at the scale j and node p. The construction of the framelet system
and the framelet transforms rely on the filter bank (a collection of filters) to
calculate framelet coefficients. Here we used the filter bank of the Haar-
type filters for the experiments33,37. The dilation factor is 2j with the dilation
(base) 2 for a natural number j, where j indicates the scale level and 2j is
the scale of the framelet. A bigger value of j indicates that the
corresponding framelet coefficient carries more detailed information
about the graph signal.
The above framelet system is a tight frame, which provides an exact

representation of any L2 function on the graph. This guarantees that the
framelet coefficients have a unique representation of a graph signal.
Accordingly, the framelet coefficients can fully reflect the feature of the
signal. Moreover, the coefficients decompose the signal at multi scales and
can be used to observe whether a particular scale or the high-pass or low-
pass frequencies contain a more important feature of the data.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Table 4. Search space for hyperparameters of GNN models.

Hyperparameter Searching space

Learning rate 10−4, 5 × 10−4, 10−3

Weight decay (L2) 10−4, 5 × 10−4, 10−3

Hidden units 256, 512

Pooling ratio 0.5, 0.65, 0.75
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