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Abstract: A relatively new aspect of HIV-1 biology is the ability of the virus to infect cells 

by direct cellular contacts across a specialized structure, the virological synapse. This 

process was recently described through live cell imaging. Together with the accumulated 

knowledge on cellular and molecular structures involved in cell-to-cell transmission of 

HIV-1, the visualization of the virological synapse in video-microscopy has brought 

exciting new hypotheses on its underlying mechanisms. This review will recapitulate 

current knowledge with a particular emphasis on the questions live microscopy has raised.  
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1. Introduction: HIV-1 cell-to-cell transfer 

Most viruses infect new target cells, and new hosts, by means of cell-free viral particles. These 

particles can efficiently diffuse in the extra-cellular space and spread infection at a spatial and temporal 

distance. However, diffusion of viral particles lowers their concentration and increases the length of 

time between viral assembly and productive infection. Free virus spread thus requires both a sufficient 

half-life of the viral particle and sufficient infectivity. On the other hand, the immune system is built 

on a large network of cells in constant interactions with one another and migrating to almost every 

tissue. Some lymphotropic viruses like HIV-1 have taken advantage of this, developing means of 

transfer directly between cells. HIV-1 cell-to-cell transfer was noticed in the early 90s and it was 

immediately associated with a higher infectivity potential than cell-free virus in vitro [1-3]. Later 
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studies confirmed the high efficiency of cell-to-cell transfer [4-7]. The observation that viral 

replication is impaired in shaken lymphocyte cultures strongly suggests that virus propagation is in 

large part dependent on cellular contacts [8]. Several observations argue for the importance of HIV-1 

cell-to-cell transfer in vivo. In chronic infection, HIV-1 replication takes place mainly in lymphoid 

tissue, densely populated by T lymphocytes. 90% of infected cells at this stage are CD4+ T cells [9]. 

The mean number of integrated proviruses in splenic T cells is 3.2 [10], suggesting that most infected 

cells have received high virus concentrations. In addition, different viral quasi-species can be found in 

separated germinal centers of the same spleen, in different organs and in different cell types [11,12]. 

Viral replication therefore takes place mainly in cell-rich tissues where it seems to be locally 

constrained and highly efficient. This is more compatible with a cell-associated transmission rather 

than a systemic spread by free virus. 

Several means of cell-associated transfer of HIV-1 have been discovered involving different cellular 

contexts. Uninfected cells can capture HIV-1 virions and transfer them to interacting lymphocytes  

[13-16]. The most spectacular case of this type is the trans-infection of T lymphocytes by uninfected 

dendritic cells (DCs) [14,17,18]. Monocyte derived DCs can capture HIV-1 virions and store them in 

plasma membrane invaginations without becoming infected [17,19,20]. Upon contact with a T cell, 

captured HIV-1 is relocalised to the site of formation of the immunological synapse (IS), and 

transferred to the T cell [21]. The hijacking of the IS by the virus to spread was termed the infectious 

synapse. 

This review focuses on HIV-1 transfer from infected cells. Several modes of cell-to-cell transfer 

have been described and visualized by live imaging. The infected cells can contact and transfer virus to 

target through an extensive junction, the virological synapse [4,22,23], through filopodial bridges [24] 

or through nanotubes [25]. The precise contribution of these different modes of contact in viral spread 

in vivo is not known. In vitro however, the predominant form of contact is the virological 

synapse [7,23]. 

2. Structure of HIV virological synapse 

Jolly et al. first described the HIV-1 virological synapse (VS) as the polarization of viral material 

between an infected Jurkat T cell and CD4+ primary targets [4]. Upon contact between the two cells, a 

rapid recruitment to the cell–cell contact surface of CD4, CCR5 or CXCR4, talin, actin and LFA-1 on 

the target cell is observed. Simultaneously, Env and Gag are recruited to the site of cell contact in the 

donor cell together with both lipid raft marker such as GM1, CD59, Thy1 and tetraspanins (CD63, 

CD81 and CD9) [23,26]. In T lymphocytes, HIV-1 budding takes place in cholesterol enriched lipid 

rafts [27] but also in tetraspanin enriched micro-domains [28]. Interestingly, the tetraspanins are 

modulated by HIV-1 and seem to act in preventing cell-cell fusion during cell-to-cell transfer [29,30]. 

Both tetraspanins and lipid rafts are polarized to the VS, indicating that budding zones are 

accumulating at the contact site. Accordingly, electron micrographs of the VS show both mature and 

budding virions at the contact site [22,23,31]. The VS may adopt a ring or button shaped structure, 

forming an interface between the infected and the target cell. Moreover, we observed both in primary 

cell and in Jurkat cells, that one infected cell may form synapses with up to five targets, in a structure 

we called a polysynapse [23].  
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3. Live transfer 

Recently, VS formation as well as virus transfer were observed in live cells by time lapse video-

microscopy [22,23], using GFP tagged viruses to visualize Gag movements. To minimize the 

perturbation of viral replication, the GFP was inserted between the matrix and capsid (CA), with 

cleavage sequences for the viral protease on both sides of the GFP or only between the GFP and 

CA [7,32]. These viruses, although impaired in their fitness, can be rescued by cotransfection of a 

GFP-free provirus. In addition, the localisation of Gag-GFP is similar to natural Gag in infected 

cells [7,32]. In infected HeLa [33] or T cells (Jurkat or primary) [23], Gag is visible as patches at the 

plasma membrane. Hubner et al. described the participation of these Gag patches to the formation of 

the synapse by lateral movements [22]. Interestingly, patches located around formed synapses tend to 

disappear, suggesting that membrane domains close to the synapse are preferentially recruited [22]. 

While Hubner and al. describe a button shaped synapse resembling the cSMAC [22], the synapses we 

observed were often circular and more evocative of the pSMAC of the IS [23]. A diversity of structure, 

including ring or button shapes, was similarly described for the IS and HTLV-1 VS [34,35]. Live 

imaging shows that the VS can alternate between ring or disk shapes (Figure 1), suggesting that the VS 

is relatively flexible. Proximal Gag patches behave thus as independent membrane domains that are 

attracted to the growing synapse. When they contact the synapse, they can either continue their lateral 

movements or are retained and merge with already accumulated patches. Although it is not always the 

case, the synapses can form relatively rapidly after contact, in approximately 15 minutes [7,23,31]. We 

showed that this Gag accumulation can occur at several contact sites simultaneously, and leads to 

efficient transfer to several target cells [23]. Together with the flexibility of the VS, this questions the 

necessity of the full polarization of infected cells for HIV transfer. Further work is required to 

determine whether one single infected donor cell can become multipolar, or whether the polarization is 

sequential toward each target cell. Viruses are known to subvert preexisting cellular processes at their 

advantage. “Immunological polysynapses” may thus also be operative. Indeed, CD4 T lymphocytes 

may form multiple IS with APCs, then polarize toward the highest antigen concentration [36]. In this 

context, the T cell response will probably be orientated by the polarization, but signal integration from 

multiple IS may play an important role in both the quality and the strength of the response. 

Additionally, cytotoxic T lymphocytes are able to mobilize lytic granules toward several targets 

simultaneously, eventually killing them [37-39]. Inter-cellular communication through multiple 

contacts therefore may represent an underestimated phenomenon [40]. 

The precise nature of the Gag patches in T cells, in the absence of intercellular contacts has not been 

fully explored. They might represent budded viruses bound to the cell surface, as observed by 

correlative electronic microscopy images of the zones of contact between infected cells and target 

cells [23]. These structures could also embed cellular proteins, or components of the extracellular 

matrix, as recently described for the biofilm-like structures induced by HTLV-1 [41]. The capture of 

large Gag-containing aggregates by the target cells, as observed by video-microscopy  [22], suggests 

that virions may remain associated together after transfer. However, aggregated virions are not usually 

found in electron micrographs of the plasma membrane of infected cells. A notable exception is 

represented by the effect of tetherin. This interferon (IFN)-induced protein promotes the aggregation of 

mature virions at the cell membrane, impairing their release [42-44]. It is antagonized by the HIV-1 
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protein Vpu. In cells infected with Vpu-defective HIV-1, the virus is found in large aggregates at the 

cell surface. These large viral aggregates are transferred to targets during intercellular contacts, but 

then display reduced infectivity [45]. 

Figure 1. (A) The flexible structure of HIV-1 VS. Live imaging of Gag-GFP (green) 

infected cell expressing centrin-RFP (red dot), conjugated with a target expressing actin-

RFP (red). Time from mixing of infected cells with targets is indicated. See complete 

movie at http://www.pasteur.fr/ip/portal/action/WebdriveActionEvent/oid/01s-00003u-

006. (B) Models of VS formation. Mature virions can “surf” on the infected cell surface 

(left), or viral budding platforms can polarize toward the target (right). (c) Dynamic 

observation the IS and the VS reveals different behaviour of the two structures. This 

schematic view of the interface between interacting cells shows intercellular adhesion 

zones (pSMAC) in red, and mobile elements (TCR clusters in the IS, viral clusters in the 

VS) in green. TCR micro-clusters appear in the pSMAC of the IS then migrate 

centripetally to the cSMAC (left). Preformed surface viral material migrates 

uncoordinatedly toward the center of the VS (right). 

 
 

Similar Gag patches, corresponding to multimerized Gag proteins, are observed in fibroblastic cell 

lines [33,46]. Both membrane-bound and cytosolic Gag proteins are recruited to these patches. While 

Gag multimerizes relatively rapidly (virion formation occurs in 5-9 min), assembly sites form patches 

at the plasma membrane that can remain visible for 2 hours [47]. This is probably due to the limiting 

step of membrane fission, controlling viral egress [33]. A plausible model drawn from the live 

microscopy experiments is that Gag accumulates in budding platforms under the plasma membrane of 

infected cells [33,47]. Upon contact with a target cell and conjugate formation, proximal budding 

platforms are actively mobilized toward the contact zone, where they are stabilized by Env/CD4 



Viruses 2010, 2                            

 

 

1670

interactions. Indeed, in live experiments, conjugates between infected and target cells can persist for at 

least two hours [22,31]. 

It is also noteworthy that live imaging revealed important differences between immunological and 

virological synapses. While the microclusters of TCR in the IS move unidirectionally toward the center 

of the synapse [48], Gag patches movements are more erratic and they can come out of the synapse 

(Figure 1c) [22]. This suggests that whereas the centripetal actomyosin flow is the main drive of the 

TCR microclusters, Gag patches are mobilized mainly through other mechanisms. A schematic 

diagram comparing components of the VS and the IS can be found in other reviews  [49]. 

 Live imaging was also used to describe HIV-1 transfer from infected monocyte derived 

macrophages (MDMs) to target cells [50]. In infected primary macrophages, HIV-1 virions can be 

found in large tetraspanin-enriched endosome-like structures [50-52] that are connected to the plasma 

membrane [51,53,54]. The follow-up of Gag-GFP showed that the protein is first targeted to the 

plasma membrane and then can be eventually internalized by invagination [55]. Upon contact with T 

cells or other macrophages, infected MDMs can efficiently relocalize the accumulated virus toward the 

forming synapse, allowing its transfer to the target [31,50,56]. The mechanism of VS formation, as 

revealed by live imaging, therefore seems very similar in macrophages and T cells: tetraspanin-

enriched budding zones are relocalized rapidly at the site of contact with the target, although these 

budding zones are invaginated in macrophages. Intriguingly however, Gousset et al. showed that VS 

formation by infected MDMs can be Env independent, conversely with what is seen in infected T 

cells [4,50]. Polarization and transfer of viral material from infected MDMs to CD4 negative cells was 

independently observed [57]. This suggests that the signals provided by the intercellular contacts 

between MDMs and T cells may be stronger and sufficient to promote synapse formation, whereas 

between two T cells additional adhesion forces or signals, provided by the envelope may be required. 

The facilitating role of adhesion molecules such as LFA-1 in HIV-1 T cell to T cell transfer is 

established [23,58-61]. Their role could be even greater in MDM to T cell HIV-1 transfer. A study also 

documented viral spread from infected monocyte derived dendritic cells (MDCs) to T cells, which 

seems similar to macrophage transfer to T cells [62]. 

Live imaging also showed the transfer of HIV through filopodia and nanotubes. Nanotubes can be 

defined as extensions of the VS. They are Env dependant fine membrane cytonemes which connect the 

plasma membrane of infected and target T cells without necessarily connecting their cytoplasm [25]. 

As in the VS, Gag, Env and CD4 are accumulated in the contact zone between the projections and viral 

particle are transferred to the target from this site [25]. Furthermore, nanotubes can be detected after 

separation of infected and target cells [25]. Thus they might represent “stretched synapses” which 

allow prolonged contact even if the cells are migrating. Viral transfer through filopodia uses apparently 

a somewhat different mechanism. Plasma membrane projections, emitted by the target cell, attach to 

the infected cell through Env-CD4 interaction [24]. Viruses then surf along the filopodia toward the 

body of the target cell using an actin-based retrograde flow of receptors [24]. Spontaneous filopodia 

formation seems moderate in T cells [23,63]. However DCs and macrophages frequently form high 

numbers of filopodia [64,65] and this mean of viral spread could be an important process for HIV 

capture by these cells. Furthermore, HIV-1 infection reduces cellular motility [63], thus the ability of 

targets to contact infected cells at a distance through filopodia may be important for the spread of the 

virus in vivo.  



Viruses 2010, 2                            

 

 

1671

4. Mechanisms of synapse formation: kinases, polarized budding and Env targeting. 

Relocalization of viral proteins, adhesion molecules and cellular receptors is relatively rapid, with 

40% of the conjugates showing polarized synapses in 10 min [4]. This rapid recruitment suggests an 

active transport of receptors and viral proteins rather than a passive diffusion. The active mobilization 

of viral proteins is confirmed by the implication, in donor cells, of a signaling molecule, the ZAP-70 

kinase, [66]. ZAP-70 is a central element in TCR signal transduction, required for actin remodeling 

during the formation of the immune synapse [67,68]. Our laboratory showed that a functional ZAP-70 

is required in donor cells for polarization of viral material at the synapse and subsequent infection of 

targets. The exact role of kinase signals during viral cell-to-cell transfer is not fully understood. 

Whether ZAP-70 regulates the dynamics of the actin and microtubule skeleton [7,23,69], or exerts 

additional effects during synapse formation and virus transfer, will require further studies.  

The first studies on the mechanism of cell associated transfer of HIV proposed a polarized secretion 

or budding of virions in MOLT T cells, stimulated by the interaction with plastic or epithelial 

cells [70]. Colchicine, a microtubule cytoskeleton inhibitor, induced the formation of an actin rich 

pseudopod-like structure where HIV-1 budding was concentrated [71]. Since then, polarized budding 

has been observed in monocytes [72] and in T cell lines at the uropod of motile cells [7]. A 

spontaneous polarization of viral material has also been described in infected Jurkat cells, which is 

dependent on intact actin and microtubule network [4,69,73]. The VS formation could then be seen as 

a relocation of this polarized budding zone at the site of contact with the target cell. As mentioned 

above, the IS induces the formation of membrane domains, which could favor the concentration of 

budding zones. The formation of these domains during VS transfer has not been explored yet. 

Interestingly, the polarization of budding is associated with the sorting YXXL membrane proximal 

motif of gp41 [73]. This motif is responsible for Env cycling between the plasma membrane and the 

Trans-Golgi network [74] and is required for optimal infectivity [75,76]. In polarized epithelial cells, 

Env targeting directs HIV-1 budding to the baso-lateral membrane [77]. The Env/CD4 interaction is 

essential for the formation of the synapse [23]. Env could be targeted to the contact site, maintained 

there by its interaction with CD4 on the target, and attract Gag to form new virions. This mechanism 

has recently been described for cell-to-cell transfer of MLV in epithelial cells in which the cytoplasmic 

domain of Env directs viral assembly toward intercellular contact zones [78].  

Tetraspanins are incorporated in HIV-1 virions [79] and enriched in budding areas [28,80,81]. They 

are linked to the actin cytoskeleton via EWI-mediated binding to ERM proteins [82]. ERM proteins 

(Ezrin-Radixin-Moesin) provide a dynamic link between plasma membrane proteins and the actin 

cytoskeleton [83]. Through their ability to interact with transmembrane proteins, phospholipids, 

membrane-associated cytoplasmic proteins and the cytoskeleton, ERMs organize complex membrane 

domains [84]. During IS formation, CD45 is excluded from the SMACs through Moesin mediated 

translocation [85] and Ezrin appears to mediate ZAP-70 recruitment to the synapse [86]. All together, 

this suggests an attractive potential model in which HIV-1 budding zones may be defined through 

tetraspanin and ERM proteins regulation.  

Formation of VS is thus a complex process, regulated through numerous viral and cellular 

interactions. 
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5. Virological synapse and transfer efficiency 

The assembly of a budding platform directly in contact with the target cell, the local production and 

transfer of fresh viruses, which are much more infectious than virions accumulating in the extracellular 

milieu, will enhance the efficiency of viral spread. Other mechanisms also enhance infectivity at the 

synapse. For instance, using cell-free viruses, it has been estimated than more than half of virions 

bound to target cells dissociate in 15 min [87]. The VS probably offers a stable framework, allowing 

the virus to remain in contact with the target cell for extended periods of time.  

HIV-1 transmission across VSs has raised a great interest because of the potential implications on viral 

pathogenesis and drug resistance. In a particular setting, this process was found to be resistant to 

neutralizing antibodies and to a coreceptor antagonist [7]. However coreceptor independent capture of 

virions by uninfected targets does not necessarily reflect the subsequent infection of targets. Thus, 

while the first step of cell-to-cell transfer is resistant to inhibitors [88], the productive infection of the 

target is not [89]. An early study found that cell-to-cell transfer is more resistant to neutralizing 

antibodies and to AZT than infection with cell-free virus [90]. However, more recently, Martin et al. 

showed that the two modes of productive infection are similarly sensitive to neutralizing antibodies or 

entry inhibitors [31]. According to them, pre-formation of the synapses did not significantly increase 

the resistance to inhibition [31]. Electron tomography of the VS revealed a porous structure, allowing 

for diffusion of soluble molecules [31]. By contrast, the structure of the HTLV-1 VS shows extensive, 

close apposition of the membranes of infected and target cells [91]. It is also noteworthy that HIV cell-

to-cell transfer may allow the virus to escape innate immunity. Indeed, type I IFN inhibits cell-to-cell 

transfer, but only partially, and less efficiently than infection by free viral particles [45,92]. Therefore, 

transfer across VSs seems to increase efficiency of infection, thereby inducing a partial resistance to 

antiretroviral molecules. 

6. Conclusion and Perspectives 

Live imaging allowed a direct real-time visualization of HIV-1 cell-to-cell transfer and 

demonstrated that the virus uses this very efficient mean to spread between cells. Multiple and 

complementary mechanisms of VS formation are probably operative. Assembly and budding may be 

promoted by intercellular contacts, but preassembled Gag patches are also “attracted” at the VS. Some 

cellular proteins involved in these processes have already been identified. Further work will be 

required to elucidate the full chain of molecular events controlling cell-to-cell transfer across the 

synapse. For example, ZAP-70 signaling is important for VS formation, but the other molecules 

involved, both upstream and downstream of ZAP-70, are still unknown. It will be also of particular 

interest to determine whether the constitution of polysynapses, involves specific mechanisms. Other 

modes of viral transfer through intercellular contacts include nanotube-like structures and filopodial 

bridges [24,25]. A dynamic visualization of the links that may exist between these various means of 

viral spread may also be obtained by live imaging. The study of HIV-1 synaptic transfer by video 

microscopy can be pushed further. In particular the site of viral fusion has not been convincingly 

demonstrated. Recent studies suggest that the virus does not fuse efficiently at the plasma membrane, 

but may have to be internalized first [93-95]. Using combinations of tagged proteins during synaptic 
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transfer may reveal whether virions are internalized or can fuse directly at the plasma membrane. The 

effect of neutralizing antibodies and other inhibitory molecules on viral transfer and/or productive 

infection could also be visualized in real-time imaging, and may prove useful to understand their mode 

of action. 

The next great challenge will be to analyze cell-to-cell viral transfer in vivo. In mucosal or lymphoid 

tissue of SIV infected monkeys, the virus infects clusters of cells, strongly suggesting that it is 

spreading through cellular contacts as described in vitro for HIV-1 [23]. However, virological transfer 

through synapses, filopodia or nanotubes remain to be observed in vivo. The IS is starting to be 

described at the molecular level, using two photon microscopy, in living mice [96]. The movement of 

viral particles, and the formation of VS, might also be soon visualized in animal models, using for 

instance humanized mice or monkey tissues [97-99]. Visualizing the spread of the virus during acute 

infection and AIDS progression in whole animals would be particularly interesting and could reveal 

the key mechanisms of the establishment of the infection and the immunodeficiency. 
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