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ABSTRACT

Background: Follicle-stimulating hormone (FSH), a gonadotropin secreted by the pituitary 
gland, is a representative secondary sex hormone and an important indicator of reproductive 
function. The effects of heavy metals such as lead, cadmium, and mercury on humans have 
been studied, but reports on their effects on sex hormone levels are lacking. Therefore, we 
investigated the relationship between heavy metal exposure and FSH levels in Korean men 
and postmenopausal women.
Methods: A total of 4,689 adults (2,763 men and 1,926 postmenopausal women aged 50 
years or over) who participated in the Second Korean National Environmental Health Survey 
(2012–2014) were included. We compared differences in serum FSH levels by demographic 
characteristics using the t-test and analysis of variance. Multiple linear regression analysis 
was used to determine the relationship between the blood levels of lead and mercury and the 
urine cadmium level, and serum FSH levels.
Results: On multiple linear regression analysis, lead exposure was positively associated 
with serum FSH concentrations in postmenopausal women (β = 2.929, p = 0.019). However, 
we found no significant association between serum FSH concentration and blood lead and 
mercury levels, or urine cadmium level, in men.
Conclusions: This study suggests that lead exposure can affect the FSH level in postmenopausal 
women. Further studies are needed to evaluate the effects of low-dose long-term exposure to 
heavy metals on sex hormones.
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BACKGROUND

Follicle-stimulating hormone (FSH), a gonadotropin secreted by the pituitary gland, 
stimulates spermatogenesis in males and ovarian follicle development in females. FSH is a 
representative secondary sex hormone and an important indicator of reproductive function 
[1,2]. Lead, cadmium, and mercury are common environmental heavy metals; many 
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populations are exposed to these agents [3]. In recent decades, extensive toxicological studies 
have reported various adverse effects of the metals on humans, including reproductive 
toxicity [4,5].

Some studies have suggested that lead can increase the risk of spontaneous abortion 
through its potential teratogenic action [6,7]. Lead exposure was consistently associated 
with a reduced sperm count, poor sperm motility, and abnormal sperm morphology [8-
10]. Cadmium is a metalloestrogen stimulating the alpha and beta estrogen receptors and 
upregulating progesterone receptors [11]. Thus, cadmium may cause estrogen-dependent 
diseases such as breast and endometrial cancer, endometriosis, and spontaneous abortion 
[12]. Despite the well-known neurotoxicity of mercury, little is known about its potential 
effect on the human reproductive system. Some epidemiological studies described menstrual 
cycle abnormalities in women occupationally exposed to mercury [13,14]. In men, methyl 
mercury levels in semen correlated with poor reproductive outcomes [15].

However, there are only a few studies about associations with sex hormones. A US study 
showed that serum FSH and luteinizing hormone (LH) levels increased as the blood lead level 
rose in both pre- and post-menopausal women and in those who had both ovaries removed 
[16]. Also, other US data showed a positive association between lead and testosterone levels 
in males, and cadmium and FSH levels in perimenopausal women [17,18]. In China, a recent 
study found positive associations between lead and testosterone levels in men and between 
lead and FSH and LH levels in postmenopausal women [19].

Although a few studies have evaluated the effect of heavy metals on FSH in human, the evidence 
of the effect on FSH is limited. In this study, we evaluated the relationship between exposure to 
lead, cadmium, and mercury and FSH in Korean men and postmenopausal women.

METHODS

Study participants
We used data from the Second Korea National Environmental Health Survey (KoNEHS) 
conducted by the National Institute of Environmental Research from 2012 to 2014; the survey 
involved stratified sampling of the national population based on the 2010 housing census. 
The survey included 6,478 subjects aged > 19 years from 400 districts selected based on the 
population distribution. Data were collected via personal interview, physical examination, 
and laboratory tests. Men (n = 2,774) and postmenopausal women (n = 2,027) were selected. 
Women under 50 years of age who described themselves as postmenopausal (n = 91) were 
excluded. Subjects for whom data were missing (n = 21) were also excluded. Finally, 2,763 
men and 1,926 women were included in the analysis.

Variables
Age, sex, menopausal status, body mass index (BMI), smoking status, and alcohol 
consumption were included as variables. All subjects were men or postmenopausal women. 
BMI was divided into 4 groups: underweight (< 18.50 kg/m2), healthy weight (18.50–24.99 kg/
m2), overweight (25.00–29.99 kg/m2), and obese (≥ 30.00 kg/m2). Smoking status was based 
on questionnaire data: smoker or current non-smoker. Alcohol consumption was categorized 
as yes or no.
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Blood lead and mercury, urine cadmium levels and serum FSH
Blood lead and mercury, urine cadmium levels and serum FSH were analyzed by the following 
methods in KoNEHS [20,21]. Blood and spot urine specimens were transferred to the 
laboratory in an ice box and stored at −20°C prior to analysis. Blood lead and urine cadmium 
levels were assayed with the aid of a Graphite Furnace-Atomic Absorption Spectrometer. 
Blood mercury was analyzed using a gold amalgamation technique. The concentrations of 
all metals were derived with the aid of standard calibration curves. The limits of detection 
(LODs) were 0.30 for blood lead, 0.05 for urinary cadmium, and 0.1 µg/L for blood mercury. 
Measurements below the LOD were recorded as the LOD divided by the square root of 2. 
Urine cadmium concentration was adjusted by reference to urine creatinine concentration. 
Serum FSH levels were measured using a chemiluminescence immunoassay (CLIA; ADVIA 
Centaur XP; Siemens, Tarrytown, NY, USA).

Statistical analyses
Geometrical means with 95% confidence interval (CI) of serum FSH concentrations 
were calculated by reference to demographic factors; we also derived the medians and 
geometric means with 95% CI of blood lead and mercury, and urine cadmium, levels. As 
the distributions of all heavy metals and FSH in men were positively skewed, data of these 
factors were log-transformed prior to analyses. But, FSH in postmenopausal women showed 
normal distribution, so it was not log-transformed. Univariate analyses by demographic 
characteristics were performed employing the t-test and analysis of variance. Multiple linear 
regression analysis was used to determine the relationship between lead, cadmium and 
mercury exposure, and serum FSH concentrations; after adjusting for age, BMI, smoking 
status, and alcohol consumption of men and postmenopausal women separately. SPSS ver. 25 
for Windows (IBM Corp., Armonk, NY, USA) was used for all statistical analyses.

Ethics statement
This study was approved by the Institutional Review Board (IRB) of Haeundae Paik Hospital 
(IRB No. 2019-04-008).

RESULTS

The geometric means of serum FSH concentrations by demographic variables are shown in 
Table 1. Total geometric means were 7.19 and 58.49 mIU/mL in men and postmenopausal 
women, respectively. In men, the geometric mean tended to increase with age (p for trend < 
0.001) and decrease with increasing BMI (p for trend = 0.008). In postmenopausal women, 
the geometric mean tended to decrease with increasing BMI (p for trend < 0.001), as in men, 
but was not affected by age. In men, smoking (p < 0.001) and alcohol consumption (p < 
0.001) significantly affected FSH levels; in women, only alcohol consumption was significant 
(p = 0.004).

The distributions of serum FSH concentrations, and blood lead and mercury, and urine 
cadmium levels, are listed in Table 2; we show medians, first and third quartile data, and 
geometric means with 95% CI.

Tables 3 and 4 list the results of multiple linear regression analyses in men and women, 
respectively; we show the adjusted and unadjusted regression coefficients between lead, 
cadmium and mercury levels, and FSH concentrations. In women, FSH was significantly 
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Table 1. Geometric mean concentration (mIU/mL) of FSH by demographic characteristics
Variable Category Men Postmenopausal women

No. (%) GM (95% CI) No. (%) GM (95% CI)
Total 2,763 (100) 7.19 (7.03–7.35) 1,926 (100) 58.49 (57.93–59.05)
Age (years) 19–29 262 (9.5) 3.50 (3.39–3.61)a

30–39 435 (15.7) 4.78 (4.59–4.97)b

40–49 503 (18.2) 5.85 (5.69–6.01)c

50–59 576 (20.8) 7.34 (7.02–7.66)d 737 (38.3) 59.86 (58.88–60.84)
60–69 592 (21.4) 9.96 (9.62–10.30)e 714 (37.0) 57.10 (56.23–57.97)
≥ 70 395 (14.3) 14.15 (13.50–14.80)f 475 (24.7) 58.52 (57.47–59.57)
p-value < 0.001 0.168
p for trend < 0.001 0.417

BMI (kg/m2) Underweight 49 (1.8) 8.11 (5.99–10.23)b 27 (1.3) 71.61 (64.71–78.51)c

Healthy weight 1,566 (56.5) 7.20 (6.98–7.42)b 1,012 (53.2) 59.91 (59.12–60.70)c

Overweight 1,003 (36.5) 7.30 (7.03–7.57)b 765 (39.4) 52.18 (51.33–53.03)b

Obese 145 (5.3) 6.03 (5.58–6.48)a 122 (6.1) 43.92 (42.07–45.77)a

p-value 0.007 < 0.001
p for trend 0.008 < 0.001

Smoking Smoker 1,019 (36.9) 6.45 (6.26–6.64) 60 (3.1) 52.09 (48.98–55.20)
Current non-smoker 1,744 (63.1) 7.67 (7.44–7.90) 1,866 (96.9) 55.93 (55.35–56.51)
p-value < 0.001 0.331

Alcohol drinking Yes 2,037 (73.7) 6.76 (6.58–6.94) 699 (36.3) 53.20 (52.25–54.15)
No 726 (26.3) 8.57 (8.21–8.93) 1,227 (63.7) 57.36 (56.65–58.07)
p-value < 0.001 0.004

FSH: follicle-stimulating hormone; GM: geometric mean; CI: confidence interval, BMI: body mass index.
a,b,c,d,e,fPost-hoc by Bonferroni (a < b < c < d < e < f).

Table 2. Distribution of lead, cadmium, mercury, and FSH
Variable Men Postmenopausal women
FSH (mIU/mL)

Median (1Q, 3Q) 6.82 (4.60, 10.78) 61.21 (46.47, 77.00)
GM (95% CI) 7.19 (7.03–7.35) 58.49 (57.93–59.05)

Blood lead (µg/dL)
Median (1Q, 3Q) 2.45 (1.87, 3.21) 2.05 (1.55, 2.67)
GM (95% CI) 2.45 (2.42–2.48) 2.04 (2.01–2.07)

Urine cadmium (µg/Crg)
Median (1Q, 3Q) 0.50 (0.33, 0.74) 0.88 (0.60, 1.31)
GM (95% CI) 0.48 (0.47–0.49) 0.87 (0.85–0.89)

Blood mercury (µg/L)
Median (1Q, 3Q) 3.80 (2.50, 5.77) 2.81 (1.87, 4.22)
GM (95% CI) 3.81 (3.73–3.89) 2.87 (2.80–2.94)

FSH: follicle-stimulating hormone; GM: geometric mean; CI: confidence interval; 1Q: 1st quartile; 3Q: 3rd quartile.

Table 3. Linear regression coefficients between lead, cadmium, mercury and FSH in men

Variable Unadjusted R2 Adjusted* R2 F
Blood lead

β 0.166 0.028 0.005 0.230 164.186
95% CI 0.107, 0.224 −0.043, 0.052
p-value < 0.001 0.851 < 0.001

Urine cadmium
β 0.269 0.078 −0.016 0.228 150.306
95% CI 0.230, 0.308 −0.052, 0.019
p-value < 0.001 0.364 < 0.001

Blood mercury
β 0.000 0.002 0.030 0.229 163.983
95% CI −0.040, 0.039 −0.002, 0.061
p-value 0.986 0.064 < 0.001

FSH: follicle-stimulating hormone; CI: confidence interval; BMI: body mass index.
*Adjusted for age (years), BMI (kg/m2), smoking status, and alcohol consumption.
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associated with blood lead level in the adjusted model (β = 2.929, p = 0.019). However, in 
men, no significant association between heavy metal levels and FSH concentration was 
evident after adjustment.

DISCUSSION

We explored the relationship between lead, cadmium and mercury exposure, and FSH 
levels. Our results suggest that lead exposure can affect serum FSH concentration in 
postmenopausal women. A few epidemiological studies have explored the association 
between heavy metal and FSH levels. Our results are consistent with those of earlier works 
from the USA and China [16,19]. In China, a recent study found statistically significant 
positive associations between the blood lead level and FSH concentration in postmenopausal 
women, but the significance was marginal in men [19]. We obtained similar data from 
postmenopausal women, but found no significant association in men. A few studies on the 
relationship between cadmium and FSH levels have been performed in the USA and Italy; 
positive associations were reported in perimenopausal women and male workers [18,22]. 
However, we found that urine cadmium and blood mercury levels were not associated with 
FSH concentrations in Korean adults.

In Table 1, we analyzed serum FSH concentrations by demographic variables. As 
age increased, FSH levels tended to increase in men, which can be explained by the 
compensatory increase of FSH due to decreasing function of primary reproductive organs 
[23]. FSH levels fell with increasing BMI in both men and women, attributable to negative 
feedback by sex hormones secreted by adipose tissue [24]. A previous study suggested that 
cigarette smoking increased the serum levels of several sex hormones including testosterone 
in men; this reduces FSH levels via negative feedback [25]. Alcohol triggers hypothalamic-
pituitary inhibition, reducing FSH levels, consistent with our results [26].

We found a positive association between blood lead and FSH levels in postmenopausal 
women. In several studies in mice and rats, lead accumulated in the ovaries and reduced the 
number of follicles and the extent of the corpus luteum [27-29]. Paksy et al. [30] found that 
lead accumulated in human ovarian follicular fluid, and decreased progesterone production 
by granulosa cells in vitro. As mentioned above, lead triggers a compensatory increase in FSH 
by disrupting the function of the ovary, the primary female reproductive organ [23]. Also, 
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Table 4. Linear regression coefficients between lead, cadmium, mercury and FSH in postmenopausal women
Variable Unadjusted R2 Adjusted* R2 F
Blood lead

β 2.415 0.001 2.929 0.065 26.832
95% CI −0.098, 4.928 0.480, 5.377
p-value 0.060 0.019 < 0.001

Urine cadmium
β 1.976 0.001 1.355 0.063 20.433
95% CI −0.118, 4.069 −0.700, 3.410
p-value 0.064 0.196 < 0.001

Blood mercury
β −2.507 0.004 −1.000 0.066 27.030
95% CI −4.277, −0.736 −2.755, 0.755
p-value 0.006 0.264 < 0.001

FSH: follicle-stimulating hormone; CI: confidence interval; BMI: body mass index.
*Adjusted for age (years), BMI (kg/m2), smoking status, and alcohol consumption.
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lead increases FSH concentrations by acting on the hypothalamus and pituitary gland [31], 
either directly or via interactions with calcium or cellular proteins [32,33]. Lead stimulates 
neurotransmitter secretion by inhibiting calcium flow through the calcium channel [34]. Also, 
lead binds to and activates calmodulin, triggering the signaling cascade that controls the 
pulsatile release of gonadotropin-releasing hormone (GnRH) from hypothalamic cells [35,36]. 
These actions are possible because lead can cross the blood-brain barrier to disturb directly 
the hypothalamic-pituitary axis [37,38]. In rats, long-term low-dose lead exposure significantly 
increased the level of mRNA encoding GnRH [39]. And, lead can increases FSH levels indirectly 
by elevating homocysteine concentrations [40]. Homocysteine serves as an agonist of both 
N-methyl-D-aspartate (NMDA) and γ-aminobutyric acid (GABA) [41,42]. NMDA can upregulate 
FSH secretion and GABA is an important factor of the regulation of GnRH secretion [43,44].

Endocrine disruptors are effective at low concentrations; even small changes in hormone 
concentrations can trigger biological effects [45]. Lead exposure may also have adverse 
effects with increase in FSH on men and postmenopausal women. Increased FSH levels can 
contribute to osteoclast formation and increased bone resorption [46,47]. Since FSH has 
been shown to directly stimulate bone resorption both in vitro and in vivo, serum FSH levels 
are widely recognized as predictors of bone loss [48]. Previous studies found that elevation 
in FSH was an independent risk factor for bone loss in postmenopausal women and, indeed, 
aided early osteoporosis diagnosis [49]. In men, a recent study found a longitudinal inverse 
relationship between higher FSH levels and lower bone mineral density; men with higher 
levels of FSH lost more bone over time [50].

The principal strength of our present study is that we are the first to assess the relationship 
between exposure to lead, cadmium and mercury, and FSH levels, in a Korean population. 
We add to prior knowledge of the effects of heavy metal exposure on FSH concentrations. 
However, our work had certain limitations. First, we lacked data on the long-term effect of 
heavy metal exposure on FSH levels; the KoNEHS is a cross-sectional observational study. 
Second, in the KoNEHS, there was no information on the confounding factors including 
history of gynecological disease, hormonal replacement therapy. Therefore, we could not 
consider these factors to derive outcomes in the analyses. These confounding factors could 
affect our results, thus, our results should be interpreted with caution. Third, other sex 
hormones, such as LH, estrogen, and testosterone, were not measured in the KoNEHS. Thus, 
in this study, it was limited to show the association with overall sex hormones because we 
could only evaluate the association with FSH. Additional studies are needed to research the 
association with other sex hormones.

The health risks posed by heavy metals including lead, cadmium, and mercury constitute 
a public health concern, regardless of whether exposure is occupational in nature. FSH 
is a representative secondary sex hormone; we evaluated the effects of heavy metals on 
reproductive function by examining their effects on FSH levels. Future studies should address 
the limitations of our present work.

CONCLUSIONS

This study suggests that lead exposure can affect the FSH level in postmenopausal women. 
Further studies are needed to evaluate the effect of low-dose long-term exposure to heavy 
metals on the levels of various sex hormones.
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