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Free Cy5.5 dye and Cy5.5-labeled thermally cross-linked 

superparamagnetic iron oxide nanoparticles (TCL-SPION) 

have been routinely used for in vivo optical imaging. 

However, there is little information about the distribution 

and accumulation of free Cy5.5 dye and Cy5.5-labeled 

TCL-SPION in the tissues of mice. Free Cy5.5 dye (0.1 mg/kg 

body weight) and Cy5.5-labeled TCL-SPION (15 mg/kg 

body weight) were intravenously injected into the tail vein of 

ICR mice. The biodistribution and accumulation of the 

TCL-SPION and Cy5.5 were observed by ex vivo optical 

imaging and fluorescence signal generation at various time 

points over 28 days. Cy5.5 dye fluorescence in various organs 

was rapidly eliminated from 0.5 to 24 h post-injection. 

Fluorescence intensity of Cy5.5 dye in the liver, lung, kidney, 

and stomach was fairly strong at the early time points within 

1 day post-injection. Cy5.5-labeled TCL-SPION had the 

highest fluorescence density in the lung at 0.5 h post-injection 

and decreased rapidly over time. Fluorescence density in 

liver and spleen was maintained over 28 days. These results 

suggest that TCL-SPION can be useful as a carrier of 

therapeutic reagents to treat diseases by persisting for long 

periods of time in the body. 

Keywords: accumulation, biodistribution, Cy5.5 dye, thermally 
cross-linked superparamagnetic iron oxide nanoparticles, toxicity

Introduction

　Iron oxide nanoparticles, such as thermally cross-linked 
superparamagnetic iron oxide nanoparticles (TCL-SPION) 

and ultra SPION have been extensively studied for 
biomedical purposes due to their excellent biocompatibility 
[10]. These particles are produced by a variety of synthesis 
processes ranging from traditional wet chemistry 
solution-based methods to more exotic techniques such as 
laser pyrolysis or chemical vapor deposition [11,29,34]. In 
particular, the field of magnetic nanoparticle probe 
technology has been promoted by efforts devoted to 
developing its potential as a central tool for efficient, 
cross-application, molecular imaging [31]. Many previous 
studies have been performed to investigate the potential of 
magnetic nanoparticles as drug delivery vehicles 
[1,2,15,18,25,33,36]. The characteristic of magnetic 
nanoparticles makes them attractive for many applications 
ranging from contrast enhancing agents for magnetic 
resonance imaging (MRI) to drug delivery systems 
[12,14,16].　SPION research has demonstrated that these 
nanoparticles may be an important tool for enhancing 
magnetic resonance contrast [26]. For this, the 
nanoparticles must have high magnetization values, a size 
smaller than 100 nm, and a narrow particle size distribution 
[12]. Magnetic nanoparticles have many advantages 
including laser-induced thermal therapy, the ability to 
target specific sites, and relatively low toxicity [36]. 
Biological applications of magnetic nanoparticles also 
need magnetic particles with peculiar surface coating that 
has to be nontoxic and biocompatible, and must permit 
targetable delivery with particle localization in a specific 
area. Such magnetic nanoparticles can bind to drugs, 
proteins, enzymes, antibodies, or nucleotides and can be 
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Fig. 1. The location of various organs used for kinetic studies of 
free Cy5.5 and Cy5.5-labeled thermally cross-linked 
superparamagnetic iron oxide nanoparticles (TCL-SPION). B: 
brain, Ly: lymph node, Th: thymus, H: heart, Lu: lung, LI: large
intestine, Li: liver, SI: small intestine, Sp: spleen, St: stomach, K:
kidney, AG: adrenal gland, Te: testis, Ep: epididymis.

directed to an organ, tissue, or tumor using an external 
magnetic field [6].　Cyanine (Cy) is a synthetic dye belonging to the 
polymethine group and has been recently used in 
biotechnology (for labeling and analysis) [32]. Cyanines 
have many uses as fluorescent dyes, particularly for 
biomedical imaging, that increase the range of 
wavelengths which form images on film [5]. Cyanine 
labeling is done for visualization and quantification 
purposes [9]. Cy5.5 N-hydroxysuccinimide (NHS) ester is 
a reactive dye used for labeling amino groups in peptides, 
proteins, and oligonucleotides [20]. Cy5.5 emits a far-red 
(and near-infrared) signal that is ideal for fluorescence 
measurements for which background fluorescence is a 
concern [28]. The present study was conducted to evaluate 
the distribution and accumulation of free Cy5.5 dye and 
Cy5.5-labeled TCL-SPION in tissues of mice. The optical 
imaging method performed with an in vivo imaging system 
(IVIS) has been routinely used for assessing the tissue 
distribution of polymer-coated nanoparicles. 

Materials and Methods

Drugs 　Cy5.5 mono NHS ester was purchased from Amersham 
Biosciences (UK), and Cy5.5-labeled TCL-SPION was 
obtained from the Gwangju Institute of Science and 
Technology (Korea). Cy5.5-labeled TCL-SPION 
consisted of three components: an iron oxide core, a 
hydrophilic coating, and optical imaging detection Cy5.5 
dye. Mean size of the hydrodynamic particles was about 35 
nm and the zeta potential intensity was −25.13 mV.

Animals and treatments　All animal experiments were performed in accordance 
with standard procedures for laboratory animals approved 
by the Institutional Animal Care and Use Committee of 
Chungbuk National University (Korea). A total of 120 
male, 5-week old ICR mice (body weight, 21.3 ± 1.7 g) 
were purchased from Koatec Inc. (Korea). Upon arrival, 
the mice were housed in a temperature- and humidity- 
controlled environment with a reversed 12/12 h light/dark 
cycle, and had free access to food and water. After 1 week 
of acclimation, the mice were randomly divided into a 
normal group (n = 5), a Cy5.5-treated group (n = 60), and 
a Cy5.5-labeled TCL-SPION-treated group (n = 60). Fifty 
μL of saline, a Cy5.5 suspension (0.1 mg/kg body weight), 
or a Cy5.5-labeled TCL-SPION suspension (15 mg of 
Fe/kg body weight) were injected into the tail vein of the 
mice according to a modified method by Lee et al. [22]. 

Kinetic evaluate of free Cy5.5 and Cy5.5-labeled 
TCL-SPION 　For the kinetic study of free Cy5.5, the mice were 

sacrificed by cervical dislocation at 0.5, 1, and 4 h as well 
as 1, 4, 7, 14, and 28 days following injection of the 
compound. For the kinetic study of Cy5.5-labeled 
TCL-SPION, the animals were also sacrificed at 0.5, 1, 2, 
4, 8 h as well as 1, 2, 4, 7, 14, 21, and 28 days following 
exposure. During necropsy, the major organs (brain, lymph 
node, thymus, heart, lung, liver, spleen, kidney, 
epididymis, and testis) of each animal were collected for 
relative quantitation of fluorescence signals. 

Monitoring the in vivo characteristics of free Cy5.5 
and Cy5.5-labeled TCL-SPION 　Twenty-eight days after treatment, optical imaging was 
performed using an IVIS 200 imaging system (Xenogen, 
USA). Near-infrared fluorescence (NIR) images of various 
organs (brain, lymph node, thymus, heart, lung, liver, 
spleen, kidney, epididymis, and testis) were obtained with 
a Cy5.5 filter channel. Organ distribution of the 
nanoparticles was quantified by measuring the ratio of NIR 
intensity of Cy5.5-labeled TCL-SPION and free Cy5.5 and 
comparing the data to that of the normal group. All results 
were measured using the region of interest (ROI) function 
of analysis workstation software (Living Image, Caliper 
Life Sciences, USA).

Statistical analysis 　Data were analyzed with a one-way analysis of variance 
(ANOVA) followed by a two-tailed Student’s t test when 
the ANOVA indicated statistically significant differences 
(p ＜ 0.05). All statistical analyses were performed using 
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Fig. 2. Florescence images showing the biodistribution and accumulation of fluorescence in various organs for 28 days after the 
injection of 0.1 mg/kg Cy5.5. Yellow indicates a higher intensity at 615∼707 nm. Images were acquired with an exposure time of 1 
sec using the Cy5.5 filter channel. Left: organs of a normal mouse; Middle and right: organs of mice injected with Cy5.5.

Table 1. Relative fluorescence intensity measured during a 28-day period in various organs of mice injected with Cy5.5

Organs
Time after treatment (106 photons/sec/cm2)

0.5 h 1 h 1 d 7 d 14 d 21 d 28 d

Liver
Kidney
Lung
Stomach
Lymph node
Testis

65.21 ± 5.74e

11.34 ± 1.21d

17.62 ± 1.47d

14.93 ± 1.68d

3.75 ± 0.41c

2.69 ± 0.25b

32.43 ± 2.85g

7.44 ± 0.92e

11.53 ± 1.34f

6.14 ± 0.72e

3.01 ± 0.27d

0.99 ± 0.11b

5.52 ± 0.48h

1.47 ± 0.15f

2.43 ± 0.25g

2.05 ± 0.32g

1.13 ± 0.09e

0.46 ± 0.05b

3.16 ± 0.28e

0.40 ± 0.05b

3.14 ± 0.27e

1.13 ± 0.11d

0.78 ± 0.08c

0.13 ± 0.02a

1.14 ± 0.09c

0.29 ± 0.04a

0.79 ± 0.08b

0.83 ± 0.06b

0.79 ± 0.07b

＜0.01

＜0.01
＜0.01

2.46 ± 0.23b

0.92 ± 0.12a

0.76 ± 0.08a

＜0.01

＜0.01
＜0.01

0.45 ± 0.07a

1.12 ± 0.09b

0.45 ± 0.05a

＜0.01

Data are expressed as the mean ± SD. Images were acquired with an exposure time of 1 sec using the Cy5.5 filter channel (615∼707 nm). The 
value means ROI densities in various organs of each mouse. a-gMean values with different letters in the same column are significantly different 
(p < 0.05).

Stat View J-5.0 software (SAS Institute, USA). The results 
are expressed as the mean ± standard deviation (SD).

Results 

Ex vivo kinetic study of free Cy5.5 　Fig. 1 shows the location of free Cy5.5 in various murine 
organs. Fig. 2 presents the florescence images of free 
Cy5.5 dye in different organs of the mice observed 24 days 
post-injection. Cy5.5 dye in the different organs was 
rapidly eliminated from 0.5 to 24 h post-injection. 
However, a low level of Cy5.5 dye was constantly 
maintained for 28 days in certain organs such as the 
stomach, thymus, lymph node, brain, and epididymis. In 

particular, fluorescence intensity of the Cy5.5 dye was 
fairly strong in the liver, lung, kidney, and stomach within 
1 day post-treatment (Fig. 2). Other organs including the 
brain, spleen, heart, lymph node, thymus, adrenal gland, 
epididymis, and testis contained a low level of 
fluorescence intensity throughout the experiment. 　Table 1 shows the relative intensities in different organs 
28 days after the injection of Cy5.5 (0.1 mg/kg). At 0.5 h 
post-injection, the relative fluorescence intensity in liver 
was the highest compared to the other organs (p ＜ 0.05). 
However, the relative fluorescence intensity in liver 
rapidly decreased 1 day post-injection. Until 7 days 
post-injection, the relative fluorescence intensity in liver, 
lung, and stomach was significantly high compared to the 
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Fig. 3. Florescence images showing the biodistribution and accumulation of fluorescence in various organs over a 28-day period after 
the injection of 15 mg/kg Cy5.5-labeled TCL-SPION. Yellow indicates higher intensity at 615∼707 nm. Images were acquired with
an exposure time of 1 sec using the Cy5.5 filter channel. Left: organs of a normal mouse; Middle and right: organs of mice injected with
Cy5.5-labeled TCL-SPION.

other organs (p ＜ 0.05). At 28 day post-injection, the 
relative fluorescence intensity in stomach was the highest 
compared to the other organs (p ＜ 0.05). Other organs 
including blood, spleen, thymus, epidiymis, and brain 
contained a low level of fluorescence throughout the 
experimental period (data did not show).

Ex vivo kinetic study of Cy5.5-labeled TCL-SPION 　Fig. 3 shows the florescence images of Cy5.5-labeled 
TCL-SPION in different organs of the mice 24 days 
post-injection. Similar to the pattern of free Cy5.5, 
Cy5.5-labeled TCL-SPION in the various organs was 
rapidly eliminated from 0.5 to 24 h post-injection. Optical 
imaging density in the liver rapidly decreased until 28 days 
post-injection. In addition, optical imaging density in the 
lung gradually decreased over time. Optical imaging 
density in the kidney and lymph node was constantly 
maintained for 28 days. In the liver, the fluorescence 
intensity of Cy5.5-labeled TCL-SPION was the strongest 

and persisted at high levels throughout the whole 
experimental period. Other organs including the brain, 
heart, thymus, adrenal gland, epididymis, and testis had a 
slightly lower fluorescence intensity during the 
experimental period. 　Table 2 shows relative intensities observed in different 
organs 28 days after injection of 15 mg/kg Cy5.5-labeled 
TCL-SPION. The relative fluorescence intensity in most 
organs peaked at 2 h while the peak time of the relative 
fluorescence intensity in the lung (0.5 h), thymus (14 
days), liver (28 days) and spleen (28 days) diverged from 
this average. Until 3 days after injection, relative 
fluorescence intensity in the liver, spleen, kidney, and lung 
was significantly higher than that in the other organs (p ＜ 
0.05). However, relative fluorescence intensity in the lung 
and kidney rapidly decreased 4 h post-injection. During the 
28-day post-injection period, relative fluorescence 
intensity in the liver and spleen was significantly higher 
than that observed in other organs except for lung until 1 
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Table 2. Relative fluorescence intensity measured during a 28-day period in various organs of mice injected with Cy5.5-labeled TCL-SPION

Organs
Time after treatment (106photons/sec/cm2)

0.5 h 2 h 4 h 3 d 7 d 14 d 28 d

Blood
Liver
Kidney
Spleen
Lung
Stomach
Thymus
Testis
Epididymis
Lymph node
Brain

0.067 ± 0.022b

6.12 ± 0.27f

0.964 ± 0.294d

2.74 ± 0.79e

61.21 ± 13.27g

0.086 ± 0.035bc

0.003 ± 0.008a

0.004 ± 0.006a

0.008 ± 0.005a

0.014 ± 0.014a

0.009 ± 0.006a

0.114 ± 0.034b

34.49 ± 5.01e

1.410 ± 0.194c

9.89 ± 1.47d

38.27 ± 7.58e

0.212 ± 0.096b

0.014 ± 0.013a

0.015 ± 0.004a

0.011 ± 0.005a

0.024 ± 0.005a

0.029 ± 0.015a

0.030 ± 0.021ab

16.64 ± 4.98e

0.432 ± 0.112c

3.10 ± 0.67d

2.57 ± 0.73d

0.033 ± 0.026ab

0.005 ± 0.006a

0.003 ± 0.006a

0.003 ± 0.010ab

0.012 ± 0.006ab

0.023 ± 0.016ab

＜0.001
29.84 ± 9.44e

0.279 ± 0.075c

9.12 ± 0.40d

0.390 ± 0.136c

0.092 ± 0.020b

0.007 ± 0.008a

＜0.001
＜0.001

0.008 ± 0.013a

＜0.001

0.006 ± 0.003a

9.62 ± 4.34d

0.123 ± 0.061b

5.43 ± 3.26c

0.097 ± 0.024b

0.029 ± 0.025a

0.006 ± 0.009a

0.007 ± 0.008a

0.006 ± 0.007a

0.004 ± 0.002a

0.006 ± 0.004a

0.012 ± 0.009a

11.17 ± 0.10e

0.495 ± 0.082c

5.18 ± 0.72d

0.289 ± 0.196bc

0.061 ± 0.046ab

0.035 ± 0.055a

0.013 ± 0.013a

0.008 ± 0.012a

0.016 ± 0.010a

0.012 ± 0.017a

＜0.001
34.51 ± 2.72e

0.262 ± 0.114bc

11.45 ± 1.15d

0.164 ± 0.133b

0.065 ± 0.079ab

＜0.001
＜0.001
＜0.001
＜0.001

0.025 ± 0.068a

 Data are expressed as the mean ± SD. Images were acquired with an exposure time of 1 sec using the Cy5.5 filter channel (615∼707 nm). 
The value means ROI densities of various organs in each mouse. a-gMean values with different letters in the same column are significantly 
different (p < 0.05). 

day after injection (p ＜ 0.05). In particular, relative 
fluorescence intensity in the liver and spleen gradually 
decreased at 7 and 14 days post-injection, respectively, 
while that in liver and spleen increased at 14 and 28-day 
post-treatment, respectively. At 28-day post-injection, the 
relative fluorescence intensity was the highest compared to 
the other organs (p ＜ 0.05). 

Discussion 

　Recently, the potential of magnetic nanoparticles as drug 
delivery vehicles has been extensively investigated 
[1,2,15,18,25,33,36]. Magnetic nanoparticles have been 
used as contrast agents and in thermal therapy for treating 
cancer and to target sites using an external magnetic field. 
Paramagnetic or modified dextran-coated SPION have 
been used to label cells ex vivo, providing researchers with 
the ability to monitor cell migration with MRI [4,17,24]. 　The purpose of the present research was to monitor the 
distribution and accumulation of Cy5.5-labeled 
nanoparticles, and measure the in vivo kinetics of free 
Cy5.5 and Cy5.5-labeled TCL-SPION. Cy5.5-labeled 
TCL-SPION are stable under biological conditions. The 
Cy5.5 dye is slowly released from Cy5.5-labeled 
TCL-SPION and the percentage of released Cy5.5 dye is 
less than 10% [7]. This indicates that the nanoparticles 
resist dissolution, resulting from the covalent conjugation 
of Cy5.5 to the TCL-SPION [21-23,35]. In the present 
investigation, Cy5.5 dye injected into mice was distributed 
in various organs and rapidly eliminated from 0.5 to 24 h 
post-injection. Low fluorescence intensities of free Cy5.5 
remained in different organs until 28 days. In contrast, 

Cy5.5-labeled TCL-SPION were distributed in various 
organs and slowly eliminated from 0.5 h to 28-day 
post-injection. Thus, the intensities of signals generated by 
Cy5.5-labeled TCL-SPION were higher than those of free 
Cy5.5 for 28 days. These results indicated that the 
intravenously injected Cy5.5-labeled TCL-SPION entered 
into the systemic circulation and were stored for certain 
periods of time in the different organs, especially liver. 　When nanoparticles are intravenously or intraperitoneally 
injected, inorganic and organic nanoparticles are mainly 
sequestered in the liver and spleen [27]. Quantum dots 
accumulate in the liver, spleen, and kidneys after 
intravenous injection in mice [8,35]. Gold nanoparticles 
accumulate in the liver and spleen after intravenous 
injection in mice [7]. When poly lactide glycolide (PLGA) 
nanospheres are placed in rat lung, they rapidly enter the 
systemic circulation and are distributed to the liver, kidney, 
brain, spleen, and pancreas [13]. In addition, fluorescent 
magnetic nanoparticles are distributed to various organs 
including the liver, spleen, testis, and brain of rats after 4 
weeks of inhalation [19]. Depending on the routes of 
exposure, the toxicity and kinetic properties of 
nanoparticles can be completely different. When 
intravenously injected, nanoparticles directly enter the 
systemic circulation while intraperitoneally injected 
nanoparticles enter the liver via the first-pass effect and 
then are then redistributed from the liver to other organs 
[19]. The kinetic study conduced in the present 
investigation indicated that intravenously injected 
Cy5.5-labeled TCL-SPION directly entered the systemic 
circulation and were eliminated. However, particle 
elimination was slower in the liver compared to other 
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organs. In another study, it was suggested that Kupffer cells 
in the liver can degrade iron oxide nanoparticles and 
convert most of the iron into ferritin [3]. The TCL-SPION 
could be stored in the form of ferritin after degradation of 
the nanoparticles. In addition, the size of iron oxide 
nanoparticles plays a major role in target cell uptake and 
elimination from the body. Spleen and liver capture 
nanoparticles of more than 150 nm in diameter whereas 
particles having sizes below 10 nm are selectively filtered 
by the renal system and eliminated from body [30]. In the 
current study, the relative fluorescence intensity of 
Cy5.5-labeled TCL-SPION in the liver and spleen 28-day 
post-injection may have been higher than that of the other 
organs.　We conclude that Cy5.5-labeled TCL-SPION can be 
useful as a carrier of therapeutic reagents to treat diseases, 
thereby persisting for long periods of time and maintaining 
the fluorescence density in certain tissues after intravenous 
injection.
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