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Abstract: Both low temperature and nitrogen starvation caused chlorosis of cyanobacteria. Here, in
this study, for the first time, we compared the effects of low temperature, nitrogen starvation, and
their combination on the photosynthesis and metabolites of a thermophilic cyanobacterium strain,
Thermosynechococcus E542. Under various culture conditions, the growth rates, pigment contents,
and chlorophyll fluorescence were monitored, and the composition of alkanes, lipidomes, and
carbohydrates were determined. It was found that low temperature (35 ◦C) significantly suppressed
the growth of Thermosynechococcus E542. Nitrogen starvation at 45 ◦C and 55 ◦C did not affect
the growth; however, combined treatment of low temperature and nitrogen starvation led to the
lowest growth rate and biomass productivity. Both low temperature and nitrogen starvation caused
significantly declined contents of pigments, but they resulted in a different effect on the OJIP curves,
and their combination led to the lowest pigment contents. The composition of fatty acids and alkanes
was altered upon low-temperature cultivation, while nitrogen starvation caused reduced contents of
all lipids. The low temperature did not affect carbohydrate contents, while nitrogen starvation greatly
enhanced carbohydrate content, and their combination did not enhance carbohydrate content, but led
to reduced productivity. These results revealed the influence of low temperature, nitrogen starvation,
and their combined treatment for the accumulation of phycobiliproteins, lipids, and carbohydrates of
a thermophilic cyanobacterium strain, Thermosynechococcus E542.

Keywords: cyanobacteria; chlorophyll fluorescence; alkane; lipidomics; carbohydrate; nitrogen
starvation; low temperature

1. Introduction

An increase in CO2 concentration in the atmosphere caused by the exploitation of
fossil fuels results in global climate change and threatens the sustainable development of
humankind. Carbon sequestration technologies have attracted the wide attention of both
academics and industries. Cyanobacteria are prokaryotic photosynthetic micro-organisms
able to inhabit various environments and tolerate different stresses, such as high salinity,
temperature, pressure, and desiccation [1]. Thanks to their high photosynthetic rates and
potential to produce various value-added products and biofuels, cyanobacteria have been
promising candidates for biological carbon sequestration [2,3].

Growth temperature and nitrogen supply are two major factors that regulate the
photosynthetic rates and biochemical composition of cyanobacteria [4,5]. Mesophilic
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cyanobacteria acclimate to low temperature (temperatures 15–20 ◦C lower than their
optimal growth temperature), either by rearrangement of their photosynthetic system on a
short time scale [6] or by reduction in phycobiliprotein contents on a longer time scale [7],
which could be reflected by chlorophyll fluorescence analysis. The chemical composition
also changed with growth temperatures, such as the ratio of unsaturated fatty acids to
saturated fatty acids and the contents of protein and carbohydrates [8]. In response to
nitrogen starvation, nondiazotrophic cyanobacteria tend to synthesise fewer components
rich in N, such as proteins, chlorophylls, and phycobilisomes (PBSs). Nitrogen starvation
also caused the accumulation of compounds rich in C, such as glycogen [9].

Although numerous studies have been focused on the strategies cyanobacteria adopted
to acclimate to low temperature or nitrogen starvation, no study has compared the effects
of low temperature, nitrogen starvation, and, especially, their combined effects on photo-
synthesis and biochemical composition. It was reported that the dependence of metabolic
rates of phytoplankton (Synechococcus sp., Skeletonema costatum, and Emiliania huxleyi) on
growth temperature were strongly related to nitrogen supply [10]. Additionally, previous
studies on the acclimation of cyanobacteria to growth temperature and nitrogen starvation
focused mainly on mesophilic strains, while there is a scarcity of similar studies regarding
thermophilic strains. Thermophilic strains have recently been suggested as thermophilic
chassis for carbon valorisation, which could significantly reduce the cost of CO2 mitigation
from flue gases [11,12]. Previously, we have described a new thermophilic cyanobacterium,
Thermosynechococcus elongatus PKUAC-SCTE542 (Thermosynechococcus E542 since), isolated
from the hot spring of Western Sichuan, China as a promising organism for CO2 utili-
sation [11]. The goal of this study was to characterise and compare the effects of low
temperature, nitrogen starvation, and their combination on photosynthesis by analysis of
chlorophyll-a (Chla) fluorescence and pigments, and to analyse its accumulation of main
components, including lipids, proteins, and carbohydrates.

2. Results
2.1. Effects of Temperature, Nitrogen Starvation, and Their Combination on the Growth

A two-stage culture strategy was adopted to investigate the effects of growth tempera-
ture and nitrogen supply. In the first stage, Thermosynechococcus E542 was cultivated for
24 h in BG-11 medium supplemented with sodium nitrate. At the end of the first stage, the
biomass was collected by centrifugation and then resuspended in a fresh BG-11 medium
supplemented with or without sodium nitrate. It was then incubated for another 24 h (the
second stage), and the results related to the growth rate and biomass yield are shown in
Table 1.

Table 1. Effects of temperature and nitrogen supply on the growth rate and biomass yield of E542.

Biomass
–1st Stage
(mgL−1)

Growth Rate µ

–1st Stage (1 d−1)
Biomass

–2nd Stage (mgL−1)
Growth Rate µ

–2nd Stage (1 d−1)

35–48 h 0.117 ± 0.008 1.29 ± 0.11 0.265 ± 0.01 0.82 ± 0.07

35–NS 0.102 ± 0.005 1.32 ± 0.21 0.196 ± 0.009 0.65 ± 0.05

45–48 h 0.254 ± 0.003 2.26 ± 0.08 0.591 ± 0.012 0.84 ± 0.02

45–NS 0.253 ± 0.007 2.23 ± 0.17 0.605 ± 0.015 0.87 ± 0.03

55–48 h 0.244 ± 0.004 2.16 ± 0.13 0.678 ± 0.017 1.02 ± 0.07

55–NS 0.240 ± 0.004 2.19 ± 0.04 0.654 ± 0.018 1.00 ± 0.04

Growth temperature significantly affected the growth rate and biomass yield of Ther-
mosynechococcus E542. During the first 24 h, when temperature declined from 45 ◦C to 35 ◦C,
the growth rate was reduced by 42.9% from 2.26 to 1.29 d−1, and the 48-h average biomass
productivity was increased by 123% from 0.132 g L−1 d−1 to 0.296 g L−1d−1 when growth
temperature was elevated from 35 ◦C to 45 ◦C. The effect of temperature on growth rate
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became less pronounced when it was further increased from 45 ◦C to 55 ◦C. The growth
rate was relatively constant, confirming prior findings [11].

Intriguingly, it was found that nitrogen starvation did not affect the growth rate and
biomass productivity at 45 ◦C and 55 ◦C. However, combined treatment of nitrogen starva-
tion and low temperature at 35 ◦C caused the growth rate to decline by 20.7% from 0.82 to
0.65, while biomass productivity also declined from 0.148 g L−1d−1 to 0.094 g L−1d−1.

2.2. Variation of Pigment Contents and Chlorophyll Fluorescence

Thermosynechococcus E542 cultivated at 35 ◦C exhibited lower contents of Chla and PC.
The cultures that were grown at 45 ◦C and 55 ◦C in nitrogen-rich BG-11 medium contained
an abundance of pigments, C-phycocyanin (PC) and allophycocyanin (APC) accounted
for 12–13% and 6.8–6.8% of dry biomass, respectively, while Chla reached more than 2%
of the biomass (Figure 1). However, at 35 ◦C, their content was dramatically reduced
by 66.1% and 67.4%, respectively, compared with cultures grown at 45 ◦C. The ratio of
PC to Chla did not decline with decreasing growth temperature and was estimated at
5.8, 5.6, and 5.1, respectively, for growth temperatures of 35 ◦C, 45 ◦C, and 55 ◦C. These
findings are in contrast to previous research that indicates that PC/Chla is reduced during
low-temperature acclimation of mesophilic cyanobacteria strains [13].
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Figure 1. Contents of pigments of E542 cultivated under different conditions. Bars indicate standard
deviation; data are expressed as means ± standard error (n = 3).

Nitrogen starvation treatment led to significantly reduced pigment contents in Ther-
mosynechococcus E542 at all tested temperatures. The content of PC was 67–78% lower,
while the content of Chla was 51–60% lower than cultures grown in nitrogen-rich BG-11
medium. Combined treatment of low temperature (35 ◦C) and nitrogen starvation led to
the lowest pigment contents among all conditions. Contents of PC, APC, and Chla declined
to 1.4%, 0.78%, and 0.34% of dry biomass.

Growth temperature significantly affects the OJIP curves of Thermosynechococcus E542.
Figure 2a shows the fluorescence transient curves of Thermosynechococcus E542 cultivated
at different temperatures in a nitrogen-rich BG-11 medium. The transient curves showed
clear polyphasic rise, with the I and J step appearing at 2 ms and 30 ms, respectively, while
the P step appeared at 141-281 ms. Significant differences between the OJIP transients for
the culture 35–48 h and those of 45–48 h and 55–48 h could be observed. Firstly, the culture
35–48 h has much lower FO fluorescence, 44.6% lower than that of 45–48 h. Similar results
were obtained for eukaryotic photosynthetic organisms and mesophilic cyanobacterium
Synechococcus sp. PCC 7942 [14]. FO fluorescence in cyanobacteria considerably depends on
the cellular phycobilin concentration [15]. In this study, OD730 of all cultures was adjusted
to the same value (0.26 ± 0.01) prior to the measurement of OJIP transients. Hence, the
lower FO fluorescence of 35–48 h was due to its lower PC content. Another difference is
that the relative variable fluorescence at step J (VJ = (FJ − Fo)/(Fm − Fo)) of the culture
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35–48 h is much higher than that of 45–48 h and 55–48 h (Table 2). This indicates that the
reoxidation capacity of QA

− is decreased at a growth temperature of 35 ◦C [16]. Growth
temperature also affects the photochemical efficiency of PSII in the dark-adapted state
(Fv/Fm). Fv/Fm reaches the maximal value of 0.422 at 45 ◦C, close to the maximal values
of 0.4–0.5 for mesophilic cyanobacteria [6].
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Figure 2. The OJIP fluorescence transients of E542 cultivated at different temperatures (a) in nitrogen-
rich BG-11 medium; (b) with nitrogen starvation. The transient is plotted on the logarithmic time
scale, and the O, J, and I steps are marked accordingly, while the P step is marked by dots on the
curves. All experiments were conducted with three replicas, and the means were used to construct
the figure.

Table 2. Calculated parameters related to OJIP transients.

FO VJ VI FV/FM

35–48 h 27,089 ± 186 1 0.853 ± 0.016 0.794 ± 0.013 0.321 ± 0.007
45–48 h 48,923 ± 306 0.665 ± 0.007 0.811 ± 0.008 0.422 ± 0.008
55–48 h 44,738 ± 510 0.661 ± 0.008 0.835 ± 0.010 0.344 ± 0.006
35–NS 10,348 ± 181 0.992 ± 0.007 0.910 ± 0.006 0.180 ± 0.008
45–NS 14,796 ± 170 0.912 ± 0.007 0.956 ± 0.009 0.203 ± 0.006
55–NS 15,527 ± 421 0.853 ± 0.007 0.959 ± 0.006 0.181 ± 0.002

1 data are expressed with means ± standard error (n = 3).

Nitrogen starvation also affected the shape of the OJIP transients of Thermosynechococ-
cus E542, as shown in Figure 2b. Due to the degradation of pigments, the FO fluorescence
declined to 10,000–15,000 after nitrogen starvation, compared with 25,000–50,000 for cul-
tures replete in nitrogen. Additionally, the OJIP transients almost totally level off after
nitrogen starvation treatment. Similar results were observed for the OJIP transients of
mesophilic cyanobacteria under other stress factors, such as high salinity [17] and heat
stress [18]. Moreover, the photochemical efficiency of PSII also sharply declined to 0.18–0.20
from 0.3–0.4 (Table 2).

2.3. Variation of Alkanes and Fatty Acids

Membrane fluidity plays a pivotal role in the temperature acclimation of photosyn-
thetic organisms [8]. Adjustment of the membrane fluidity could be achieved by the
production of polyenoic acid or by changing the ratio of saturated fatty acids to unsat-
urated fatty acids (S/U ratio) in mesophilic cyanobacteria [19]. Recently, it was found
that hydrocarbons may also be involved in the adjustment of membrane fluidity during
low-temperature acclimation of cyanobacteria [20]. The composition of fatty acids and
hydrocarbons of Thermosynechococcus E542 cultivated at different temperatures and ni-
trogen supply is shown in Figure 3. Under the tested conditions, palmitic acid (C16:0)
is the most abundant fatty acid, accounting for 55–60% of total fatty acid methyl esters
(FAMEs) and hydrocarbons. Other fatty acids include palmitoleic acid (C16:1), stearic
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acid (C18:0), oleic acid (C18:1), and myristic acid (C14:0). The hydrocarbons include pen-
tadecane and heptadecane, but the amount of pentadecane is not quantitated due to its
limited concentration.
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Growth temperature significantly affects the composition of fatty acids and hydro-
carbons. The content of C16:1 is inversely proportional to the growth temperature and
increased by 61% and 135% as growth temperature decreased from 55 ◦C to 45 ◦C and
35 ◦C, respectively. S/U ratio was also altered and was equal to 1.4, 1.7, and 2.5 at the
growth temperatures of 35 ◦C, 45 ◦C, and 55 ◦C, respectively. The content of heptadecane
also depends on growth temperature. As growth temperature decreased from 55 ◦C to
45 ◦C and 35 ◦C, the amount of heptadecane increased by 25% and 49%, respectively,
suggesting an increase in membrane fluidity.

Nitrogen starvation caused a significant decline in the total amount of FAMEs and
hydrocarbons from 6–7% to about 4%. However, nitrogen starvation did not affect the
correlation between FAMEs and hydrocarbon composition and growth temperature. This
is consistent with previous findings that nitrogen starvation caused the degradation of the
intracellular membranes of Synechococcus elongates PCC 7942 [9].

2.4. Lipidomic Analysis Based on LC-MS/MS

In total, 56 polar glycerides in Thermosynechococcus E542 were identified, including
29 monogalactosyldiacylglycerols (MGDG), 20 digalactosyldiacylglycerols (DGDG), 3
sulfoquinovosyl-diacylglycerols (SQDG), and 4 phosphatidylglycerols (PG) (Table S1). To
the best of our knowledge, no prior reports on the lipidome of thermophilic cyanobacteria
based on LC-MS/MS have been found in the literature. Besides, our results showed that
Thermosynechococcus E542 could synthesise glycerides containing fatty acids with an odd
number of carbon atoms, such as C17:0 and C19:1. Glycerides containing odd-number fatty
acids were also observed in other cyanobacteria strains. Glycerides containing C17:1, C17:2,
and C17:3 were detected by two-dimensional liquid chromatography with quadrupole
time-of-flight mass spectrometry in Synechococcus sp. PCC 7002 [21]. Glycerides containing
C17:1 and C17:2 were identified in Synechocystis sp. PCC 6803 by easy ambient sonic-spray
ionisation mass spectrometry [22].

DGDG and MGDG were the most abundant polar lipids in Thermosynechococcus E542,
accounting for 54 ±1.6% and 37 ± 1.5 % of total polar lipids, respectively. The contents of
SQDG and PG were lower. Growth temperature did not significantly affect the absolute
amount of various polar lipids; the contents of DGDG, MGDG, PG, and SQDG were quite
close at all tested temperatures with the same nitrogen supply (Table 3). In addition, the ra-
tio of different lipids to total polar lipids remained stable under different culture conditions.
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Pittera et al. studied the effect of culture temperature on the lipidome of marine cyanobac-
teria Synechocuccus sp. WH7803. It was shown that the ratio of MGDG, DGDG, SQDG,
and PG remained stable at different temperatures, accounting for 45.4 ± 4.1%, 23.0 ± 3.6%,
24.1 ± 3.9%, and 7.5 ± 2.3% of total polar lipids, respectively [23]. The composition of
fatty acids in DGDG and MGDG changed with culture temperature, regardless of nitrate
supply (Table 3). The main DGDG species were DGDG (16:0/18:1), DGDG (16:0/16:1), and
DGDG (16:0/16:0), and these species accounted for more than 70% of DGDG. As growth
temperature decreased from 55 ◦C to 35 ◦C, the content of DGDG (16:0/16:1) substantially
increased from 19–25% to 50–60%, while the contents of DGDG (16:0/16:0) and DGDG
(16:0/18:1) significantly decreased. A similar pattern was observed for MGDG. At 55 ◦C,
MGDG (16:0/16:1) accounted for 21–27% of total MGDG, while, at 35 ◦C, its content greatly
increased to 47–64 %. Three SQDG species were detected in Thermosynechococcus E542.
Under all tested culture conditions, SQDG (16:0/16:0) accounted for more than 99% of all
SQDG species, which suggested that growth temperature and nitrogen supply did not
affect the structure of fatty acids in SQDG. Growth temperature also affected the structure
of fatty acids in PG, but the pattern was different than that of DGDG and MGDG. At
55 ◦C, the main PG species were PG (16:0/16:0), PG (16:0/16:1), and PG (18:0/16:0), which
accounted for 18–19%, 62–66%, and 16–19% of total PG, while PG (16:0/18:1) was not
detected. As growth temperature decreased to 35 ◦C, the content of PG (16:0/18:1) sharply
increased from 0 to more than 40%, while the content of PG (18:0/16:0) decreased from
16–19% to 0.

Table 3. Content of various lipids and their fatty acid composition of Thermosynechococcus E542.

35 ◦C 35 ◦C–NS 55 ◦C 55 ◦C–NS

MGDG content 1 17.8 ± 0.64 3 12.2 ± 0.10 18.6 ± 1.4 13.8 ± 0.48

MGDG (16:0/16:1) 63.8 ± 2.2 47.1 ± 1.1 27.8 ± 0.9 21.2 ± 0.2

MGDG (16:0/18:1) 21.4 ± 0.2 35.7 ± 0.3 35.1 ± 1.3 34.6 ± 0.2

Others 2 14.8 17.2 37.1 44.2

DGDG content 26.7 ± 0.26 19.1 ± 1.0 25.1 ± 0.66 21.1 ± 1.1

DGDG (16:0/18:1) 17.4 ± 0.3 25.4 ± 1.6 32.0 ± 0.5 36.3 ± 1.3

DGDG (16:0/16:1) 60.1 ± 1.5 50.9 ± 4.3 25.0 ± 0.5 19.2 ± 0.3

DGDG (16:0/16:0) 6.2 ± 0.1 5.9 ± 0.5 20.1 ± 0.3 14.7 ± 0.1

Others 16.3 17.9 22.9 29.9

SQDG content 3.70 ± 0.11 1.75 ± 0.01 2.32 ± 0.05 1.42 ± 0.07

SQDG (16:0/16:0) > 99

PG content 2.20 ± 0.07 1.44 ± 0.01 1.58 ± 0.01 0.94 ± 0.05

PG (16:0/16:0) 8.3 ± 0.1 7.2 ± 0.1 19.1 ± 0.5 17.5 ± 0.1

PG (16:0/16:1) 49.9 ± 1.2 42.5 ± 0.1 61.9 ± 0.4 66.2 ± 0.2

PG (16:0/18:1) 41.8 ± 1.1 50.3 ± 0.2 0 0

PG (18:0/16:0) 0 0 19.0 ± 0.2 16.4 ± 0.2
1 MGDG content means the content of MGDG in dried biomass, the unit is mg/g. 2 Others mean lipid molecules
with other fatty acid composition and this was calculated by subtracting the contents of given MGDG species
from 100%. 3 Data are expressed as means ± standard error (n = 3).

Nitrogen supply had a significant effect on the contents of various lipids at all tested
temperatures. With nitrate depleted, at 35 ◦C, the contents of MGDG, DGDG, SQDG, and
PG were reduced by 31%, 46%, 53%, and 35%, respectively, compared with nitrate-repleted
culture, while, at 55 ◦C, they were reduced by 26%, 16%, 39 %, and 41%, respectively.
Besides, the structure of fatty acids in specific lipids was also changed. However, these
patterns were not as clear as those observed for temperature changes.
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2.5. Content and Productivity of Carbohydrate and Elemental Composition of the Biomass

Growth temperature did not affect the content of carbohydrates significantly. As
shown in Figure 4, the samples cultivated in nitrogen-rich BG-11 medium contain only
14–17% of carbohydrates, leading to low carbohydrate productivity of 20–40 mg L−1d−1.
Elemental analysis shows that nitrogen accounts for 8–9% of the dry weight (Table 4), indi-
cating that the biomass comprises more than 50% protein (calculated using a conversion
factor of 6.25 from nitrogen to protein). Nitrogen starvation significantly promoted the con-
tent and productivity of carbohydrates. Maximal carbohydrate content and carbohydrate
productivity were obtained at 45 ◦C, which was 53.7% and 154 mg L−1d−1, respectively.
Meanwhile, the nitrogen content in the biomass declined by more than 50% from 8–9%
to about 4%. Combined treatment of low temperature and nitrogen starvation did not
improve carbohydrate content and carbohydrate productivity.
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Table 4. Elemental composition of different cultures.

Carbon Hydrogen Nitrogen Sulphur

35–48 h 39.40 ± 0.30 1 7.28 ± 0.29 8.09 ± 0.04 0.68 ± 0.01

35–NS 38.77 ± 0.09 8.22 ± 0.29 3.92 ± 0.12 0.49 ± 0.01

45–48 h 42.55 ± 0.55 8.86 ± 0.25 9.36 ± 0.18 1.03 ± 0.11

45–NS 41.03 ± 0.76 10.20 ± 0.02 3.93 ± 0.09 0.66 ± 0.02

55–48 h 44.05 ± 1.30 11.07 ± 0.01 8.95 ± 0.33 1.02 ± 0.02

55–NS 42.92 ± 0.01 10.54 ± 0.11 4.28 ± 0.02 0.81 ± 0.14
1 Data are expressed as means ± standard error (n = 3).

3. Discussion

Growth of Thermosynechococcus E542 at 35 ◦C, 20 ◦C lower than the optimal growth
temperature, led to significantly lower growth rate, biomass productivity, and pigment
contents. This is in accordance with the previous study suggesting that photoinhibition
of mesophilic cyanobacteria usually occurred at 15 ◦C lower than their optimal temper-
ature [6]. In addition, the abundance of pigments in mesophilic cyanobacteria could be
drastically altered during acclimation to low temperatures. Vonshak et al. found that, when
Arthrospira platensis strains M2 and Kenya were cultivated at 15 ◦C, the contents of Chla
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and PC were reduced by 59.6% and 60.9%, 56.5%, and 68.2%, respectively, compared with
those at 30 ◦C [13].

Nitrogen starvation also caused a significant decline in PBSs and Chla in non-diazotrophic
mesophilic cyanobacteria [4]. In line with these results, it was found that pigment contents
of Thermosynechococcus E542 were also reduced upon nitrogen starvation. Upon nitrogen
depletion, not only is synthesis of PBS in cyanobacteria depressed, but, also, rapid degra-
dation of PBS occurs. Nutrient starvation induced the expression of nblA gene, which is
essential for PBS degradation in cyanobacteria [24]. Our previous study confirmed the
existence of nblA gene in the genome of Thermosynechococcus E542. It was found that nblA
is responsible for cell bleaching upon nutrient depletion [11].

Nitrogen starvation led to reduced contents of pigments at all tested growth tempera-
tures. However, at 45 ◦C and 55 ◦C, 24-h nitrogen starvation did not affect the growth of
Thermosynechococcus E542. This suggests that a considerable proportion of pigments (more
than 50%) accumulated during growth in the nitrogen-rich medium can serve as a nitrogen
source during growth in the nitrogen-depleted medium. These findings are in accordance
with previous studies based on mesophilic cyanobacteria Synechococcus sp. PCC 7942 [25]
and Synechococcus sp. PCC 6803 [26]. Although growth at 35 ◦C also led to reduced pigment
contents, they were higher than those observed under nitrogen starvation treatment. How-
ever, growth rate and biomass productivity were significantly lower when cultivated at
35 ◦C than at 45 ◦C and 55 ◦C. This indicates that the decline in pigments should not be the
cause of reduced growth rate and biomass productivity. Combined treatment of nitrogen
starvation and low temperature caused the lowest growth rate, biomass productivity, and
pigment contents, suggesting that low temperature acclimation of Thermosynechococcus
E542 depends on nitrogen supply. Analysis of Chla fluorescence showed that the impact
of nitrogen starvation and low growth temperature on the electron transport chain are
different, although both treatments caused reduced pigment contents. The OJIP curves
showed typical multiphasic rises at all growth temperatures without nitrogen starvation,
but almost totally levelled off after 24-h nitrogen starvation.

The effect of nitrogen starvation and low temperature on the composition of fatty
acids and hydrocarbons was also different. During low-temperature acclimation, the
ratio of saturated fatty acids to unsaturated fatty acids and the content of heptadecane
increased, but the total amount of fatty acids and hydrocarbons was maintained constant. In
comparison, after 24-h nitrogen starvation, the total amount of fatty acids and hydrocarbons
decreased. Analysis of the lipidome based on LC-MS/MS showed that growth temperature
did not affect the absolute amount of various lipids in the biomass. However, the structure
of fatty acids in lipids was altered, although in different patterns for different lipid classes.
For MGDG and DGDG, species with a fatty acid composition of 16:0/16:1 increased
with decreasing temperature. In addition, for PG, the most significant change was that
PG (16:0/18:1) sharply increased with reduced temperature. On the other hand, the
composition of fatty acids in SQDG was not affected by temperature. In comparison,
nitrate depletion caused a significant decline in the absolute contents of various lipids. In
contrast, the change in fatty acid structure in specific lipids was not as apparent as observed
for temperature.

Low temperature and nitrogen starvation also had different impacts on the content
and productivity of carbohydrates. The low temperature did not increase the content
of carbohydrates but significantly reduced their productivity. However, the content and
productivity of carbohydrates were greatly enhanced upon nitrogen starvation. The content
and productivity of carbohydrates were higher than those of mesophilic cyanobacteria
strains Synechocystis sp. PCC6803 [26] and Synechococcus elongatus PCC7942 [27].

4. Materials and Methods
4.1. Cultivation of Cyanobacterium

Unless otherwise stated, cyanobacterium Thermosynechococcus elongatus PKUAC-
SCTE542 (hereafter, Thermosynechococcus E542 in abbreviation) deposited in the Freshwater
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Algae Culture Collection at the Institute of Hydrobiology (FACHB-2455) was cultivated
in BG-11 medium supplemented with 0.1 M NaHCO3, prepared by mixing one portion
of twofold BG-11 and one portion of 0.2 M solution of NaHCO3 in equal volumes. In
nitrogen starvation experiments, NaNO3 free BG-11 (BG11-N hereafter) was used instead
of standard BG-11. The strain was cultivated in a shaking incubator (Bluepard, Yiheng
Group, Shanghai, China) at 35, 45, or 55 ◦C, 120 rpm. The shaking incubator was modified
with white LED strips to provide two-sided LED lighting. Photosynthetic photon flux
density was 109 µmol m−2s−1 (measured with Lighting Passport, Asense Tek, Tainan,
China). The light/dark cycle was 23/1 for all experiments. Samples from precultures
were diluted in 150 mL fresh BG-11 medium in 500 mL Erlenmeyer flasks to OD730 of
0.12 ± 0.1, corresponding to 0.027 gL−1. After 24 h of incubation, the biomass was collected
by centrifugation at 10,000 rpm for 3 min and resuspended in fresh BG-11 or BG-11-N (for
nitrogen starvation experiments), supplemented with 0.1 M NaHCO3, and incubated for
another 24 h. All experiments were conducted in three biological replicas. At specific times,
an aliquot of the culture was withdrawn and OD730 was determined (UV-1800, Shimadzu
Corporation, Kyoto, Japan). The culture was diluted by fresh medium if OD730 exceeded
1.0. At 48 h, the biomass was collected by centrifugation at 10,000 rpm for 3 min, washed
with 30 mL deionised water, and freeze-dried for 48 h at −50 ◦C, 12 Pa (Freezone 2.5,
Labcon, USA). Specific growth rates (µ, d−1) were determined using biomass concentration
(gL−1) at the beginning and end of the exponential growth phase using Equation (1).

µ = (lnX2 − lnX1) / (t2 − t1) (1)

where X1 and X2 are biomass concentration at times t1 and t2, respectively.

4.2. Chla Fluorescence Transient Analysis

The fluorescence intensity of photosynthetic organisms shows polyphasic increases
upon dark to light transition from a low level of FO via two intermediates FJ and FI to a
maximum level of FM. Each rise phase can be related to a specific step of the reduction in
the ETC, and thus information on the state of the ETC can be obtained via analysis of the
OJIP transients. In general, the OJ step is related to the reduction in QA to QA

− and, hence,
the accumulation of QA

− QB, the JI step is related to the accumulation of QA
− QB

−, and
the IP step reflects an accumulation of QA

− QB
2− [16].

Polyphasic rise of Chla fluorescence transient (OJIP) measurements were conducted
using pulse amplitude magnitude (PAM) fluorimeter (AquaPen-C AP-C 100, Photon
Systems Instruments, Czech Republic) and FluorPen 1.0 software. All samples were
diluted with the same medium of the culture OD730 of 0.26 ± 0.01 and were incubated in
the dark for at least 15 min before measurements. Fluorescence was recorded at the same
temperature as the culture by housing the fluorimeter and the sample in the incubator.
Red-orange light (620 nm) of 3000 µmol m−2s−1 was used for saturating light pulses in the
fluorimeter. The PAM fluorimeter recorded the Chla fluorescence induced by the saturating
pulses between 20 µs and 1 s. The fluorescence intensity at 50 µs, 2 ms, and 30 ms was
designated as O, J, and I fluorescence, respectively, whilst P was the maximum fluorescence.
For more details about the procedure and parameters of OJIP, please refer to [28].

4.3. Measurement of Pigments

To determine Chla and carotenoids, 4 mL aliquot was withdrawn from the culture
and transferred to a 15 mL centrifuge tube and centrifuged at 15,000× g for 7 min. The
supernatant was discarded and 4 mL methanol precooled to 4 ◦C was added [29]. The
centrifuge tube was covered with aluminium foil and incubated at 4 ◦C for 20 min. After
being centrifuged at 15,000× g for 7 min, Chla and carotenoids dissolved in the supernatant
were determined by measuring optical absorbance at 470, 665, and 720 nm using methanol



Plants 2021, 10, 2101 10 of 13

as blank (UV-1800, Shimadzu Corporation, Kyoto, Japan). Concentrations of Chla and
carotenoids were calculated according to the following equations [30]:

Chla [µg/mL] = 12.9447 × (A665 − A720) (2)

Chla [µg/mg of biomass] = Chla[µg/mL] / biomass concentration[mg/mL] (3)

Carotenoids [µg/mL] = [1000 × (A470 − A720)− 2.86 × (Chla[µg/mL])]/221 (4)

Chla [µg/mg of biomass] = Chla[µg/mL] / biomass concentration[mg/mL] (5)

To determine phycobiliprotein, 1.5 mL culture suspension was transferred to cen-
trifuge tubes and was centrifuged at 15,000× g at 4 ◦C for 5 min. Collected biomass was
freeze-dried overnight. Subsequently, it was homogenised with 2 mm glass beads for 15 s
on a homogeniser. Then, 1.5 mL PBS buffer (pH 7.4) precooled to 4 ºC was added, and
the sample was mixed with PBS for 5 s on the homogeniser. After being kept on ice for
60 min, the sample was centrifuged at 15,000× g and 4 ◦C for 5 min. Concentrations of
phycobiliprotein and APC were quantified by measuring optical absorbance at 615, 652,
and 720 nm with a spectrophotometer (UV-1800, Shimadzu Corporation, Kyoto, Japan)
and were calculated as follows [31]:

PC [µg/mL] = ((A615 − A720)− 0.474 × (A652 − A720))/5.34 (6)

PC [µg/mg of biomass] = PC[µg/mL] / biomass concentration [mg/mL] (7)

APC [µg/mL] = ((A652 − A720)− 0.208 × (A615 − A720))/5.09 (8)

Chla [µg/mg of biomass] = Chla[µg/mL] / biomass concentration[mg/mL] (9)

4.4. Determination of FAMEs and Alkane

Analysis of fatty acid methyl esters (FAMEs) by in situ transesterification was con-
ducted according to the procedure published by the National Renewable Energy Laboratory
of the USA [32]. In brief, 5 mg biomass was transferred into a 1.5-mL GC vial. Subsequently,
20 µL of internal standard (C19:0), 200 µL of chloroform:methanol (2:1, v/v), and 300 µL of
0.6 M HCl:methanol were added. The tube was then incubated in a water bath at 85 ◦C for
1 h. After cooling to room temperature, 1 mL n-hexane was added to extract FAMEs and
heptadecane. The tube was vortexed and allowed to stand undisturbed for 1 h. FAMEs
and alkanes in n-hexane phase were analysed by gas chromatography (7890A, Agilent,
Santa Clara, CA, USA) equipped with a flame ionisation detector (FID) and DB-23 column
with a film thickness of 0.25 µm (30 m × 0.25 mm, length × internal diameter, Agilent
Technologies, Santa Clara, CA, USA). The injection volume was 1 µL with a split ratio of
10:1. The temperature of the inlet and FID was 250 ◦C and 280 ◦C, respectively. Helium
was used as a carrier gas at a constant flow rate of 1.0 mL·min−1. Programme of oven
temperature: 50 ◦C for 1 min, 25 ◦C·min−1 up to 175 ◦C and hold for 0 min, 4 ◦C·min−1

up to 230 ◦C and hold for 5 min. FAMEs and heptadecane were identified by comparing
elution time with a calibration standard. The concentration of FAMEs and heptadecane
was determined by comparing with internal calibration curves made of 5 points with C19:0
as an internal standard (R2 > 0.998).

4.5. Lipidomic Analysis

For lipid extraction, 1–2 mg freeze-dried biomass was transferred into a 2 mL cen-
trifuge tube. A total of 300 µL methanol was added, and the tube was vortexed for 20 s.
Subsequently, 1000 µL MTBE (methyl tertiary butyl ether) was added, and the tube was
vortexed for 5 min. Then, 250 µL deionised water was added, and the tube was vortexed
for 30 s. The tube was left to stand for 10 min and centrifuged at 14,000 rpm for 2 min. The
upper phase was transferred to a 2 mL vial and dried under nitrogen. Dried lipids were
solubilised by 1 mL chloroform–methanol (1:1, v/v) and kept at −20 ◦C.
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Separation of lipids was carried out by Dionex Ultimate 3000 UPLC equipped with
ZORBAX Eclipse Plus RRHD C18 column (2.1 mm × 100 mm × 1.8 µm, Agilent Technolo-
gies, Santa Clara, CA, USA). In positive ion mode, oven temperature was 50 ◦C, and total
flow rate was 0.300 mL/min. Solvent A was isopropanol–methanol–water (5:1:4, v/v/v)
supplemented with 5 mM NH4OAc and 0.1% CH3COOH. Solvent B was isopropanol–
water (99:1, v/v). Elution programme: 0–3 min, 0% B; 5 min, 20% B; 25 min, 30% B; 35 min,
95% B; 36 min, 95% B; 38 min, 0% B.

In negative ion mode, oven temperature was 45 ◦C. Total flow rate was 0.300 mL/min.
Solvent A was acetonitrile–water (60:40, v/v) containing 10 mM NH4OAc. Solvent B was
isopropanol–acetonitrile (90:10, v/v) containing 10 mM NH4OAc and 0.1% CH3COOH
(v/v). Elution programme was: 0–1.5 min, 32% B; 4 min, 45% B; 5 min 52% B; 8 min 58% B;
11 min 66% B; 14 min 70% B; 18 min, 75% B; 21 min, 97% B; 25 min, 97% B; 25.1 min, 32% B;
30 min, 32% B.

Mass analysis was conducted by a quadrupole–orbitrap hybrid mass analyser (Q
Exactive, Thermo Fisher Scientific, Wastham, MA, USA) equipped with HESI ion source.
Both positive and negative mode was used. Resolution power for full scan and data-
dependent MS/MS was 70,000 and 17,500, respectively. Spray voltage was 3.6 kV, capillary
temperature was 300 ◦C, and auxiliary temperature was 370 ◦C. Sheath gas flow rate was
60 Arb; auxiliary gas flow rate was 25 Arb. MS1 m/z range was 220–1700.

Identification of lipids was achieved by searching the Lipidsearch 4.1.16 (Thermo
Fisher Scientific, Waltham, MA, USA) database based on MS2, and was confirmed by
comparing with MS2 of calibration standards. Quantitation was based on the peak area
of MS1.

4.6. Determination of Carbohydrates and Elemental Analysis

The biomass was dissolved by a two-step sulphuric acid hydrolysis [33]. Firstly,
5 mg freeze-dried biomass and 50 µL 72 wt.% sulphuric acid was transferred into a 2 mL
stoppered centrifuge tube. The tube was incubated at 30 ◦C for 60 min, being vortexed
for 15 s every 15 min. Subsequently, 1.4 mL deionised water was added to dilute the
concentration of sulphuric acid to 4 wt.%. The biomass was then hydrolysed by 4 wt.%
sulphuric acids at 121 ◦C for 60 min in an autoclave (GF-DA, Zealway Instrument Inc.,
Wilmington, DE, USA). After being cooled to room temperature, the pH of the hydrolysate
was adjusted to 5.0–7.0 by calcium carbonate. Glucose in the hydrolysate was analysed
by high-performance liquid chromatography (Agilent 1260, Angilent Technologies, Santa
Clara, CA, USA). Agilent Hi-Plex Ca column with a particle size of 8 µm (300 mm × 7.7 mm,
length × internal diameter, Angilent Technologies, Santa Clara, CA, USA) was used to
separate glucose with deionised water as mobile phase at a flow rate of 0.6 mL·min−1.
The temperature of the oven and RI detector was 80 ◦C and 55 ◦C, respectively. The
concentration of glucose was determined by comparing with an external calibration curve
that consisted of five points (R2 > 0.9999).

Elemental analysis of C, H, N, and S was carried out on an elemental analyser (EA
2400 II, Perkin Elmer, Waltham, MA, USA) according to the manufacturer’s instructions. A
total of 1–2 mg freeze-dried biomass was weighted for each analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10102101/s1, Table S1: title, Profiles of polar lipids in thermophilic cyanobacterium
Thermosynechococcus E542.
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