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Abstract

Individual electronic health records (EHRs) and clinical reports are often part of a larger

sequence—for example, a single patient may generate multiple reports over the trajectory

of a disease. In applications such as cancer pathology reports, it is necessary not only to

extract information from individual reports, but also to capture aggregate information regard-

ing the entire cancer case based off case-level context from all reports in the sequence. In

this paper, we introduce a simple modular add-on for capturing case-level context that is

designed to be compatible with most existing deep learning architectures for text classifica-

tion on individual reports. We test our approach on a corpus of 431,433 cancer pathology

reports, and we show that incorporating case-level context significantly boosts classification

accuracy across six classification tasks—site, subsite, laterality, histology, behavior, and

grade. We expect that with minimal modifications, our add-on can be applied towards a wide

range of other clinical text-based tasks.

Introduction

Electronic health records (EHRs) are a prevalent and detailed source of health data—according

to the Office of the National Coordinator for Health Information Technology, as of 2017, 86%

of office-based physicians store health records electronically [1]. These EHRs record detailed

information from all the clinicians involved in a patient’s care—this can include demograph-

ics, progress notes, medications, vital signs, past medical history, immunizations, laboratory

tests and results, radiology reports, and more [2]. As a result, EHRs are an important tool for

public health surveillance and for monitoring communicable and chronic diseases [3].

One notable property of EHRs is that they often come in a sequence—a single patient or

case may generate multiple reports over time. Within the same sequence, EHRs are generally

related to each other in some manner; for example, the diagnosis of a disease in one EHR may

indicate additional tests for that disease in following EHRs, and later EHRs may document the
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treatment or progression of the disease. In some applications, for any given clinical report, it is

helpful or necessary to extract aggregate information using other reports in the sequence [4–

6]. An important example is cancer pathology reports—individual cancer pathology reports

may need to be tagged with aggregate labels that describe the cancer case as a whole, and these

aggregate labels require collective analysis of all pathology reports belonging to a given cancer

case.

Because of the sequential nature of EHRs, existing work has explored how to predict clinical

events, phenotype patients, and perform other medical tasks based off structured time-series

data extracted from a patient’s EHRs. For example, Cheng et. al. used a convolutional neural

network (CNN) based architecture on sequentially-ordered medical events (e.g., international

classification of disease codes) extracted from EHRs to predict the onset of Congestive Heart

Failure and Chronic Obstructive Pulmonary Disease [7], and Lipton et. al. used a recurrent

neural network (RNN) based architecture on a time-series of clinical measurements (e.g.,

blood pressure and heart rate) extracted from EHRs to diagnose diseases [8]. Additional exam-

ples of deep learning approaches on sequential structured data extracted from EHRs are avail-

able in review papers [9, 10]. To our knowledge, existing research that utilizes sequential

analysis of EHRs does not use raw natural language as input; rather, they utilize pre-extracted

features from EHRs, such as diagnosis codes, medication codes, and procedure codes. As a

result, relevant information in the form of natural language, such as those from clinical notes,

is not captured by these approaches.

Existing work has also explored how to extract useful information from natural language in

EHRs without incorporating any sequential context. For example, Mullenbach et. al. use a

CNN-based architecture to extract medical event codes from individual clinical notes [11],

and Jagannatha and Yu perform the same task utilizing an RNN-based architecture [12].

Recent work using Transformer-based architectures has also explored natural language infer-

ence and named entity recognition tasks on individual clinical notes [13]; notably, [14] utilizes

limited sequential context in hospital readmission classification by concatenating multiple

clinical notes from the same patient, but the final concatenated text is then split into short

chunks and each chunk analyzed independently. A more comprehensive list of NLP

approaches on individual clinical texts is available in review papers [9, 15, 16]. Because existing

natural language processing (NLP) approaches for clinical text process each document inde-

pendently from any others, any useful relationships between EHRs belonging to the same

patient or case are not captured.

There is a small body of existing research on incorporating sentence-level context for gen-

eral NLP tasks outside of the clinical domain. Dernencourt and Lee examined how sentence-

level context could be used to improve classification of short text sequences in day-to-day dia-

log [17], and Jin and Szolovits used a similar approach to examine how sentence-level context

could improve classification of individual sentences in biomedical and scientific abstracts [18].

The results from these works show that taking advantage of contextual information outside of

the target sentence boosts the performance of certain tasks. We propose building upon these

works and extending them to the domain of natural language in EHRs—we expect that perfor-

mance in information extraction from unstructured clinical text can be improved by account-

ing for contextual information from related text, such as those from other EHRs belonging to

the same patient or case.

In this paper, we present a simple modular add-on for capturing and utilizing sequential,

case-level context that is designed to be compatible with most existing deep learning architec-

tures for classifying individual documents. We focus on the task of classifying key data ele-

ments in sequences of cancer pathology reports; this is not only an essential task for cancer

surveillance and for supporting further cancer research, but it is also highly labor-intensive
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and could greatly benefit from automation. Using this task, we test our modular add-on with

two existing deep learning architectures—word-level CNNs [19], which are widely used across

many EHR-based applications [20–23], and hierarchical self-attention networks (HiSANs)

[24], the current state-of-the-art in cancer pathology report classification. We show that our

add-on improves the effectiveness of both networks in classifying six key data elements that

have been identified by the National Cancer Institute (NCI) Surveillance, Epidemiology, and

End Results (SEER) program as essential for cancer surveillance—site, subsite, laterality,

behavior, histology, and grade—using a corpus of approximately 430K cancer pathology

reports. We expect that with minimal modifications, our add-on may improve performance

across a wide range of other EHR- and clinical text-based tasks.

Materials and methods

Problem description

Suppose we have a sequence of n text-based EHRs (e.g., clinical notes) d0, d1, . . ., dn which are

ordered by the date the report was created. All reports in the sequence are related to each other

—for example, all reports belong to the same patient or case. Each report is associated with a

label yi, where yi is the label for the ith report. The task is to predict the labels yi for each docu-

ment di in the sequence.

In the baseline case, which has been explored in previous research, a machine learning or

deep learning model predicts the label yi for di independently from any other reports in the

sequence. In other words, yi = Predict(di). In this paper, we explore methods to incorporate

contextual information from all reports in the sequence, such that yi = ContextAwarePredict

(di|d0, . . ., dn).

To simulate applications in the real world, we apply restrictions based off two different sce-

narios. In the first scenario, when processing a report di, all other reports in the sequence are

available; the predictive model can utilize contextual information from other reports that came

both before and after the target report. This first scenario represents offline applications using

historical data where for any given patient/case, all EHRs for that patient/case are available.

In the second scenario, when processing a report di, only reports that came before di are

available; the predictive model can only utilize contextual information from reports that came

before the target report such that yi = ContextAwarePredict(di|d0, . . ., di−1). This second sce-

nario represents online applications where EHRs must be immediately processed as they arrive

and information from future reports does not yet exist.

Capturing case-level context

We explore five different methods for incorporating case-level context when extracting infor-

mation from text-based EHRs—concatenation, RNNs, RNNs with linear-chain conditional

random field (CRF), self-attention, and self-attention with linear-chain CRF. These are

described in greater detail in the following sections. Fig 1 illustrates the baseline case (without

incorporating case-level context) and each of the five methods.

Concatenation. The most simple and naive way to incorporate case-level context is to

concatenate all reports belonging to the same patient/case, as shown in Eq 1. Because the

model has access to information from all reports in the sequence, it can utilize information

from other reports for decision making on any given report.

yi ¼ Predictð½d0; . . . ; di; . . . ; dn�Þ ð1Þ

PLOS ONE Using case-level context to classify cancer pathology reports

PLOS ONE | https://doi.org/10.1371/journal.pone.0232840 May 12, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0232840


This strategy is only valid under the condition that all reports within a given sequence share

the same label; that is, yi = yj for all i and j in the sequence. For example, in our application, all

cancer pathology reports associated with the same unique tumor ID are tagged with the same

aggregate-level labels. This strategy fails under the condition where each report in the sequence

has a different label because the model would be forced to predict different labels from the

same input.

Another notable limitation of concatenation is that it significantly increases the length of

the input text that is fed into the model. Depending on the type of model used, this can cause

severe problems. For example, RNN-based models are extremely slow and difficult to train

when input sequences become too long [25, 26]; likewise, the memory required by self-atten-

tion-based models scales quadratically based off input length [27]. For long sequences where n
is large, many models may become prohibitively expensive in terms of time and/or space

Fig 1. The baseline case for classifying EHRs and the five methods for incorporating case-level context from other

reports. In the figures above, “Model” represents an arbitrary deep learning model designed for text classification, the

output of which is an embedding representation of the input document.

https://doi.org/10.1371/journal.pone.0232840.g001
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complexity. In our experiments, we found that even the memory-efficient text CNN [19] has

memory issues when the input sequence length exceeds 20K tokens, which was easily reached

when concatenating sequences of 20+ pathology reports.

Recurrent neural networks. RNNs are a type of neural network architecture designed to

process sequential information [28]. RNNs take in a series of inputs and produce a series of

outputs. At any given timestep in the series, the output of the RNN depends not only on the

input at the current timestep, but also on the inputs from all previous timesteps. This allows

RNNs to recognize meaningful patterns over a sequence of entries, such as a series of EHRs

over time.

The two most popular types of RNNs are long short-term memory (LSTMs) [29] and gated

recurrent units (GRUs) [30]. Whereas more basic RNNs treat every entry in a sequence with

equal importance, LSTMs and GRUs utilize gating operations to recognize when to save

important information and when to skip less relevant entries; this allows LSTMs and GRUs to

recognize more complex patterns over much longer sequences. In this work, we use GRUs

because they have previously performed slightly better than LSTMs on EHRs and biomedical

text [12, 31]. The operations for a GRU are shown below:

zt ¼ sðWz½ht� 1; xt� þ bzÞ

rt ¼ sðWr½ht� 1; xt� þ brÞ

ct ¼ tanhðWc½r � ht� 1; xt� þ bcÞ

ht ¼ ð1 � ztÞ � ht� 1 þ z � ct

ð2Þ

In the equations above, ct is the processed value of the current input, which is a combination of

the current input xt and previous output ht−1. rt is a “reset gate” that controls the influence of

the previous output ht−1 when calculating ct. Finally, zt is an “update gate” that determines how

to combine ct with the previous output ht−1 to generate the final output at the current timestep.

Each operation relies on a function based on a learned weight W and bias b and the concatena-

tion of the output from the previous timestep ht−1 and the input at the current timestep xt.
To capture case-level context from EHRs, we utilize a GRU in conjunction with an existing

deep learning text classification model designed to classify single reports, such as a text CNN

[19]. Generally speaking, deep learning models designed for text classification will first encode

a document into a final “document embedding”, which is then passed onto a softmax layer for

classification. The document embedding is usually generated by the penultimate layer of the

deep learning model, and it represents the most important information used to classify a given

document. Given a sequence of EHRs d0, . . .di, . . ., dn, we first use an existing deep learning

model to generate document embeddings e0, . . .ei, . . ., en for each report. We then feed these

into a GRU (with optional bidirectionality) as follows:

oi ¼ BiGRUðe0; . . . ; ei; . . . ; enÞ

yi ¼ SoftmaxðWsoi þ bsÞ
ð3Þ

where oi is the ith output generated by the GRU. oi is then fed into a softmax classifier or lin-

ear-chain CRF to generate the final label yi. When making a decision for any given EHR, the

GRU can take advantage of contextual information from other EHRs that came before (and in

the case of bidirectionality, after) that report.

Self-attention. Self-attention is a relatively new alternative to RNNs made popular by the

Transformer architecture [32]. Like RNNs, self-attention takes in a series of inputs and gener-

ates a series of outputs; however, self-attention has been shown to both achieve higher accuracy
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and run faster than RNNs on a wide range of NLP tasks [33–35]. In our work, we use an imple-

mentation similar to that from the original Transformer paper, which is described below:

Q ¼ ELUðConv1DðX þ P;WqÞ þ bqÞ

K ¼ ELUðConv1DðX þ P;WkÞ þ bkÞ

V ¼ ELUðConv1DðX þ P;WvÞ þ bvÞ

Self � AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffi
d
p

� �

V

ð4Þ

In the equations above, X 2 Rn�d is a matrix of the entries in the input sequence, where n is

the length of the sequence and d is the dimension size of each entry. P 2 Rn�d are positional

embeddings [36, 37] that represent the absolute position of each entry in the sequence—this

simply allows the self-attention module to capture information about the order of the entries

in the sequence. In our application, P is randomly initialized and learned through training. X
+ P is fed into three parallel 1D-convolution operations (with a window size of one entry and

exponential linear unit activation [38]) to extract three different feature representations of the

input sequence—Q, K, and V. Wq, Wk, Wv, bq, bk, and bv are the weights and biases associated

with each 1D convolution. The dot product of Q and K forms a n × n similarity matrix which

captures the relationships between each entry in the sequence. The final output is a new

sequence O 2 Rn�d
in which each entry has captured information from all entries in the origi-

nal sequence related to that entry.

For our implementation, we also utilize the multihead variant of self-attention, which splits

the self-attention operation into h parallel sub-attention operations. The inputs into self-atten-

tion are split across the d dimension such that fQi;Ki;Vi; g 2 R
n�d=h

; this enables each sub-

attention to focus on a different portion of the feature space and has been shown to give a

slight boost to performance [32]:

Multihead Self � AttðQ;K;VÞ ¼ ½h1; . . . ; hh�

where hi ¼ Self � AttentionðQi;Ki;ViÞ
ð5Þ

Like in the case of RNNs, to capture case-level context from EHRs, we use self-attention in

conjunction with an existing deep learning architecture for text classification. Given a

sequence of EHRs d0, . . .di, . . ., dn, we first use an existing deep learning model to generate

document embeddings e0, . . .ei, . . ., en for each report. This creates the input matrix E 2 Rn�d
,

which takes the place of X in Eqs 4 and 5; the self-attention operations then allow for capture

of contextual information from other EHRs in the sequence. The output from self-attention is

fed into a final softmax layer or linear-chain CRF for classification.

Softmax vs. linear-chain conditional random field. Our RNN and self-attention meth-

ods can utilize either a softmax or linear-chain CRF as the final layer for label generation.

Incorporating a linear-chain CRF instead of a softmax after an RNN has previously been

shown to improve performance on various general NLP sequence tagging tasks, such as in

part-of-speech tagging and named entity recognition [39].

PðyiÞ ¼
expðWsoi þ bsÞP
expðWsoi þ bsÞ

ð6Þ

We use the standard implementation of softmax for our softmax layer, which is described

in Eq 6. yi is the label associated the ith report in a sequence, oi is the RNN or self-attention
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output associated the ith report in a sequence, and Ws and bs are the learned weight and bias

parameters.

Pð�yÞ ¼
expðWcFð�o; �yÞÞP
expðWcFð�o; �yÞÞ

where Fð�o; �yÞ ¼ Fðyi� 1; yi; �o; iÞ

ð7Þ

We use the standard implementation of a linear-chain CRF layer for our CRF layer, which

is described in Eq 7. yi is the label associated the ith report in a sequence, �y is all labels associ-

ated with the sequence, oi is the RNN or self-attention output associated the ith report in a

sequence, �o is all outputs associated with the sequence, and Wc are the learned weight

parameters.

Compared to softmax, the main difference is that the linear-chain CRF utilizes a feature

function Fð�o; �yÞ rather than directly utilizing oi. When predicting yi, this feature function not

only utilizes oi to identify the correct label for yi but also incorporates the transition probabili-

ties between consecutive labels yi and yi−1 in a sequence. For example, in our specific applica-

tion of cancer pathology reports, all reports within the same sequence are tagged with the same

labels; therefore, the CRF should learn that given the label yi−1 of the previous entry, the proba-

bility of yi transitioning to a different label is extremely low.

Modular vs. end-to-end training. Except for the concatenation method, all other meth-

ods to capture case-level context are modular in that they can be trained independently from

an existing deep learning model for text classification in a two-step fashion. A user can choose

an existing deep learning text classification model designed to classify single documents, train

it on a corpus of EHR texts, and use the trained model to generate document embeddings for

each EHR; then, the user can train our case-level context module (e.g., RNN or self-attention

with or without CRF) independently on the resulting document embeddings. The benefit of

modular training is that it eliminates the necessity of engineering the RNN/self-attention/CRF

layers directly into an existing model architecture, which may potentially create overly cum-

bersome models that are computationally burdensome.

If desired, the RNN/self-attention/CRF layers can still be integrated directly into an existing

text classification model such that training is end-to-end. We compare the performance of

modular two-step training with end-to-end training using text CNNs and show that training

the RNN, self-attention, and CRF layers in a modular fashion results in similar performance

compared to end-to-end training.

Dataset

As part of the national cancer surveillance mandate, the SEER cancer registries collect data on

patient demographics, primary tumor site, tumor morphology, stage at diagnosis, and first

course of treatment. Tumor site and morphology are captured in the form of six key data ele-

ments—site, subsite, laterality, histology, behavior, and grade. These data elements are consid-

ered essential for SEER to provide an annual report on cancer incidence.

Our full dataset consists of 546,806 cancer pathology reports obtained from the Louisiana

and Kentucky SEER cancer registries. Data was utilized under a protocol approved by the

Department of Energy Central IRB. For our study, we use original pathology reports that did

not go through de-identification; this study qualified for a waiver of subject consent according

to 10 CFR 745.117(c).

Our dataset covers cancer cases of all types from Louisiana residents spanning the years

2004-2018 and Kentucky residents spanning the years 2009-2018. Each pathology report is
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associated with a unique tumor ID that indicates the specific patient and tumor for the

report—each tumor ID may be associated with one or more pathology reports. For example, a

patient may have an initial test to check for cancer at a particular site, secondary tests of neigh-

boring organs to see if the cancer has spread, and a followup test to see if the cancer has

developed.

Each unique tumor ID is tagged with aggregate ground truth labels for six key data ele-

ments—site, subsite, laterality, histology, behavior, and grade. These ground truth labels

were manually annotated by a human expert with access to all data relevant to each tumor

ID; this includes radiology reports and other clinical notes not available in our dataset. The

SEER cancer registries require that each individual cancer pathology report be labelled with

the aggregate tags belonging to its associated tumor ID. Therefore, all pathology reports

associated with the same tumor ID will have the same labels. Each pathology report is labeled

with one of 70 possible sites, 314 possible subsites, 7 possible lateralities, 4 possible behav-

iors, 547 possible histologies, and 9 possible grades; a detailed breakdown of number of

instances per label is available in S1 Fig of our supporting information. A notable challenge

in automated classification of cancer pathology reports, which is captured by our dataset, is

identifying the correct aggregate-level labels for each report in a tumor ID sequence, even if

some reports are addenda that may not contain the necessary information for all six data

elements.

A large number of cancer pathology reports in our dataset are associated with tumor IDs

that have only a single pathology report; in other words, these pathology reports do not have

any case-level context because there is only a single report in the sequence. Because these

reports do not require case-level context for analysis, they are filtered out of our dataset.

After filtering, our dataset consists of 431,433 pathology reports and 135,436 unique tumor

IDs; on average, each tumor ID is associated with 3.2 pathology reports. A more detailed his-

togram of the number of reports per tumor ID is available in S2 Fig of our supporting

information.

To simulate a production setting in which a model trained on older, existing reports must

make predictions on new incoming data, we split our dataset into train, validation, and test

sets based off date. We first group pathology reports by tumor ID. If any tumor ID is associated

with a report dated 2016 or later, all reports from that tumor ID are placed in our test set. On

the remaining reports, we use 80:20 random splitting to create our train and validation sets,

ensuring that reports from the same tumor ID are all placed in the train set or in the validation

set without being split between the two. This yields a train set of 258,361 reports, a validation

set of 64,906 reports, and a test set of 108,166 reports. Due to the long training time associated

with deep learning models, cross validation is not used.

We apply standard text preprocessing techniques including lowercasing text, replacing hex

and unicode, and replacing unique words appearing fewer than five times across the entire

corpus with an “unknown_word” token. A more detailed description of our text cleaning pro-

cess is available in our supporting information.

Baseline models

To capture case-level context, our RNN-based and self-attention-based approaches work in

conjunction with an existing deep learning text classification model, which is used to produce

the document embeddings for individual pathology reports. For this study, we utilize two deep

learning text classification models that have previously been shown to be highly effective for

classifying cancer pathology reports—a CNN [40, 41] and a HiSAN [24].
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The CNN is an adaptation of the common word-level CNN used for general NLP tasks

[19]—it examines combinations of three, four, and five consecutive words at a time and identi-

fies the most salient word combinations for a given task. The HiSAN is a newer approach that

utilizes a hierarchical structure based off self-attention to identify meaningful combinations of

words in a document; compared to the CNN, the HiSAN can capture longer-distance word

relationships that may be useful for a given task. To our knowledge, the HiSAN is the current

state-of-the-art in cancer pathology report classification. Because the CNN and HiSAN were

both developed on a similar dataset to ours, we use the exact same architecture and hyperpara-

meter settings as those described in the original publications; for additional details, we refer

the reader to the original papers.

Experiments

Setup details

Our experiments are designed to compare the performance of our five proposed methods to

capture report level context under different scenarios. For each of these five methods, we test

using both the CNN and the HiSAN as the baseline approaches. For the all methods other than

concatenation, the CNN and HiSAN are first trained independently on the individual reports

in our corpus (without case-level context), and then the resulting document embeddings are

saved and used as input. We test performance on six classification tasks on our corpus—site,

subsite, laterality, histology, behavior, and grade.

As described in our problem description, we test our methods under two conditions. In the

first, for any given pathology report in a sequence of reports, each method can access other

reports that came both before and after that report. In the second, each method can only access

other reports that came before that report. For the concatenation method, this is achieved by

concatenating only content from reports that came before the target report. For the RNN-

based method (with and without CRF), we use a unidirectional RNN that can only access

information from previous entries rather than a bidirectional RNN that can see both forward

and backward. In the self-attention-based method (with and without CRF), we add a masking

layer such that for any given entry in the sequence, self-attention will only find relationships

between that entry and previous entries in the sequence.

We tune the hyperparameters of our RNN-based method and self-attention-based method

using our validation set. For the RNN-based method, we use a GRU with hidden size 300, and

for the self-attention based method, we use multihead self-attention with 300 dimensions and

6 heads. As we noted previously, concatenation can be prohibitively expensive for more com-

plex models because the input documents can become very long. Therefore, we test the concat-

enation method using the CNN baseline model only, as the HiSAN was unable to fit the

concatenated documents into memory.

Except for concatenation, our approaches are designed to be modular in that they are

trained separately from the baseline model used to generate document embeddings. As an

additional experiment, we use the CNN baseline to compare the performance of the modular

setup to an end-to-end setup in which we integrate the RNN/self-attention/CRF layers directly

onto the end of the CNN and train the both parts together.

All methods are trained using a batch size of 64 and the Adam optimizer [42] with learning

rate of 1E-4. For each method, we train on the train set and then measure accuracy on the vali-

dation set after each epoch. We stop training when the validation accuracy fails to improve for

five consecutive epochs. We save the model parameters after the epoch with the highest valida-

tion accuracy and use those to evaluate on our test set.
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Evaluation metrics

For each of our six classification tasks, we evaluate performance using two metrics—accuracy

and macro F-score. We calculate macro F-score as follows:

Precisionc ¼
True Posc

True Posc þ False Posc

Recallc ¼
True Posc

True Posc þ False Negc

F1 Scorec ¼
2� Precisionc � Recallc
Precisionc þ Recallc

Macro F1 Score ¼
1

n

Xn

c¼i

F1 Scorec

ð8Þ

where n is the total number of possible classes within a given classification task and c is a spe-

cific class.

In any given task, accuracy measures the overall performance of each classifier across all

possible classes, and it does not disproportionally penalize the classifier for underperforming

on any one particular class. We note that in classification tasks such as ours in which each

report is assigned to exactly one class, accuracy is the same as micro F-score.

On the other hand, macro F-score is heavily influenced by the performance on the minority

classes. Therefore, macro F-score is an important metric because the distribution of label

occurrences is highly skewed in many of our tasks—a more detailed breakdown of instances

per label for each task is available in S1 Fig of our supporting information. When extracting

information from clinical reports, it is generally important to accurately identify occurrences

of rare medical conditions even if they do not appear very often. For both accuracy and F-

score, we establish 95% confidence intervals using a data bootstrapping procedure [43] that is

described in greater detail in our supporting information.

Results

Our experimental results are displayed in Table 1 for the CNN baseline and in Table 2 for the

HiSAN baseline. Across both the CNN and HiSAN baselines, all five methods of capturing

case-level context achieve significantly better accuracy than the baseline of not utilizing any

case-level context at all. In the unidirectional case where each classifier can only access context

from previous reports, self-attention with linear-chain CRF achieves the overall best accuracy

and macro F-scores. In the bidirectional case where each classifier can access both past and

future reports, self-attention achieves the overall best accuracy while self-attention with linear-

chain CRF achieves the best overall macro F-scores.

To further confirm the statistical significance of utilizing case-level context, we utilized

McNemar’s test [44], which generates a p-value indicating if two machine learning classifiers

have a different proportion of errors on the test set. We compared the predictions of each

method of capturing case-level context against the baseline model predictions without case-

level context; we compared each method using both the CNN and HiSAN, with and without

future reports, and on each of the six tasks. In all 108 comparisons between the method for

capturing case-level context and the baseline, McNemar’s test generated a p-value of<0.0001,

indicating with strong statistical significance that case-level context makes a difference in test

set accuracy.
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Table 1. Accuracy and macro F-Score (with 95% confidence intervals) of our different methods to capture case-level context on six different classification tasks

using the CNN as the baseline. The top row is our baseline without any report level context, the middle group shows results of methods than can access both future and

previous reports in a sequence, and the bottom group show results of methods that can only access previous reports in a sequence.

Site Subsite Laterality Histology Behavior Grade

CNN—Baseline 89.07 59.82 89.64 73.82 96.91 71.94

Accuracy (88.91, 89.21) (59.57, 60.05) (89.49, 89.79) (73.59, 74.03) (96.82, 96.99) (71.72, 72.15)

56.22 24.33 46.91 22.79 67.16 73.72

Macro F-Score (55.45, 56.83) (23.92, 24.89) (46.01, 47.83) (22.42, 23.46) (65.52, 68.93) (72.24, 74.95)

CNN w/ Concat All 91.95 64.17 92.44 78.26 98.49 80.13

Accuracy (91.74, 92.01) (63.72, 64.19) (92.28, 92.54) (78.12, 78.54) (98.40, 98.52) (79.84, 80.22)

58.62 22.57 51.81 21.67 74.58 75.21

Macro F-Score (57.91, 59.14) (22.08, 22.75) (51.19, 53.02) (21.23, 22.11) (71.85, 77.44) (74.74,79.72)

CNN w/ Bi-RNN 92.37 63.16 92.28 79.59 98.61 79.72

Accuracy (91.87, 92.37) (62.78, 63.68) (92.01, 92.51) (78.90, 79.63) (98.48, 98.70) (79.26, 80.00)

62.14 27.42 49.89 32.29 73.83 79.03

Macro F-Score (60.26, 62.66) (26.16, 27.46) (46.91, 50.33) (30.65, 32.56) (69.56, 78.16) (78.66, 80.02)

CNN w/ Bi-RNN + CRF 92.26 63.03 92.29 79.27 98.64 80.66

Accuracy (91.97, 92.45) (62.65, 63.59) (92.21, 92.69) (78.62, 79.35) (98.50, 98.71) (80.53, 81.27)

64.17 32.88 47.22 33.85 76.22 79.31

Macro F-Score (63.89, 66.79) (31.87, 33.49) (44.75, 51.84) (33.88, 35.78) (74.28, 82.98) (78.79, 80.20)

CNN w/ Self-Attention 92.60 64.40 92.49 80.55 98.73 82.68

Accuracy (92.32, 92.79) (63.94, 64.84) (92.22, 92.67) (79.89, 80.66) (98.57, 98.78) (82.19, 82.87)

61.92 30.20 47.52 35.27 71.48 82.55

Macro F-Score (60.75, 62.80) (29.73, 31.20) (46.36, 50.64) (34.02, 35.73) (70.06, 79.63) (81.59, 82.70)

CNN w/ Self-Att + CRF 92.30 62.53 92.15 78.81 98.79 82.08

Accuracy (92.12, 92.60) (62.15, 63.06) (91.95, 92.45) (78.33, 79.07) (98.72, 98.92) (82.18, 82.87)

65.41 34.46 49.29 37.62 79.22 81.27

Macro F-Score (64.67, 67.70) (33.00, 34.62) (46.16, 53.53) (36.09, 37.81) (73.90, 82.66) (80.79, 82.13)

CNN w/ Concat Previous 90.42 62.20 91.47 76.20 97.78 75.52

Accuracy (90.34, 90.62) (61.94, 62.39) (91.29, 91.57) (75.85, 76.26) (97.73, 97.88) (75.42, 75.84)

56.53 22.25 47.43 20.41 67.44 77.62

Macro F-Score (55.86, 57.11) (21.90, 22.68) (46.22, 48.10) (20.15, 21.02) (66.81, 70.65) (73.61, 78.28)

CNN w/ RNN 90.60 61.88 91.43 76.01 97.96 76.49

Accuracy (90.39, 90.91) (60.99, 61.92) (91.20, 91.73) (75.55, 76.32) (97.81, 98.07) (76.15, 76.93)

56.78 26.11 45.73 28.79 71.15 76.80

Macro F-Score (55.68, 58.01) (24.84, 26.10) (44.30, 52.28) (28.03, 29.77) (69.74, 78.59) (75.77, 77.22)

CNN w/ RNN + CRF 90.82 61.50 91.37 76.53 98.32 77.23

Accuracy (90.56, 91.09) (60.73, 61.63) (91.25, 91.78) (76.07, 76.85) (98.18, 98.41) (76.98, 77,72)

60.19 30.24 47.65 32.57 73.05 76.11

Macro F-Score (59.01, 61.86) (29.71, 31.37) (45.04, 48.61) (31.21, 33.01) (69.10, 78.35) (75.92, 77.29)

CNN w/ Masked Self-Att 90.63 61.72 91.35 76.66 98.19 76.88

Accuracy (90.36, 90.88) (60.89, 61.82) (90.90, 91.45) (75.92, 76.71) (97.91, 98.17) (76.33, 77.13)

59.48 29.42 47.44 30.67 71.33 76.69

Macro F-Score (57.80, 60.40) (27.78, 30.30) (45.02, 49.31) (29.53, 31.32) (68.46, 77.09) (75.68, 77.12)

CNN w/ M. Self-Att + CRF 91.06 62.00 91.84 77.08 98.40 80.54

Accuracy (90.88, 91.41) (61.55, 62.42) (91.38, 91.89) (76.50, 77.27) (98.32, 98.54) (80.14, 80.88)

61.09 30.98 48.14 33.95 78.66 79.92

Macro F-Score (60.20, 63.52) (30.71, 32.37) (47.10, 51.60) (32.86, 34.69) (71.72, 80.88) (79.09, 80.43)

https://doi.org/10.1371/journal.pone.0232840.t001
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Across all methods, the unidirectional approach in which the network can only access ear-

lier reports performs worse than the bidirectional approach in which the network can access

both earlier and future reports. This makes intuitive sense because the unidirectional

approaches have access to less information. In our particular application, the ground truth

labels are identified based off all reports in the sequence; therefore, for any given report, future

reports may be relevant for accurately predicting the ground truth label. Despite this, our

results show that the unidirectional approaches still significantly outperform the baseline of no

case-level context.

Table 2. Accuracy and macro F-Score (with 95% confidence intervals) of our different methods to capture case-level context on six different classification tasks

using the HiSAN as the baseline. The top row is our baseline without any report level context, the middle group shows results of methods than can access both future and

previous reports in a sequence, and the bottom group show results of methods that can only access previous reports in a sequence.

Site Subsite Laterality Histology Behavior Grade

HiSAN—Baseline 90.06 61.94 89.97 75.00 96.88 73.10

Accuracy (89.90, 90.20) (61.71, 62.17) (89.81, 90.12) (74.78, 75.21) (96.80, 96.96) (72.87, 73.30)

62.98 30.31 51.46 33.20 79.73 74.45

Macro F-Score (62.07, 63.69) (29.95, 31.10) (50.64, 52.37) (32.36, 33.88) 77.23, 81.89) (72.80, 75.79)

HiSAN w/ Bi-RNN 92.71 67.07 93.11 80.50 98.86 84.37

Accuracy (92.49, 92.96) (66.83, 67.69) (92.78, 93.26) (80.01, 80.75) (98.85, 99.04) (84.50, 85.17)

67.63 37.26 52.72 38.26 82.81 83.69

Macro F-Score (65.69, 68.57) (35.88, 37.69) (51.24, 56.81) (37.74, 39.77) (77.36, 86.03) (83.29, 84.82)

HiSAN w/ Bi-RNN + CRF 92.44 66.66 92.59 79.82 98.75 84.35

Accuracy (92.25, 92.75) (66.10, 66.98) (92.34, 92.80) (79.61, 80.34) (98.61, 98.82) (83.79, 84.46)

67.92 39.54 53.17 41.62 83.42 83.80

Macro F-Score (66.61, 69.39) (37.81, 39.81) (51.40, 56.83) (39.75, 41.74) (80.42, 86.70) (83.00, 84.20)

HiSAN w/ Self-Attention 93.03 68.03 93.48 81.03 98.98 85.72

Accuracy (92.99, 93.47) (67.72, 68.61) (93.15, 93.62) (80.64, 81.37) (98.88, 99.06) (85.44, 86.07)

68.04 39.01 55.56 38.70 85.98 86.12

Macro F-Score (65.91, 68.25) (37.44, 39.23) (51.97, 61.50) (38.06, 39.98) (82.13, 89.89) (85.76, 86.57)

HiSAN w/ Self-Att + CRF 92.52 66.83 92.80 80.36 98.96 84.97

Accuracy (92.34, 92.83) (66.54, 67.44) (92.59, 93.05) (80.01, 80.74) (98.79, 98.99) (84.44, 85.09)

68.17 40.70 54.74 43.12 87.67 85.35

Macro F-Score (66.77, 69.66) (39.59, 41.47) (52.77, 57.99) (42.58, 44.56) (81.70, 89.35) (84.56, 85.51)

HiSAN w/ RNN 91.37 64.13 91.81 77.08 98.24 79.15

Accuracy (91.18, 91.70) (64.06, 64.96) (91.71, 92.21) (76.56, 77.30) (98.14, 98.38) (78.77, 79.49)

63.59 34.50 46.81 33.42 79.54 79.22

Macro F-Score (62.40, 65.41) (32.61, 34.83) (47.53, 51.81) (33.19, 35.18) (74.15, 82.77) (78.60, 79.96)

HiSAN w/ RNN + CRF 91.92 65.56 92.38 77.76 98.61 81.80

Accuracy (91.53, 92.03) (65.14, 65.99) (92.29, 92.78) (77.43, 78.18) (98.43, 98.66) (81.82, 82.55)

65.62 36.99 50.38 38.76 85.25 81.58

Macro F-Score (64.84, 67.95) (36.45, 38.43) (49.79, 59.41) (38.43, 40.45) (77.71, 86.18) (81.10, 82.32)

HiSAN w/ Masked Self-Att 91.50 64.82 91.94 77.54 98.20 79.38

Accuracy (91.26, 91.77) (64.56, 65.42) (91.87, 92.37) (77.13, 77.86) (98.15, 98.39) (79.12, 79.86)

63.81 35.32 50.34 36.00 81.77 80.29

Macro F-Score (62.66, 65.73) (34.07, 35.88) (49.09, 55.02) (34.91, 36.93) (76.55, 84.38) (79.27, 80.55)

HiSAN w/ M. Self-Att + CRF 92.11 65.57 92.66 79.22 98.85 83.64

Accuracy (91.75, 92.24) (65.47, 66.32) (92.45, 92.92) (78.74, 79.49) (98.65, 98.88) (83.10, 83.77)

65.69 37.85 52.22 39.17 86.10 83.00

Macro F-Score (64.82, 67.96) (37.21, 39.17) (50.93, 54.85) (37.16, 39.28) (81.15, 88.75) (81.53, 83.86)

https://doi.org/10.1371/journal.pone.0232840.t002

PLOS ONE Using case-level context to classify cancer pathology reports

PLOS ONE | https://doi.org/10.1371/journal.pone.0232840 May 12, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0232840.t002
https://doi.org/10.1371/journal.pone.0232840


Once again, we utilize McNemar’s test to confirm the statistical significance of the differ-

ence between unidirectional and bidirectional approaches. For each method, we compare the

unidirectional results against the results of the bidirectional counterpart; this is done for both

the CNN and HiSAN on each of the six tasks. Out of 54 comparisons, McNemar’s test gener-

ated a p-value of<0.0001 in all but five tests (see S1 Table of our supporting information for

detailed results), indicating with strong statistical significance that the bidirectional approach

gives different predictions on the test set than the unidirectional approach.

Our results in Tables 1 and 2 indicate that incorporating case-level context results in higher

macro F-scores across all tasks than the baseline, indicating that case-level context improves

performance on the rare classes. To further verify this, in S2 Table of our supporting informa-

tion, we break down the performance by individual class label for the CNN and HiSAN with-

out case-level context, with unidirectional case-level context (masked self-attention with CRF),

and with bidirectional case-level context (self-attention with CRF) on site, laterality, histology,

behavior, grade. We observe the general trend that across all tasks and the vast majority of clas-

ses, bidirectional case-level context gives the best f-score, unidirectional case-level context

gives the second best, and no case-level context performs the worst—the few exceptions only

occur in classes with extremely few training instances (mostly in classes that make up<0.2%

of the training data).

In S3 Table of our supporting information, we also show the performance comparison of

our modular methods with their end-to-end equivalents using the CNN baseline model. To

attain the best performance in end-to-end training, we first pretrain the CNN portion of the

model independently, then train the entire model (both the CNN and RNN/self-attention/

CRF portions) using end-to-end training. Therefore, the main difference between the modular

training method and the end-to-end training method is that in the end-to-end method, the

CNN weights can be further fine-tuned during the contextual training portion.

Compared to modular two-step training, end-to-end training is neither consistently better

nor worse in terms of accuracy and macro F-score; performance varies by task. Across the dif-

ferent tasks and approaches, modular training usually achieves within 1% relative accuracy

compared to end-to-end training. We believe that these results support the view that users can

utilize our modular approaches for capturing case-level context and attain similar or better

performance compared to a more complicated end-to-end approach with an equivalent

architecture.

Discussion

As discussed in our methods section, deep learning approaches for text classification generally

encode an input document into a document embedding representation, which is then used for

classification purposes. Our methods to capture case-level context transform these document

embeddings such that they account for information from other relevant reports in the

sequence. We can visualize the document embeddings before and after our modular add-ons

to better understand the transformations that are taking place.

In Fig 2, we show the document embeddings of our pathology reports on the site task gen-

erated by the HiSAN without case-level context (left) and the HiSAN with the self-attention

method for capturing case-level context (right). The top pair of subfigures visualizes all docu-

ment embeddings from our test set, colored by the ground truth organ system. We notice that

clusters generated by the HiSAN with case-level context are slightly cleaner than the baseline

HiSAN—there is less overlap between clusters and there are fewer subclusters within each

organ system. This suggests that adding case-level context improves the HiSAN’s ability to dis-

tinguish between pathology reports belonging to different organ systems.
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The bottom pair of subfigures show only the document embeddings of misclassified reports

in the test set, colored by the ground truth organ system. This visualization allows us to better

understand the types of errors that each approach makes. Based off the figure, we observe two

general types of errors: (1) within-cluster misclassifications, in which the misclassified report

is still clustered in the correct organ system, and (2) out-of-cluster misclassifications, in which

the misclassified report is placed in an incorrect organ system. We see that adding document-

level context reduces out-of-cluster errors compared to the baseline.

To gain a more in-depth understanding of the nature of the errors in our experiments, we

randomly sampled 200 pathology reports that were misclassified by the baseline HiSAN (no

case-level context) and manually examined the text of the pathology report. We then added

the self-attention modular add-on and reclassified the same 200 reports to see which types of

errors are resolved by incorporating case-level context.

Fig 2. The top two subfigures show the cancer site document embeddings generated by the HiSAN for each

pathology report in our test set with and without the self-attention module for capturing case-level context. The

bottom two figures only show the document embeddings of misclassified reports in our test set. All document

embeddings are colored by the ground truth organ system and visualized using t-SNE.

https://doi.org/10.1371/journal.pone.0232840.g002
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Based off our manual examination, we identified two general categories of errors, which

respectively correspond with the out-of-cluster and in-cluster misclassifications in Fig 2. In the

first category of errors, the report either (1) does not appear to contain any information associ-

ated with the ground truth site or (2) mentions two or more (usually metastatic) sites; this is

most likely because the report is an addendum or biopsy of a secondary or metastatic site. The

baseline HiSAN therefore mispredicts the (non-ground truth) site that is mentioned in the

report. Out of 200 randomly sampled reports, 80 reports fell into this category.

Adding case-level context can effectively deal with this type of error because the ground-

truth label is almost always contained in another report in the sequence. Of the 80 reports mis-

classified by the baseline HiSAN in this first category, adding case-level context rectified 61 of

the reports (76%).

In the second category of errors, the predicted site is a neighboring organ of the ground

truth site or is within the same organ system as the ground truth site. Our manual analysis

revealed that there is often overlap in the language used to describe organs within certain

organ systems—for example, the ground truth site may be the rectosigmoid junction but the

report may also mention the colon, or the ground truth site may be the cervix but the report

may also mention the uterus. For these reports, we attempted to manually classify the site our-

selves without knowing the ground truth site or the HiSAN’s predicted site, and more often

than not we made the same prediction as the HiSAN; this indicates that language used in the

reports is confusing not just for the HiSAN but also for an inexperienced human annotator.

Four commonly confused groups of sites were (1) between C42 hematopoietic and reticuloen-

dothelial systems, C44 skin, and C77 lymph nodes, (2) between C51 vulva, C52 vagina, C53

cervix, and C54 uterus, (3) between C64 kidney, C65 renal pelvis, C66 ureter, and C67 bladder,

and (4) between C18 colon, C19 rectosigmoid junction, C20 rectum, and C21 anus.

This second category of errors also includes reports associated with ill-defined sites (C76),

unknown sites (C80), or a general catch-all site for a particular organ system (e.g., C57 unspec-

ified female genital organs). In these reports, the ground truth site is one of these ill-defined

sites despite the report mentioning specific organs or cancer sites. Out of 200 misclassified

reports examined, 120 reports fell into this second category.

Adding case-level context is less effective for dealing with this second category of errors

because these confounding effects typically exist across all reports in the sequence; however,

incorporating contextual clues from other reports may help narrow down the correct site. Of

the 120 reports misclassified by the baseline HiSAN in this second category, adding case-level

context rectified 35 of the reports (29%).

By visualizing the document embeddings from only the reports associated with a single

tumor ID, we can show how adding case-level context affects the information captured in indi-

vidual document embeddings. In Fig 3, we visualize the trajectories of the document embed-

dings belonging to four unique tumor IDs, colored by the predicted organ system. We see that

the document embeddings generated by the HiSAN without case-level context are spread out

over the embedding space—this is generally because each pathology report in a sequence may

contain slightly different information, and as mentioned previously, multiple sites may be

tested to check the spread of cancer to additional sites. Furthermore, there may be multiple dif-

ferent primary sites identified within the same tumor ID trajectory, likely because certain

reports may contain information about secondary or metastatic sites. This is problematic

because we wish to assign the same tumor-level labels to all reports belonging to the same

tumor ID.

Once case-level context is incorporated, all document embeddings from the same tumor ID

are placed in the exact same location—this is appropriate for our application because all

pathology reports associated with the same tumor ID should have the exact same label.
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Furthermore, in the examples shown, all reports in the same trajectory are assigned the same

label and thus misclassifications caused by secondary or metastatic sites are eliminated. We

note that this type of trajectory analysis may be useful for identifying addendum-type and met-

astatic-type reports, which tend to be the pathology reports whose document embedding posi-

tion shifts significantly and/or label changes once case-level context is included.

Conclusion

In this paper, we showed how adding a modular component for capturing case-level context

on top of an existing deep learning text classification model designed for individual documents

can improve classification accuracy of aggregate-level labels for cancer pathology reports. We

compared the performance of five methods for capturing case-level context—concatenation,

RNNs, RNNs with linear-chain CRF, self-attention, and self-attention with linear-chain CRF

—and showed that all five achieved better accuracy than the baseline of no case-level context

across six classification tasks. In the unidirectional case where each classifier can only access

context from previous reports, self-attention with linear-chain CRF achieves the overall best

accuracy and macro F-scores. In the bidirectional case where each classifier can access both

past and future reports, self-attention achieves the overall best accuracy while self-attention

with linear-chain CRF achieves the best overall macro F-scores.

Other than concatenation, our approaches are designed as modular add-ons that are easy to

train on top of an existing deep learning text classification model built for individual docu-

ments. We show that our modular design, which uses a two-step training approach, has very

similar performance to an identical end-to-end architecture, which requires far more engi-

neering and may be prohibitively expensive in terms of time and memory for complex baseline

models.

Fig 3. The cancer site document embeddings generated by the HiSAN for the pathology reports associated with

four unique tumor IDs, with and without the self-attention module for capturing case-level context. These figures

share the same axes as Fig 2 and thus can be directly compared. Within each of the four trajectories, document

embeddings are numbered from earliest to latest and are colored by the predicted organ system. We notice that

without case-level context, reports belonging to the same tumor ID are classified under different organ systems.

Adding case-level context addresses this problem and all document embeddings from the same tumor ID are placed in

the same location in the embedding space.

https://doi.org/10.1371/journal.pone.0232840.g003
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In our experiments, we demonstrated the effectiveness of our approach in the application

for cancer pathology reports, where a sequence of reports belonging to a unique tumor ID

were all tagged with the same aggregate-level labels. We expect that with minimal modifica-

tions, our approaches can be applied towards a wide range of other EHR- and clinical text-

based tasks. In future work, we plan to extend our experiments to clinical applications where

each clinical report in a sequence is tagged with a different label, such as using a patient’s previ-

ous clinical notes to inform the extraction of diagnosis or treatment codes from a given clinical

report. The code used for our experiments is available online at https://github.com/

iamshang1/Projects/tree/master/Papers/Case_Level_Context.

Detailed experimental procedures

Pathology report preprocessing procedure.

1. Remove identifier segments (registry ID, patient ID, tumor number, and document ID)

2. Remove XML tags

3. Lowercase

4. Replace tabs with spaces, but retain line breaks

5. Remove periods in the abbreviations “dr.”, “am.”, and “pm.” (this allows splitting lines by

periods later)

6. Remove periods in floats by replacing all instances of floats with the string “floattoken”

(this allows splitting lines by periods later)

7. Replace all integers higher than 100 with the string “largeinttoken” (to reduce the number

of unique tokens associated with numbers)

8. Convert unicode to ASCII

9. If the same non-alphanumeric character appears consecutively more than once, replace it

with a single copy of that character

10. Add a space before and after every non-alphanumeric character

11. Replace any token that appears less than 5 times across the entire corpus with the string

“unknowntoken”

12. For the HiSAN input, split the document by naturally occurring linebreaks.

13. For the HiSAN input, split lines longer than 50 words by any character in the Linebreak

Characters Set 1 (listed below)

14. For the HiSAN input, split lines still longer than 50 words by any character in the Line-

break Characters Set 2 (listed below)

15. Replace each word token with the appropriate Word2Vec embedding

Linebreak characters set 1.

• .

• :

• ;

• /
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• ?

• ~

• �

• <

• #

Linebreak characters set 2.

• any standalone single letter except ‘a’ (many reports use single letters to itemize lists)

• ,

• -

• _

• =

Bootstrapping procedure for confidence interval.

1. For each model and classification task, save the model’s predictions on the test set (hereon

referred to as the original predictions)

2. Randomly select predicted labels (with replacement) from the original predictions to cre-

ate a new set of predicted labels of the same size as the test set (hereon referred to as boot-

strapped set)

3. Calculate accuracy and macro F-score on bootstrapped set

4. Repeat steps (2) and (3) 1000 times, saving the scores each time

5. Calculate the 95% confidence interval for accuracy and macro F-score by finding the 2.5

and 97.5 percentile entry for that metric within the 1000 runs (since F-score is not nor-

mally distributed)

Supporting information

S1 Fig. (a) Histograms of the number of occurrences per label for each of the six classification

tasks, arranged from most common to least common. For the site, subsite, and histology tasks,

we only show the 50 most common labels. Detailed information about each label can be found

online in the SEER coding manual at https://seer.cancer.gov/tools/codingmanuals/. (b) Histo-

grams of the number of occurrences per label for each of the six classification tasks, arranged

from most common to least common. For the site, subsite, and histology tasks, we only show

the 50 most common labels. Detailed information about each label can be found online in the

SEER coding manual at https://seer.cancer.gov/tools/codingmanuals/.

(TIF)

S2 Fig. Histogram of number of pathology reports associated with each unique tumor ID.

(TIF)

S1 Table. McNemar’s tests of statistical significance.

(PDF)

S2 Table. Case-level context F-score breakdown by class.

(PDF)
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S3 Table. Modular vs end-to-end training.

(PDF)
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