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ABSTRACT

High-resolution three-dimensional models of
Caulobacter crescentus nucleoid structures were
generated via a multi-scale modeling protocol.
Models were built as a plectonemically supercoiled
circular DNA and by incorporating chromosome
conformation capture based data to generate an
ensemble of base pair resolution models consistent
with the experimental data. Significant structural
variability was found with different degrees of
bending and twisting but with overall similar
topologies and shapes that are consistent with
C. crescentus cell dimensions. The models allowed
a direct mapping of the genomic sequence onto
the three-dimensional nucleoid structures. Distinct
spatial distributions were found for several genomic
elements such as AT-rich sequence elements where
nucleoid associated proteins (NAPs) are likely to
bind, promoter sites, and some genes with common
cellular functions. These findings shed light on the
correlation between the spatial organization of the
genome and biological functions.

INTRODUCTION

Much is known about the gene organization within
genomes, but the detailed three-dimensional (3D) struc-
ture of chromosomes has so far remained elusive. Gene–
structure–function relationships at the DNA level are
poorly understood as is the role of chromosomal structure
in many cellular processes such as DNA transcription, repli-
cation and segregation. Two experimental approaches, flu-
orescence in situ hybridization (FISH) (1) and the recently
introduced chromosome conformation capture (3C) tech-
niques (2), especially the whole-genome sequencing variants
(Hi-C) (3), have opened up new possibilities for understand-
ing how chromosomes are folded inside the cell. FISH mea-
sures the spatial distance between two DNA segments in

single cells thereby providing a direct visualization of the
relative positioning of different loci in a given chromosome.
Hi-C methods generate genome-wide contact probabilities
between loci based on crosslinking from the population of
many cells. Such crosslinking contact probabilities contain
information about spatial proximities between genomic ele-
ments and, therefore, 3D structure ensembles of chrosomo-
mes.

High-resolution structural insight of bacterial chromo-
somes has been derived from FISH (1,4–15) and 3C-based
techniques (16–22). Bacterial chromosomes form highly
compact structures that are induced by DNA supercoiling
and further stabilized through the binding of nucleoid as-
sociated proteins (NAPs) (23,24). Further investigations of
the global organization of bacterial chromosomes have re-
vealed certain features of highly-organized chromosomal
structure (6,8,25). In Caulobacter crescentus, the origin and
terminus of replication are located at opposite poles of a
longitudinally organized chromosome. This is referred to
as an ori-ter configuration (6). This configuration has also
been confirmed from 3C experiments on the C. crescen-
tus genome (17,21). Chromosome Conformation Capture
Carbon Copy (5C) study reported an ellipsoidal chromo-
some with periodically arranged arms, further confirming
a longitudinal organization (21). Moreover, a Hi-C study
on the same bacterium revealed that the C. crescentus chro-
mosome consists of multiple chromosome interacting do-
mains (CIDs) with highly expressed genes located at do-
main boundaries (17). On the other hand, the chromosome
of Escherichia coli contains four macrodomains (Ori, Ter,
Left and Right) with their localization being dependent
on different stages in the cell cycle (1). Ori and Ter do-
mains were also identified from 3C-based studies (16). In
the chromosome of slow-growing Escherichia coli cells, the
origin and terminus of replication are located at mid-cell
locations whereas the right and left chromosomal arms re-
side in separate cell halves (5,8). This has been termed a
left-ori-right pattern. On the other hand, the chromosome
adopts an ori-ter configuration in fast-growing E. coli cells
as these macrodomains localize at opposite poles of the cell
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(9). The Bacillus subtilis chromosome is organized into a
similar configuration alternating between ori-ter and left-
ori-right patterns depending on the cell cycle phase as in E.
coli (7,26). CIDs have also been observed in the B. subtilis
chromosome (19,22).

NAPs play a crucial role in the observed organization of
bacterial chromosomes (24,27). One of the most abundant
NAPs is H-NS which is prominently found in E. coli. H-
NS has been reported to bridge different segments of the
genome (28,29) and control supercoiling of the DNA (30).
This suggests an active role in nucleoid organization. HU,
another ubiquitous NAP in bacteria, has been found to
influence chromosome compaction by wrapping the DNA
around itself analogous to histones in eukaryotes (17,27).
Integration host factor (IHF) and Fis (factor for inversion
stimulation) proteins also lead to chromosome compaction
by introducing DNA bending (24,27). Additionally, SMC
(structural maintenance of chromosomes) proteins are be-
lieved to contribute to chromosome compaction (27) but
have recently been shown to affect collinearity of chromo-
somal arms in C. crescentus rather than regulating overall
compaction (17).

Since bacterial genomes are not segregated into a special
compartment as in eukaryotic cells, they occupy a large por-
tion of the cell and interact extensively with the intracellular
environment. Therefore, the spatial organization of bacte-
rial genomic DNA can play a major role in the regulation
of biological functions in the cell. This idea is affirmed by a
recent study where the statistical analysis of genome confor-
mation capture data for E. coli suggested that operons from
the same regulons and genes in the same biological pathway
tend to be close to each other in 3D space, thereby maximiz-
ing compactness of the genome (31). Furthermore, genes
that are spatially close in 3D genomic structure tend to be
co-expressed and their protein products are prone to form
more protein-protein interactions (31). The relationship be-
tween gene co-regulation and the 3D organization of genes
was also explored in a computational study where the chro-
mosome was modeled as a worm-like polymer chain with
interacting sites corresponding to genes that are regulated
by same transcription factors (32). From this work, it was
found that chromosomes form different topological struc-
tures that increase the local concentration of interaction
sites and, therefore, co-localize the co-regulated genes in 3D
space (32). A very recent Hi-C study on the Mycoplasma
pneumoniae chromosome has provided the first direct evi-
dence of a correlation between 3D chromosome organiza-
tion and transcriptional regulation (20). They found that
genes that are in the same CID have higher co-expression
levels than genes located in different domains (20). In addi-
tion, independent of an organization into CIDs, this study
more generally reported high co-expression levels for spa-
tially close genes (20). Despite this recent progress, a more
detailed understanding of the structural organization of
bacterial chromosomes is still lacking.

The data generated with 3C-based methods lends itself
to experiment-driven modeling of 3D chromosome struc-
tures using restraints defined from 3C studies. Initial mod-
eling approaches have used the generally accepted assump-
tion that 3C-based contact probabilities are inversely related
to the average distances between loci pairs (33). Further cal-

ibration is possible by comparing 3C-based contact proba-
bilities with average distances obtained via FISH. Such a
calibration curve was obtained for C. crescentus by com-
paring contact probabilities based on Chromosome Con-
formation Capture Carbon Copy (5C) for 112 different loci
from the flagellated pole of swarmer cells with FISH data
(6). This allowed for a direct conversion of the 5C contacts
to distances, which could then be used as constraints during
modeling. Initially, such an approach based on 5C data was
used to generate models for the C. crescentus chromosome
at 13-kilobase (kb) resolution which provided first insights
into its spatial organization in 3D space (21). Restraint-
based modeling based on contact probabilities between loci
pairs has also been applied to generate 3D structures of eu-
karyotic chromosomes or their subsections (34–41).

The generation of chromosome models simply based on
satisfying restraints from 3C contact frequencies that are
converted to distances via calibration against FISH data is
seemingly straightforward, but it has been pointed out that
this approach is problematic (33,42–46). 3C-based contacts
stem from crosslinks that can only form if two loci come
within a certain contact threshold. This means that a given
contact frequency for a certain pair of loci only reflects in
what fraction of cells those loci come closer than the con-
tact threshold, instead of directly reporting on the average
distance between two loci as FISH does when averaged over
many cells. In other words, 3C-based studies only give infor-
mation about the low-end of the distance distribution, while
FISH considers the mean of the entire distribution. This
has prompted efforts to employ population-based model-
ing techniques to generate ensembles that reflect cell-to-cell
variability and explicitly consider the short-range sensitivity
of 3C-based methods when matching the cumulative con-
tact map from the experimental contacts (47–50).

Another issue is that the experimental data, even when
Hi-C techniques are employed, is too sparse to fully deter-
mine 3D structures beyond kb resolution. This leaves an
important role to computational methods to compensate
for a lack of resolution in the experimental data by includ-
ing general topological features and packing constraints as
part of the model building protocol. The rationale for such
a strategy is similar to the well-established protocols for the
determination of macromolecular structures based on re-
straints from nuclear magnetic resonance (NMR) data. In
the case of NMR, such assumptions, e.g. about peptides be-
ing polymers with a backbone and side chains with certain
molecular bonding geometries are key to obtaining atomic
resolution structures from data that is otherwise effectively
at much lower resolutions. In the case of bacterial chro-
mosomes, one can apply knowledge about a plectonemic
structure made up of supercoiled segments with branch-
ing points and long persistence lengths to generate high-
resolution models when combined with the experimental
data. Le et al. generated 3D structures for the C. crescen-
tus genome at 434 base pair (bp) resolution by modeling
the chromosome as a circular polymer consisting of plec-
tonemes (17). In that work, the resulting structure ensem-
bles that best fit the Hi-C data were selected after vary-
ing model parameters (17). The resulting models further
extended the knowledge about the 3D organization of the
C. crescentus chromosome initially gained by Umbarger et
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al. (21) and shed light on the presence of CIDs and their
organization (17).

Using a different strategy, Hacker et al. recently described
a model of the E. coli chromosome at nucleotide resolu-
tion (51). Starting with a multi-scale polymer model that
captures the plectonemic topology and physical proper-
ties of double-stranded and supercoiled DNA, spatially re-
solved models were generated primarily based on RNA
polymerase (RNAP) binding data from ChIP-chip experi-
ments (52). RNAP binding sites obtained from the ChIP-
chip data were used to identify highly-transcribed regions
which were then modeled as plectoneme-free, i.e. not su-
percoiled, regions in the chromosomal structure. The mod-
eling was further guided to match the distributions of the
beads that mapped to RNAP binding sites to the projected
2D distribution of RNAP as well as the distribution of the
rest of the beads to the 2D distribution of HU proteins ob-
tained from single-molecule fluorescence experiments for
E. coli (53). These models allowed, for the first time, the
ground-breaking investigation of physical properties a bac-
terial chromosome at the nucleotide level and a direct map-
ping of genome sequence to structure.

In this study, we employed a similar multi-scale modeling
protocol to encode the plectonemic and supercoiled topol-
ogy of bacterial DNA via coarse-grained (CG) models at
different resolutions up to the bp level but using 3C-based
contact frequency matrices to guide the modeling. This pro-
tocol was used to generate structural ensembles for the C.
crescentus chromosome, where extensive Hi-C data (17) is
available. The Hi-C data provides direct information about
relative spatial distances between loci under the considera-
tion of dynamics and population-based variations. Similar
to the models generated by Hacker et al. for E. coli, the mod-
els presented here for C. crescentus are thus believed to pro-
vide an accurate picture of where gene loci are located in in-
dividual chromosome structures and how such distributions
vary between cells and as a result of chromosome dynam-
ics. As the models from Hacker et al., the models generated
here also allowed a direct mapping of the genomic sequence
onto the generated 3D structures and a detailed analysis of
how the mapping of genomic sequences onto the bacterial
chromosome structures may be related to biological func-
tion encoded by the corresponding genes.

MATERIALS AND METHODS

Experimentally driven high-resolution models of the C.
crescentus genome were generated as a hyperbranched poly-
mer of supercoiled DNA segments forming plectonemic
rosettes. The multi-scale modeling protocol is illustrated
in Figure 1 and described in full detail in the Supplemen-
tary Data. Briefly, initial Monte Carlo (MC) sampling of a
segment-based plectonemic model was guided by distance
restraints based on Hi-C interaction frequencies (17) be-
tween specific pairs of loci (Supplementary Video 1). The
distance restraints were derived by using a calibration curve
obtained by Umbarger et al. (21) which is a polynomial
function that maps between interaction frequencies from
3C-based data and expected distances. Simply put, such
mapping was possible by comparing the available average
spatial distances of loci pairs measured by fluorescence mi-

croscopy data for the C. crescentus chromosome with the
corresponding interaction scores for pairs with similar ge-
nomic site-separations.

In the initial sampling round, the general topology of
branches extending from a central ring was fixed, but
branches were allowed to reconnect and move. Next, 15-
bp CG models were constructed by wrapping higher reso-
lution beads around the segments in the initial plectonemic
models. The 15-bp CG models were then further refined via
molecular dynamics (MD) simulations using a CG inter-
action potential that accounts for the elastic properties of
DNA. An example of a C. crescentus model at 15-bp res-
olution is shown in Figure 2. In total, 1050 models were
generated covering a range of branch segment lengths and
number of supercoiled loops (microdomains) (54). The re-
sulting models were subsequently reweighted to generate an
ensemble of structures where not just the average distance
between two loci but also the distribution of contacts in the
models is maximally consistent with the Hi-C scores. The
reweighted ensemble was then used for all further analysis.

The final models were also used to reconstruct models at
base-pair resolution by taking advantage of the long per-
sistence length of double-stranded DNA (see Supplemen-
tary Data). The base-pair resolution model for the struc-
ture shown in Figure 2 is given in Supplementary Figure S1.
Projections of the beads in the bp-resolution models and 15-
bp resolution models did not show any difference (Supple-
mentary Figure S1B versus Figure 5A, Pearson’s coefficient:
1.00, Slope: 1.00, Intercept: 0.00). Therefore, 15-bp resolu-
tion models were used for further analysis throughout this
study.

RESULTS

Structural characterization of C. crescentus chromosome
models

An ensemble of chromosome models for C. crescentus was
generated as described above and in more detail in the Sup-
plementary Data. To characterize the ensemble, we initially
compared contact maps with the experimental data. The
contact map based on the number of contacts within a dis-
tance threshold (see Supplementary Data) is shown in Fig-
ure 3. This map compares to the Hi-C scores and is in
good agreement with the Hi-C contact map with a Pear-
son’s correlation coefficient of 0.88 (Slope: 1.62, Intercept:
0.04) (Figure 3). Both contact maps exhibit the same char-
acteristic two diagonals that reflect two chromosomal arms
in an ellipsoidal shape interacting with each other (17,21).

Previously, the inspection of the Hi-C interaction map re-
vealed that the C. crescentus chromosome is organized into
23 CIDs, which appear as triangles along the main diag-
onal (17). The boundaries of the CIDs were identified by
comparing the interaction preferences of loci from its left-
and right-hand side. This definition is based on the idea that
a locus at the border of a CID would strongly interact ei-
ther with its left- or right-hand side, whereas a locus on the
middle of CID interacts similarly with loci on both sides
(17). Although the triangles corresponding characteristic of
strong CID formation are less apparent in our contact map,
the analysis of the interaction preferences of loci (Supple-
mentary Data) was carried out in the same manner as was
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Figure 1. Multi-scale modeling procedure during model generation based on Hi-C data. (A) Plectonemic and CG model generation. (B) Model reweighting.

Figure 2. 3D structure of C. crescentus chromosome at 15-bp resolution projected onto a C. crescentus cell with typical dimensions.

done previously (17). The results are also shown in Figure 3.
We note, that the procedure involved averaging over 100 kb
sections left and right from each potential boundary site, so
that some of the oscillations in the directional preferences,
such as the ones between genomic positions 200–250 kb, did
not lead to predicted CID boundaries. We found 21 CIDs,
18 of those match the CIDs identified previously from ex-
periment. These results further confirm that our models are
consistent with the information gained from the Hi-C ex-
periment.

The average distance contact map at 10-kb resolution
from the models is also shown in Supplementary Figure
S3B and compared with the distance contact map converted
from Hi-C interaction frequencies (17) by using the calibra-
tion curve derived by Umbarger et al. (21) (Supplementary
Figure S3A). The average distance map from the models
shows an excellent agreement with the Hi-C derived map

with a Pearson’s correlation coefficient of 0.98 (17,21). One
significant difference between the two distance maps is that
there are apparent contacts between the origin (at 0 Mb)
and the middle of the genome (at 2 Mb) in the experimental
map. In the 3D organization of the chromosome, the middle
of the genome (2 Mb) resides at the opposite pole from the
origin. Therefore, these interactions are unlikely. The Hi-C
scores for those regions were below the cutoff for contacts to
be considered significant and likely result from replication
and segregation of the origin to the opposite pole in some
cells during the experiment (21). These contacts were not
considered in our modeling protocol, but if they had been
included, a large fraction of highly bent structures would be
necessary to satisfy average distances of ∼650 nm between
the opposite poles of the genome structure. Such bent struc-
tures are not consistent with the typical cell dimensions of
C. crescentus (see below).
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Figure 3. Contact maps. (A) Hi-C score map (left panel) from Le et al.(17), average contact map of models by using cross-linking probability function
used in the reweighting procedure (right panel). Hi-C scores were normalized to 1 for comparison. (B) The main diagonal of the average contact map from
models rotated 45◦ clockwise. The bottom panel shows the directional preferences of different loci (green: left-, red: right-hand side preference). Dashed
lines show the boundaries of CIDs found from our models, blue dots indicate CID boundaries found in the study by Le et al. (17).

The intramolecular distances can be further compared
with recently reported distance measurements between 51
fluorescent-labeled DNA segments in the C. crescentus
chromosome by Hong et al. (55). We note that these dis-
tances were not used in the modeling or for generating the
calibration curve between Hi-C interactions scores and spa-
tial distances. Therefore, a comparison of the models with
this data provides important independent validation (33).
The comparison of the projected average distances from
the models with the experimental distance measurements is
shown in Figure 4A. It can be seen that the models gen-
erally reproduce the experimental distances (Pearson’s cor-
relation coefficient: 0.99, slope: 1.38, root-mean-squared-
error: 39.42). For longer distances, the models have some-
what larger values than the experimental data suggesting an
overall slightly too expanded shape. When only distances
of DNA segments from the origin of replication are com-
pared, the models produce similar distances as reported
from FISH up to 500 nm but become more extended for
larger distances compared to the available FISH data (6,55).
This may be a consequence of modeling the DNA based
on the Hi-C experiments that are insensitive to contacts be-
yond ∼485 nm (see Supplementary Data). This threshold
stems from the fact that 3C-based experiments result in a
flat distributions of interaction frequencies with long tails
that correspond to the fragments that are in contact very
frequently or infrequently. However, intermediate interac-

tion frequencies are relatively noisy. Umbarger et al. have
used the ∼485 nm threshold to distinguish frequent contact
frequencies from less reliable intermediate contacts (21).

Another explanation for the different dimensions of the
chromosome structures could be a difference in the phases
of the cells that were studied in the FISH and Hi-C experi-
ments. FISH experiments were based on swarmer cells that
were not allowed to grow (6,55), whereas the Hi-C data
were collected from cells that were allowed to grow for 0,
10, 30, 60 or 75 min (17). Growing cells exhibit larger cell
sizes (56) and, hence, allow for more extended chromosome
structures.

In order to test if our models would still be compatible
with the Hi-C data if they had overall smaller dimensions
consistent with the FISH data, we scaled the representa-
tive models of clusters obtained from the clustering anal-
ysis (see Figure 7) by 0.8 followed by short (50 ns) refine-
ment via MD to relax the models. The resulting models re-
produce the observed correlation between distance and site-
separation of loci pairs from experiment (orange curve in
Figure 4B) and, as expected, also match the FISH data bet-
ter (Pearson’s correlation coefficient: 0.98, slope: 1.09, root-
mean-squared-error: 15.73) (Figure 4C). The resulting aver-
age distance map after scaling is still in good agreement with
the experimental data, but the Pearson’s correlation coeffi-
cient of 0.96 with respect to the Hi-C data is slightly worse
than for the unscaled models (Supplementary Figure S2C).
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Figure 4. Compatibility of the models with experimentally measured 51 distances from FISH in the study by Hong et al. (55) (A) Distances for loci pairs
from Hong et al. and from the models (Measurement index is from 1 to 51 referring to the each measured distance in the experiment). (B) Distance between
the origin of replication and different DNA segments with different genomic distances from Viollier et al. (6) (black), Hong et al. (55) (red), models (pink),
and scaled models (orange). The distances obtained from the calibration curve and used as restraints during the modeling are shown in blue. (C) Distances
for loci pairs from Hong et al. and from models scaled by 0.8. The shaded areas indicate the standard deviations and the error bars indicate the standard
errors based on the ensemble averages.

Figure 5. Dimensions of the models. (A) Projections of beads in the models onto their longest principal axis (black), the second principal axis (blue), the
shortest principal axis (red) and the DNA distribution based on HU proteins in E. coli nucleoid short axis reproduced by digitizing Figure 4A-ii in the
article from Stracy et al. (53) (green). In order to compare the E. coli data with our projections, the relative x-axis values given in the experimental results
were multiplied by half the C. crescentus width (400 nm), and the curve was normalized again to keep the area under the curve 1. (B) Nucleotide density
projection onto the shortest axis from our models (red) and 3D models of E. coli chromosome (51) (green) reproduced by digitizing A in the article from
Hacker et al. (51). The probability densities of DNA in E. coli models in the reference were converted to nucleotide densities by multiplying the probability
densities by the total number of nucleotides in E. coli and divided by the width and length of their models. (C) Width of the models vs. the positions along
the longest principal axis, p, normalized to the length of the models along the x-axis, l. Here, 1 represents the pole that contains the replication of origin
while 0 represents the opposite pole. (D) Distribution of bending angles for the models. The shaded areas indicate the standard deviations and the error
bars indicate the standard errors based on the ensemble averages.
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Next, we analyzed the spatial dimensions of our models.
Projections of the beads in the models onto their principal
axes are shown in Figure 5A. The average length of the core
structure is around 2 �m, with the edges extending to ∼2.5
�m. This is slightly less than the experimentally observed
C. crescentus cell lengths of ∼2.5–3 �m (56). The projection
onto the short axes reflects the curved shape of most of our
models. Therefore, we also determined the width perpendic-
ular to the local axis of a curved line fit to the nucleoid mod-
els (see Supplementary Data). The resulting widths shown
in Figure 5C are ∼0.7 �m with a maximum extent to ∼0.8
�m. For comparison, experimental cell widths are ∼0.8 �m
(56). Therefore, our models fit just inside the known dimen-
sions of C. crescentus cells without imposing such a require-
ment during the modeling protocol. If the models are scaled
to better fit the FISH data (see above), the dimensions of
the chromosome become somewhat smaller (Supplemen-
tary Figure S3). In either case, our results imply that the
genomic DNA fills out the majority of the cellular volume
with the outermost parts of the DNA able to come close
to the cellular membrane. These results are consistent with
previous work showing the level of nucleoid compaction in
different bacteria where nucleoids have been imaged by elec-
tron microscopy (57,58). Although the morphology of the
nucleoid depends on the organism as well as environmen-
tal conditions and growth rate (58,59), nucleoids are gener-
ally found to occupy a large fraction of the cell cytoplasm
(57,58,60). In particular, the distribution of the nucleoid-
associated HU protein in C. crescentus suggests that the nu-
cleoid exhibits a diffuse morphology that extends to most of
the cell volume (60). Interestingly, the distribution of HU
proteins in E. coli obtained from single-molecule fluores-
cence data (53) as well as the distribution of DNA in 3D
models of E. coli nucleoid (51) are quite similar to the DNA
distribution on the shortest axis of the C. crescentus nu-
cleoid models (Figure 5A, green curve). This indicates that
the level of nucleoid compaction for E. coli and C. crescen-
tus are similar. We also compared the nucleotide densities
from our models and from the 3D models for the E. coli nu-
cleoid (51) (Figure 5B). We report absolute nucleotide den-
sities rather than nucleotide counts to better compare with
E. coli chromosome models since the number of nucleotides
in C. crescentus and E. coli chromosomes is different and the
distribution of nucleotides along the axis could be different.
Our models show slightly less DNA density for C. crescen-
tus compared to E. coli. This is consistent with C. crescentus
having a smaller genome by ∼600 kb compared to E. coli
while the overall cell dimensions are very similar. However,
the overall distribution patterns of the DNA density along
the short axis from both our and E. coli models were found
to be very similar.

Figure 5D shows the bending angle distribution observed
for our models. The peak is between 150 and 160 degrees,
which is comparable to the experimental bending angle of
162.9◦ with a standard deviation of 8.46◦ observed for the
overall C. crescentus shape (56). Our models show a slightly
wider distribution with smaller bending angles. However,
we note that the average experimental bending angle we use
for comparison is for swarmer cells (56); therefore the dif-
ference could again be because of the cells from different
cell stages used in the Hi-C experiment.

Since the bacterial nucleoids occupy a large portion of
the cell, extensive interactions with the intracellular envi-
ronment are unavoidable. Proteins as large as RNAP and
ribosome subunits have been found to penetrate into nu-
cleoids to initiate co-transcriptional translation (53,59,61).
On the other hand, complete ribosomes and polysomes are
strongly segregated from the nucleoid (62,63). Presumably,
ribosomes are excluded from the nucleoid based on their
size. We analyzed our models to determine whether they are
compatible with the experiments, i.e. whether the structures
are porous enough for RNAP and ribosome subunits to en-
ter while excluding assembled ribosomes. Figure 6A shows
the accessible cavity volume as a function of macromolec-
ular radius. Essentially, molecules with radii up to 10 nm
are able to penetrate the chromosome structures at signifi-
cant fractions, whereas molecules larger than 15 nm are al-
most fully excluded. Table 1 compares accessible cavity sizes
for a typical size protein, RNAP, the 30S and 50S riboso-
mal subunits, and entire ribosomes based on their hydro-
dynamic radii (64). Despite its size, RNAP can access half
of the volume available to small proteins and the ribosomal
subunits can still access about a quarter of the volume sug-
gesting that both RNAP and ribosomal subunits are able
to penetrate and interact extensively with the DNA. How-
ever, assembled ribosomes can only access 10% of the space
accessible to small proteins consistent with the experiments
that find ribosomes to be largely excluded from the nucleoid
(62,63). If the scaled models that better fit the FISH data are
used, the overall size of the cavities is reduced but the gen-
eral conclusions remain the same (Table 1, Supplementary
Figure S4). Figure 6B further contrasts the much reduced
volume accessible to ribosomes in our models compared to
the volume that can be occupied by RNAP. Although the
results reported here depend on the parameters used in the
analysis, they suggest that larger molecules have more dif-
ficulties accessing the nucleoid interior and seem to agree
with the finding that the porous nucleoid structure would
allow mobile RNAP to diffuse relatively easily within the
nucleoid in contrast to ribosomes (53). Our results can also
be compared with the void distribution in the recent models
for the E. coli chromosome (51). The E. coli models appear
to be less compact since voids with radii up to 40 nm were
identified in that study and entire ribosomes with radii of
about 12 nm appear to fit comfortably within most of the
structure according to the distribution of void sizes (51) de-
spite a higher DNA density in E. coli compared to our C.
crescentus models (Figure 5B). However, a direct compari-
son between our analysis and the work by Hacker et al. is
complicated by likely differences in how exactly the voids
are calculated as well as slightly different DNA topological
parameters such as higher superhelical densities in the E.
coli structures.

Structural variability in the ensemble

All of the nucleoid models generated by our protocol have
overall similar shapes. The origin of replication is at one
end of the structure. The most prominent feature consists
of two arms that are wound around each other in most
structures following a sinusoidal pattern with 1.5 – 2 pe-
riod repeats. The overall shape is similar to lower-resolution
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Figure 6. Cavities in the models. (A) Distributions of the cavities for different probe radii in the models. The shaded area indicates the standard deviations
and the error bars indicate the standard errors based on the ensemble averages. (B) Cavities that could be occupied by RNAP (red) and ribosomes (blue).

Table 1. Nucleoid cavity volumes accessible to proteins of different sizes. Ensemble-averaged volumes with standard errors given in the parentheses

Cavity volume (x106 nm3)

Hydrodynamic radius (nm) Original models Scaled models

Average size protein 2.0 95.4 (1.5) 86.0 (1.8)
RNA polymerase 6.9 45.5 (0.7) 25.5 (0.4)
Ribosomal subunit 30S 8.7 28.6 (0.4) 11.1 (0.2)
Ribosomal subunit 50S 10.0 19.3 (0.3) 5.7 (0.1)
Ribosome 11.7 10.6 (0.1) 2.1 (0.04)

Hydrodynamic radii of the molecules were calculated by HYDRPRO (64) based on PDB structures for RNA polymerase (4KMU), the 30S subunit
(5NO3), the 50S subunit (5ADY), and the ribosome (4V4Q).

Figure 7. Clustering of our models and possible inter-conversions between clusters. (A) Representative structures for ensemble clusters. (B) Inter-conversion
between clusters based on targeted molecular dynamics. Colors indicate the number of connections to other clusters (from red to white, descending order)
and the size of the circles corresponds to the weights of the clusters (0.005–0.113). The indices correspond to the structures shown in (A).
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models reported previously by Umbarger et al. (21). Many
structures exhibit bending that generally follows the curved
rod shape of C. crescentus cells (56) as already discussed
above. Beyond these overall features, there are significant
structural variation at the more detailed level. Clustering of
the ensemble based on pairwise mutual similarity resulted
in 27 different major groups. Representative structures for
each cluster are shown in Figure 7A. Population percent-
ages are given in Table 2 and individual contact maps for
each cluster are shown in Supplementary Figure S5. The
weights of different clusters were optimized in the final step
of the ensemble generation to match the resulting contact
distributions to experimental Hi-C contact frequencies as
described in the Supplementary Data. Some clusters with
lower population percentages ended up with higher weights.
This could be because of biases and/or insufficient sam-
pling in our initial modeling protocol. However, the initial
sampling was meant to focuse just on generating individual
structures that are compatible with the experimental data
while the reweighting step emphasizes agreement of the av-
erage and structural variation of the entire ensemble with
the experimental data. Therefore, we would not expect nec-
essarily that the populations after the initial sampling match
the weights after the ensemble-based reweighting.

Table 2 summarizes the clusters along with their opti-
mized weights and selected structural properties based on
cluster averages. The different clusters are primarily distin-
guished by different degrees of twisting of the arms and
bending. Bending angles for individual clusters range from
116.8◦ (for the most bent cluster 27) to 163.2◦ (for the least
bent cluster 3). The most strongly bent structures tend to
have the lowest weights and as they do not seem to fit well
into reported bending angles of 162.9 ± 8.5◦ for the C. cres-
centus cell shape (56), they are either rare outliers or mod-
eling artifacts. The bending directions with respect to the
two arms also vary in different clusters. 12 clusters show
one direction, while others are bent in the opposite direc-
tion. Clusters with negative bending direction angles tend
to bend towards the nucleoid arm with higher index loci. In
contrast, the positive bending direction results in clusters
with bending towards the low-index loci arm. In terms of
the twisting patterns of the arms, all clusters exhibit partial
twisting of arms around each other as observed previously
(21).

We further quantified the degree of twisting by calculat-
ing the average twisting of one arm around the other and the
number of crossings of the arms (Table 2) to understand dif-
ferences between clusters. Positive twist values correspond
to right-handed twisting and negative values indicate left-
handed twisting. Both directions are present in the models.
Although the overall twisting angles sum up to values near
0◦, the twist angles fluctuate between –20◦ and 20◦ along
the nucleoid axis with different patterns in different clus-
ters (Supplementary Figure S6). Right-handed twisting is
more dominant at the poles for all clusters, while there is
more variation in the twisting pattern near the centers of the
nucleoid. The number of arm-crossings also differs among
the clusters. Some clusters (1 and 11) show, on average, less
arm-crossing values indicating that the arms prefer to re-
main on different sides of the nucleoid without crossing in
these structures. On the other hand, clusters 9 and 15 have

larger twisting and crossing values. Therefore, these clus-
ters tend to have their arms more extensively intertwined.
Although the clusters differ in terms of bending and arm-
twisting patterns, they all have similar medial axis lengths
(see Supplementary Data for the medial axis definition) and
widths, consistent with the reported cell size dimensions of
C. crescentus (56) as discussed in the previous section (Table
2).

As described in the Supplementary Data, we generated
models with different branch segment lengths and number
of microdomains. Interestingly, each cluster contains a mix-
ture of different internal topologies in terms of the branch
length and the number of microdomains (Supplementary
Table S1). This suggests that the overall structure in our
models is not sensitive to the detailed topology of the DNA.
An exponential distribution of microdomain sizes in E. coli
chromosome was reported by Postow et al. (65). A com-
parison of that data with the microdomain size distribu-
tions in our models is shown in Supplementary Figure S7.
Generally, the distributions are similar and the exponential
distribution is largely reproduced in our models. However,
our models have somewhat smaller microdomains and lack
the very large microdomain sizes (50–60 kb) seen in E. coli.
Additionally, the total lengths of the branch segments were
also reported for plasmids at 3.5 and 7 kb sizes by Boles
et al. (66). The total length of the branch segments in the mi-
crodomains with similar sizes from our models are in good
agreement with the reported branch lengths except for the
smallest number of microdomains (Supplementary Figure
S7).

An ensemble of nucleoid models with different struc-
tures as reported here would be expected based on cell-
to-cell variations. However, nucleoid structures are known
to be highly dynamic. For example, studies on E. coli nu-
cleoid dynamics in living cells have shown the possibility
of global and local nucleoid dynamics during a cell-cycle
(4,67). Therefore, it is an interesting question to what ex-
tent the different conformations for the C. crescentus nu-
cleoid are interconvertible without encountering significant
topological barriers that could not be overcome without un-
winding and expanding the nucleoid structures. We carried
out targeted MD simulations between all pairs of represen-
tative cluster structures to test which interconversions are
likely feasible based on simple energetic criteria (see Sup-
plementary Data). We find that many structures appear to
be in fact interconvertible, at least at the overall topological
level (see Figure 7B). There are enough pair-wise connec-
tions for all of the structures to be connected either directly
or indirectly via intermediates. Some structures stand out as
central hub structures with a high number of connections.
It appears, however, that the number of connections is not
strongly correlated (Pearson’s correlation coefficient: 0.056)
with the cluster weights which may suggest that many of the
hub structures are less stable intermediates. As an example,
the simulated interconversion of cluster 1 to cluster 5 via
cluster 18 is shown in Supplementary Video 2. While the
simulations do not provide meaningful insight into relative
energetics or kinetics due to the biased and coarse-grained
nature of the targeted MD simulations, the general conclu-
sion is that in addition to cell-to-cell variability, the nucleoid
structures could be dynamically sampling a wide variety of
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Table 2. Features of major clusters of nucleoid structures

Cluster
Population
% Weight

Medial axis
length (nm) Width (nm)

Bending
angle
(degrees)

Bending direction
(degrees)

Arm-twisting
(degrees) Arm-crossings

1 2.10 0.113 2684.7 (52.1) 762.7 (12.6) 151.5 (2.1) −12.9 (9.1) 1.27 (0.61) 0.07 (0.23)
2 2.48 0.103 2549.9 (33.3) 753.8 (9.6) 148.3 (2.3) 6.9 (17.4) −0.26 (0.53) −0.49 (0.25)
3 2.00 0.095 2666.8 (30.1) 723.8 (10.2) 163.2 (1.6) −110.0 (21.3) 3.39 (0.92) −0.40 (0.26)
4 3.05 0.071 2648.1 (34.3) 745.6 (8.9) 153.9 (1.9) −42.8 (10.6) −0.92 (0.48) 0.26 (0.17)
5 1.71 0.068 2441.7 (33.0) 738.9 (10.3) 159.8 (2.7) −76.1 (14.5) −1.40 (0.95) 0.11 (0.34)
6 2.38 0.056 2649.9 (37.5) 752.8 (10.1) 150.8 (1.8) 21.5 (19.4) −1.62 (0.72) 0.88 (0.25)
7 2.29 0.045 2761.9 (30.8) 747.5 (9.5) 160.0 (1.6) 64.8 (21.5) 0.49 (0.91) −0.26 (0.30)
8 0.57 0.044 2839.1 (28.0) 746.7 (21.7) 160.5 (3.3) 10.8 (14.3) 2.55 (0.58) −0.79 (0.16)
9 2.29 0.042 2870.2 (31.2) 746.7 (9.1) 145.5 (1.6) 90.9 (8.7) 4.38 (0.78) −1.18 (0.22)
10 8.86 0.033 2762.6 (14.1) 725.8 (5.2) 151.6 (0.9) 124.2 (4.1) −1.17 (0.39) 0.12 (0.16)
11 2.67 0.031 2774.0 (36.1) 823.6 (14.0) 130.8 (2.1) −61.9 (20.1) 0.96 (0.61) 0.01 (0.16)
12 3.52 0.029 2755.8 (28.4) 725.4 (9.4) 143.0 (1.5) 124.8 (8.5) 1.52 (0.57) −0.11 (0.20)
13 4.10 0.028 2694.0 (27.0) 723.7 (7.9) 159.2 (1.6) −179.7 (10.6) −0.62 (0.54) 0.38 (0.17)
14 3.33 0.028 2888.4 (26.3) 747.4 (7.7) 149.9 (1.5) −65.9 (11.3) −3.17 (0.63) 0.87 (0.19)
15 4.38 0.027 2791.3 (24.3) 721.7 (6.9) 144.1 (1.5) −24.1 (8.2) 4.05 (0.57) −1.28 (0.19)
16 8.57 0.026 2745.4 (15.2) 718.4 (5.8) 151.9 (1.0) −47.3 (6.9) −0.68 (0.37) −0.16 (0.14)
17 1.05 0.025 2964.0 (51.3) 760.0 (13.5) 147.6 (3.7) −100.3 (30.9) 2.92 (1.07) −0.37 (0.32)
18 5.43 0.024 2729.7 (18.3) 734.0 (6.5) 147.5 (1.4) −125.2 (9.7) −1.31 (0.38) 0.64 (0.17)
19 4.19 0.023 2707.7 (21.7) 745.0 (7.2) 142.5 (1.4) 14.5 (7.8) 0.24 (0.51) −0.53 (0.17)
20 2.00 0.019 2682.5 (44.3) 733.3 (11.2) 149.6 (2.5) 53.1 (17.0) −3.29 (0.52) 1.00 (0.20)
21 4.48 0.018 2698.8 (33.4) 782.1 (8.5) 135.9 (1.2) −97.8 (13.1) 0.56 (0.56) 0.14 (0.17)
22 8.00 0.018 2815.1 (17.5) 754.0 (5.8) 135.2 (1.1) −108.1 (9.2) 3.10 (0.46) −0.56 (0.12)
23 4.57 0.011 2795.9 (23.6) 774.2 (7.1) 133.8 (1.3) −9.9 (6.6) −3.39 (0.50) 0.48 (0.15)
24 2.57 0.007 2888.3 (31.9) 744.4 (7.6) 143.8 (1.7) −133.5 (16.6) −2.61 (0.58) 0.77 (0.18)
25 2.67 0.007 2749.5 (29.5) 731.4 (9.8) 145.7 (1.5) 35.7 (5.9) −0.70 (0.68) 0.26 (0.23)
26 3.71 0.006 2763.0 (24.9) 787.2 (8.2) 132.5 (1.8) 15.2 (7.8) −0.50 (0.54) −0.36 (0.15)
27 4.76 0.005 2851.8 (24.5) 734.0 (6.4) 116.8 (2.5) 2.9 (9.4) 0.38 (0.58) −0.22 (0.17)

Structural characteristics are averaged over all members in each cluster. The population percentages refer to the models in the unweighted ensemble.
Standard errors are given in parentheses.

structures within a single cell. A better understanding of nu-
cleoid dynamics is clearly an area that would benefit from
further studies, both experimentally and via simulations.

Genome-structure mappings

Our models of the C. crescentus nucleoid are of sufficiently
high-resolution to directly map the genetic sequence onto
the 3D structure. This allows an investigation into possible
correlations between the DNA structure and the genome se-
quence that it represents. In order to facilitate the analysis
of projections onto variable 3D structures, we will primarily
discuss projections of sequence features onto the long axis
of the nucleoid models. All of the results were further aver-
aged over the entire ensemble of models taking into account
the weights of the clusters that different models belong to.

We began by analyzing the spatial locations of basic se-
quence features. The distribution of AT- and GC-rich sec-
tions is shown in Figure 8 in comparison with the positions
of all base pairs in the model. The distributions of AT-rich
sites are significantly different from the distribution of all
base pairs with enrichment in the central region towards the
origin of replication (Cori) and depletion opposite Cori. In
contrast, no preference was found for GC-rich sites. Most
NAPs are known to bind to AT-rich sites (24), therefore an
enrichment of AT-rich sites from the center to Cori may im-
ply enhanced binding of NAPs in that region. Integration
host factor (IHF), another NAP, is also reported to assist in
maintaining a compact genome by introducing U-turns to
DNA (24). We find a statistically significant preference for

binding near the center of the nucleoid (Figure 8B). Many
of our models are bent and such bending is primarily facili-
tated by kinking in the central region. Therefore, it could be
that IHF is involved in stabilizing a bent nucleoid structure
to better fit into the curved bacterial envelope of C. crescen-
tus. If this hypothesis is correct, we would expect straight-
ening of the DNA when the IHF gene is disabled.

Promoter sites show only a slight preference for the mid-
dle part of the nucleoid along the longest axis (Figure
8C). Recently, the distribution of RNAP in E. coli nucleoid
showed that RNAPs that are specifically bound to DNA
tend to stay closer to the edge of the nucleoid (53). The
positions of the bound RNAPs on the nucleoid were later
used in the E. coli nucleoid modeling and the generated
3D models reproduced the experimental distribution (51).
Here, we also analyzed the radial distributions of the pro-
moters along the medial axis of the models (see Supplemen-
tary Data) in order to compare with the bound RNAP dis-
tribution found for E. coli (53) (Figure 8D). We note that
in our modeling protocol we did not impose the RNAP
distribution as a constraint. The promoter distribution is
quite similar and a slight depression in the bound-RNAP
distribution in the center relative to the distribution of nu-
cleotides (see Figure 5A) was also observed for the promoter
distribution of our models. However, a similar distribution
was found for the radial distribution of all beads. This sug-
gests that there is not a clear special pre-arrangement of
promoters that would favor positions on the ‘outside’ of the
chromosome structure.
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Figure 8. Projections of genomic sequence features onto the 3D nucleoid structures: (A) Sites with least 70% in AT-sites (red) or GC-sites (blue) within a 20-
bp window compared with the positions of all base pairs (black), (B) IHF-binding sites (red), (C) Promoter sites (red). (D) Radial positions of the promoter
sites (red) and all sites (black) in the models from the nucleoid center, and the distribution of bound-RNAP in E. coli nucleoid short axis reproduced by
digitizing the Figure 4A-ii in the article from Stracy et al. (53) (green). In order to compare the E. coli data with our projections, the relative x-axis values
given in the experimental results were multiplied by half the C. crescentus width (400 nm), and the curve was normalized again to keep the area under the
curve 1. Gray shaded areas in A, B, and C indicate standard deviations obtained from distributions for the same number of loci that were randomly selected
200 times. The shaded area in D indicates the standard deviations and all the error bars indicate the standard errors based on the ensemble averages.

A study by Fang et al. analyzed groups of genes in C. cres-
centus that are co-expressed (68). 76 different gene modules
were clustered according to their expression profiles (68).
In order to test whether co-expression correlates with spa-
tial co-localization, we mapped the beginning of the operon
for the corresponding genes in each module onto our mod-
els and calculated spatial proximity from the average pair-
wise distances of all genes in a given module. We note that
we only included the genes with unique operons for each
module in the analysis. The results were then compared with
pair-wise distances from a distribution of the beginning of
randomly selected operons on the same structure. The same
analysis was also performed considering genomic distances
rather than spatial distances. The resulting z-scores for the
modules for which genomic separations of operons are not
different than the genomic separations of randomly selected
ones (-1<z-score<1) are shown in Figure 9A. Out of to-
tal 43 modules, z-scores of three modules are skewed to-
wards negative values indicating that a subset (∼7%) of the
modules of co-expressed genes is also co-localized. Addi-
tionally, in order to avoid any linear sequence effects, we
also analyzed only the gene-pairs that are at least 500 kb
apart in genomic sequence and we found that the percent-

age of the modules that have negative z-scores is increased
to ∼20%. However, we also observed that a similar fraction
of co-expressed gene modules resulted in positive z-scores.
Overall, the results show that although the genes that are
co-expressed seem to have some non-random distributions,
a strong tendency for co-expressed gene pairs to be spatially
closer was not found. z-scores of the models are listed in
Supplementary Table S2. While co-expression is expected
to involve the regulatory elements at the beginning of oper-
ons, we also examined whether the observed co-localization
remains valid if we analyze the positions of the end of each
gene in a given module. Figure 9B shows that there is no
significant difference to the analysis of the beginning of the
operon for each gene.

To further examine a possible relation between gene co-
localization and protein product co-localization, we com-
pared with another experimental study on C. crescentus
where the localization of ∼300 proteins was analyzed (69).
We mapped the corresponding genes according to their pro-
tein product localization onto our models. We found weak
evidence that genes whose products are near the poles may
be located closer to Cori, on one end of the structure (Fig-
ure 10), but we could not correlate proteins localized in
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Figure 9. Correlation between co-localized and co-expressed genes: (A) z-scores for each module of intra-gene distances for co-expressed genes versus
random genes for the end of genes (red) or the beginning of the corresponding operons (blue). (B) Same plot as in (A) but only for gene or operon pairs
that are separated at least by 500 kb in the genomic sequence.

Figure 10. Correlation between gene co-localization and protein product
co-localization. Distributions of the genes of the proteins which are exper-
imentally found to be at central (A) and polar (B) locations (69). Central
genes include ‘Midband’ and ‘Central Focus’ genes whereas polar genes
correspond to ‘Polar’ and ‘Bipolar’ genes in the experimental analysis (69).
Gray areas indicate the standard deviations as calculated in Figure 8. The
error bars indicate the standard errors based on the ensemble averages.

the center of the cell with an enhanced localization of their
genes in the center of the nucleoid (Figure 10). These results
are again consistent with the findings from E. coli chromo-
some models where no localization was found for the genes
for which protein products are co-localized (51). While this
does not contradict the idea that proteins are initially syn-
thesized close to where the gene is located, it suggests that
the memory of the synthesis site is largely lost due to pro-
tein diffusion and/or other cellular transport processes in
the experimental study.

Finally, we analyzed the spatial organization of the genes
as a function of their cellular functions to test the hypothesis
that the localization of certain genes on the nucleoid may be
correlated to where they are needed within the cell. Groups
of functionally related genes that were distributed signifi-
cantly different from a random distribution are shown in
Figure 11. Genes for regulatory functions, and proteins with
unknown functions (‘hypothetical proteins’) were found to
localize in the middle of the nucleoid. In contrast, transla-
tion, metabolism and replication genes appear to have a ten-
dency to localize near the poles of the nucleoid while tran-

scription genes tend to be clustered around the Cori region.
Genes involved in cell division are both near the center and
near Cori. One can potentially rationalize why cell division
genes are near the center since Fts genes form rings attached
to the membrane to constrict the cell during cell division.
On the other hand, parA/parB accumulate near the poles
before cell division in C. crescentus swarmer cells (70–73)
that may be facilitated by a location of the corresponding
genes near Cori. The preferential localization of metabolic
genes opposite Cori could contribute to enhanced metabolic
efficiency by bringing proteins involved in metabolic cas-
cades closer together. Based on our data, we generated a
diagram in Figure 11B to summarize relative preferences
for genes with different functions along the nucleoid. We
assume that the resulting protein products would also be
enhanced or suppressed accordingly given that transcrip-
tion and translation is local to a given gene location and
that diffusion in crowded environments is relatively slow
(74). In general, our findings based solely on the distribu-
tion of genes on the nucleoid structure are consistent with
findings for E. coli where a special organization of genes
with similar biological pathways was found (31) and also
with the study by Junier et al. that found a correlation be-
tween co-localization of genes with similar transcriptional
regulations and the 3D structure of the chromosome (32).
However, it is clear that further experimental validation is
necessary to fully understand a possible correlation between
gene location on the nucleoid and its function. Experimen-
tally, this could be accomplished for example by analyzing
phenotypes for bacteria with shuffled gene distributions.

In order to ensure that the localizations of genomic el-
ements observed in our models are really an effect of the
3D organization of the chromosome rather than the rela-
tive locations of genomic features in linear sequence, we also
checked their linear sequence localization. In general, it is
difficult to distinguish specific patterns in the distributions
of the gene loci along the linear sequences. (Supplementary
Figures S8–S10)
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Figure 11. Projections of functionally related genes onto the 3D nucleoid structures. (A) Localization of functionally related genes compared to the dis-
tribution of all the genes (black) with the standard deviations in gray as calculated in Figure 8. The error bars indicate the standard errors based on the
ensemble averages. (B) Schematic representation for the proposed functional localization of genes in C. crescentus. Colors are as in (A).

We repeated the mapping analysis for the central hub
clusters in Figure 7B (clusters 2, 7, 8, 9, 12, 16, 17, 18 and
21) as well as all of the individual clusters to see if there is
any difference in the localization of the genomic elements
by nucleoid structure and/or connectivity. However, we did
not find significantly different results from the results for the
overall ensemble (Supplementary Figures S11–S13). This
suggests that despite differences in the nucleoid structure,
the overall genome localization is largely preserved.

DISCUSSION

In this study, we developed an advanced multi-scale model-
ing method that is based on data extracted from 3C-based
experiments for generating an ensemble of 3D structures of
a bacterial chromosome at high-resolution. The key idea
was to use information about the plectonemic and super-
coiled organization of bacterial chromosomes in combina-
tion with the specific experimental restraints that allowed us
to generate higher-resolution models compared to models
that only use the experimental data. This strategy is sim-
ilar to the refinement of proteins via NMR where inter-
mediate resolution restraints from the experiment are com-
bined with the knowledge that all proteins are polypeptide
chains with certain limited topologies to generate atomistic
models. We applied this approach to the C. crescentus chro-
mosome where extensive data sets from Hi-C experiments
are available (17). Previously, low-resolution models at 13-
kb and 434-bp were constructed for C. crescentus chromo-
some using the 5C (21) and Hi-C (17) experimental data,
respectively. The 434-bp models generated by Le et al. (17)
have been the starting point for understanding the organiza-
tion of genomic DNA based on the Hi-C based experimen-
tal data. Here, we further extend this work by developing
models at higher resolution that includes DNA supercoil-
ing. We are primarily discussing models with 15-bp resolu-
tion, slightly more than one helical turn, but because the

DNA structure is fairly stiff on such short length scales, we
were also able to generate base-pair resolution models with
a reasonable degree of accuracy to the extent that the 15-bp
resolution model is accurate.

Another important aspect of our modeling involves the
application of experimental restraints by considering the
population-based nature of 3C-based experiments. In the
first step of modeling, we used soft distance restraints to
bring a random polymer model to an average possible struc-
ture from where it can deviate to other alternative struc-
tures. After the initial generation of plectonemic models and
the reconstruction of 15-bp CG models, all the simulations
were performed without applying any restraints which al-
lowed models to have fluctuations in their local topologies.
Further reweighting of the generated models with signifi-
cant structural variability enabled obtaining an overall en-
semble of chromosomal structures that possibly reflects the
possible cell-to-cell structural variability observed in 3C-
based experiments. Our modeling protocol resulted in 27
different model clusters with different weights. We found
that the average distance map of the reweighted ensemble is
in very good agreement with the distance map derived from
experiment, on the other hand, individual clusters do not
show that much consistency indicating that we were able to
generate an ensemble that contains structural variability but
also is compatible to the experimental distances in average.
Although the details of our modeling protocol differ from
previous work, the emphasis on an ensemble approach is
similar to previous studies of the C. crescentus chromosome
(17,21,51).

Investigation of the physical properties of the chromo-
some models showed that our models are compact enough
to fit within the cell envelope of C. crescentus. At the same
time, the structures are porous enough for proteins as large
as RNAP and ribosome subunits to penetrate and diffuse
through the nucleoid as previously reported (53,59,61). In
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addition, we explored if the models are compatible with
the experimental data reported for C. crescentus that was
not used while building the models (55). The distances cal-
culated from the models showed agreement with the ex-
perimental distances for the given DNA segment pairs but
with some deviations for distances larger than ∼1000 nm.
We argued that this deviation might result from the fact
that the Hi-C experiment were performed on cells at dif-
ferent cell phases (17) whereas FISH data was collected
only from swarmer cells that were stopped from cell growth
(6,55). However, if we scale our models and reanalyze their
compatibility to the FISH distances showed that the scaled
models still agree with the experimental data and preserve
their global topologies. This suggests that there may be sig-
nificant room for the chromosome to expand and shrink as
the cell size varies during the cell cycle.

Our 3D models are similar to previous shape outlines for
the C. crescentus genome derived based on the 5C data (21),
but we also see significant differences in topology. We found
that there is a different degree of arm-twisting and bend-
ing in different clusters. Some of the structures exhibit ex-
treme bending that is not fully compatible with previously
reported data for C. crescentus (56). These models may be
artifacts of our modeling procedure, however as the mod-
eling suggests relatively low weights, these structures could
also be rare outliers that are difficult to detect experimen-
tally if they occurred.

We found significant structural variability in our ensem-
ble. This is expected and interpreted generally as cell-to-
cell variation of chromosome structure. However, our anal-
ysis suggests that different structures may interconvert to a
significant degree within the same cell. In fact, it appears
that all of the clusters we observe are inter-convertible to
each other either directly or through intermediate struc-
tures. Such remodeling of chromosome structures would re-
quire cooperation and activity by NAPs which was not con-
sidered here. It is clear that there is much room for further
studies and the nucleoid structures presented here are an
ideal starting point to further examine nucleoid dynamics
via simulations.

The high-resolution models enabled mapping the ge-
nomic sequence onto the 3D structure. This allowed us to
analyze the distribution of generic sequence elements as well
as specific genes. We found non-random distributions of
AT-rich sequences and other NAP-binding motifs that hint
at the role of NAPs in stabilizing the nucleoid structure. We
also observed an apparent spatial organization of genes in-
volved in certain functions and we hope that these results
will further motivate new research. Experimental tests for a
proposed non-random distribution of genes could involve
gene or operon randomizations with the hypothesis that
randomly distributed genes could affect metabolic efficiency
and/or regulatory processes.

High-resolution nucleoid models were also recently gen-
erated by Hacker et al. for the E. coli chromosome (51).
They generated chromosome models at one-nucleotide res-
olution for the first time. Here we apply similar approach to
generate C. crescentus chromosome initially at 15-bp res-
olution but then extended the resolution to the one-base
pair level. One difference between the modeling protocols
by Hacker et al. and us is that our models rely primarily

on Hi-C based contacts. In the work by Hacker et al., the
modeling was guided by experimental 2D radial distribu-
tions of RNAP to generate models that reproduce these ex-
perimental distributions (53). This approach is expected to
give nucleoid models that are physically realistic, but since
RNAP radial distributions are projected onto 2D, the spe-
cific positions of the genomic loci in 3D space might not be
as well defined as there were no constraints guiding those
positions, or their relative distances, in the modeling pro-
tocol. On the other hand, the E. coli chromosome models
include plectoneme-free (relaxed DNA) and plectoneme-
abundant (supercoiled DNA) regions based on the ChIP-
chip data on RNAP for E. coli (52). In our C. crescen-
tus chromosome models, we did not specifically identify
supercoiled-free regions. However, we assume that some
parts may be unwound for active transcription and there
is sufficient space for supercoiled regions to unwind. Be-
cause we only modeled the segments lying between plec-
toneme rosettes that form the central ring of the model as
non-supercoiled double-stranded DNA strands, it is possi-
ble that our model is topologically less accurate. However,
despite the significant differences in the modeling protocols,
it is reassuring that the overall structural and mapping anal-
yses showed consistent conclusions in both C. crescentus
and E. coli chromosomes.

Our methodology is easily applicable to other bacteria as
additional 3C-based data set are becoming available and ex-
pand the ability to study the direct connection between the
3D distribution of genes and their function that should be
part of a complete analysis of genotype-phenotype relation-
ships.
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