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Objective. Heyi disease, Xila disease, and Badagan disease are three common diseases in Mongolian medicine. (e changes in
intestinal microbiota may be associated with the occurrence, development, and treatment of these diseases. (is study aimed to
investigate the effects of herbal treatment on intestinal microbiota and serum metabolites in rats with these three diseases.
Methods. Firstly, Heyi, Xila, and Badagan disease model rats were established by environmental, diet, and drug intervention.(en,
16S rRNA gene sequencing and metabolomics analysis were used to analyze the changes in intestinal microbiota and serum
metabolites after treatment. PICRUSt analysis was applied to predict the potential functions of intestinal microbiota, and OPLS-
DA multivariate model was applied to screen differential serum metabolites. Results. 16S rRNA gene sequencing showed that
herbal treatment significantly increased the species diversity and changed the composition of intestinal microbiota in Heyi disease
and Xila disease rats. After treatment, there were 10, 9, and 3 bacterial biomarkers that were increased in Heyi, Xila, and Badagan
disease rats, respectively. In the Heyi disease model, treatment resulted in 45 differential serummetabolites, involving 4 pathways.
In the Badagan disease model, treatment resulted in 62 differential serum metabolites, involving 4 pathways. However, there was
no significant difference in serummetabolites between TreatB and ConB in the Xila disease model. Conclusions. Herbal treatment
significantly changed the intestinal microbiota and serum metabolites of rats with three Mongolian medicine diseases.

1. Introduction

Mongolian medicine (MGM) is an important branch of
traditional medicine in China. MGM believes that the
balance among the three life-sustaining principles (including
Heyi, Xila, and Badagan) is the basis of human health. Once
this balance is broken by various pathogenic factors, it will
lead to disease [1]. According to the “Four-Part Medicine
Classics,” [2] these three principles were endowed with
different attributes. Heyi belonged to Qi and was charac-
terized by lightness and movement. (erefore, Heyi disease

was considered as a Qi-related disease, and the symptoms of
Heyi disease include sighing, upset, insomnia, dyspepsia,
bloating, and constipation. Xila belonged to fire, and was
characterized by heat, which was considered as a heat-re-
lated disease, and the symptoms of Xila disease include fever,
headache, thirst, and excessive sweating. Badagan belonged
to water, and was characterized by cold, which was con-
sidered as a cold-related disease, and the symptoms of
Badagan disease include slow reaction, dyspepsia, loss of
appetite, and vomiting. Abnormal climate change, chronic
lack of nutrition, coarse food, and mental stimulation are the
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causes of these diseases, but the underlying mechanisms
remain unclear. Studies have shown that intestinal micro-
biota disorders linked poor eating habits and unhealthy
lifestyles with diseases [3].Whether the intestinal microbiota
contributed to the pathogenesis and treatment of these three
diseases remains to be further studied.

Currently, the intestinal microbiota is considered to be a
new complex organ composed of 1013 to 1014 bacteria, which
is more than 10 times the total number of human cells [4].
Intestinal microbiota is one of the important factors of
intestinal microenvironment homeostasis, and its changes
may affect immune and metabolic functions, leading to
various autoimmune and intestinal diseases [5]. Studies have
shown that several diseases, such as Type 2 diabetes mellitus,
Parkinson’s disease, Alzheimer’s disease, and malignant
tumors, were closely related to intestinal microecological
disorders [6, 7]. (e regulation of intestinal microbiota was
also considered as a treatment for some diseases, since in-
creasing the proportion of beneficial bacteria and restoring
the intestinal barrier could promote the health of the host
and reduce the risk of disease [8]. For example, Liu et al.
showed that Pulsatilla chinensis Saponins significantly im-
proved dextran sulfate sodium-induced ulcerative colitis and
reduced inflammatory response by regulating intestinal
microbiota composition and biodiversity [5]. Another study
showed that soluble dietary fiber protected the intestinal
mucosal barrier by improving the intestinal microbiota in
septic mouse [9]. Our previous studies have shown that the
intestinal microbiota of rats has changed significantly after
suffered from these three diseases [10]. Further study on the
relationship between intestinal microbiota and disease may
bring new insights into the treatment.

Metabolomics is a comprehensive analytical approach
for the study of biological efficacy and mainly used to
evaluate the effects of disease status or drug treatment on
endogenous metabolites such as amino acids, fatty acids,
lipids, and peptides [11]. At present, the metabolomic in-
vestigation has been widely used to evaluate the biological
efficacy and underlying mechanism of traditional Chinese
medicine [12]. A recent metabolomic study revealed that 23
biomarkers were identified in rat fatty liver after treatment
with Qushi Huayu decoction [13]. Meanwhile, a metab-
olomic approach based on LC-Q-TOF/MS identified 27
biomarkers in the serum ofmyocardial infarction rats, which
involved in 4 main pathological processes including oxi-
dative injury, energy metabolism dysfunction, amino acid
metabolism dysfunction, and inflammation [14]. However,
the characteristics of serum metabolites after treatment of
Heyi, Xila, and Badagan disease have not been revealed.
Hence, the integration of metabolomics and intestinal
microbiota analysis would help us better understand disease
and treatment in Mongolian medicine. Ferula sinkiangensis
K. M. Shen (FS), Lomatogonium carinthiacum (LC), and
Punica granatum L. (PG) were commonly used herbs in
MGM, and they have good therapeutic effects on Heyi
disease, Xila disease, and Badagan disease, respectively. FS is
a medicinal plant of the family Umbelliferae, mainly dis-
tributed in Xinjiang of China, and FS has been recorded in a
variety of traditional medicine. (e FS was widely used in

stomach disease and anticancer [15, 16]. LC is a member of
the family Gentianaceae and is mainly distributed in Inner
Mongolia, Shanxi, and Xinjiang of China, which was
commonly used to treat influenza, typhoid, liver disease, and
jaundice in MGM [17]. PG is a medicinal and edible plant,
derived from the family Punicaceae, which is a popular
healthy fruit worldwide [18]. As an MGM herb, PG was
considered to have the effect of eliminating food and di-
arrhea and was often used to treat dyspepsia. (erefore,
these three herbs were used to treat rats with MGM disease
in this study.

(is study aimed to investigate the therapeutic effects of
different Mongolian herbs on three diseases by 16S rRNA
gene sequencing and metabolomics analysis. (ese results
will also provide a deeper understanding of the relationship
between intestinal microbiota and MGM disease treatment.

2. Methods and Materials

2.1. Materials. Black tea (Fujian Anxi County Huayuan Tea
Industry Co., Ltd., Wuyi Mountain, China, production
standard: GB/T13738.3), buckwheat (Inner Mongolia
Qinggu Xinhe Agricultural Science and Technology Co.,
Ltd., China, batch number: SC10115059900036), Mongolian
medicine Gaburi (Dryobalanops aromatica Gaertner f.,
Preparation Center of Inner Mongolia University for Na-
tionalities, batch number: 20190512), liquor (Inner Mon-
golia Taifusi Qi Grassland Brewing Co., Ltd., China, batch
number: SC11515252800086), yellow rice (Yuxian Xifu
Agricultural Products Trading Co., Ltd., China, batch
number: SC10113072600272), black pepper (Henan Gujin
Food (erapy Technology Co., Ltd., China, batch number:
SC10341172900240), sunflower oil (Jiage Food Co., Ltd.,
China, batch number: SC10215082200114), Taraxacum
mongolicum Hand.-Mazz. (Preparation Center of Inner
Mongolia University for Nationalities, batch number:
20190615), FS (Preparation Center of Inner Mongolia
University for Nationalities, batch number: 20190513), LC
(Preparation Center of Inner Mongolia University for Na-
tionalities, batch number: 20190721), and PG (Preparation
Center of Inner Mongolia University for Nationalities, batch
number: 20190622).

2.2. Herbal Medicine Preparation. FS: Briefly, 13 g FS was
weighed and boiled with ultrapure water for twice, 50mL
each time. After filtration, the filtrate was combined and
concentrated to 10mL, and the concentration was 1.3 g/mL.
(e rats were given 1mL intragastric administration of 100 g
body weight at a dose of 1.3 g/kg (g/kg, ratio of crude drug
dosage to rat body weight). (e preparation of LC and PG
was the same as that of FS.

2.3. Animals and Treatments. Healthy male SD rats (n� 60,
weight: 180± 20 g) were provided by Liaoning Changsheng
Biotechnology Co., Ltd. (Liaoning, China). (e rats were
kept in standard conditions with 12 h light/dark cycles,
temperature 20–23°C, and humidity 40± 5%, and the rats
had free access to food and water. After one week of adaptive
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feeding, rats were then grouped randomly into six groups
(n� 10 per group): ConA (Heyi rat model), TreatA (Heyi
rats treated with FS, 1.3 g/kg), ConB (Xila rat model), TreatB
(Xila rats treated with LC, 1.3 g/kg), ConC (Badagan rat
model), and TreatC (Badagan rats treated with PG, 1.3 g/kg).

After the rat models of the three diseases were estab-
lished, the rats were treated with the corresponding herbs.
(e therapeutic dose was converted according to the human
dose used in MGM. MGM recommended that the daily
dosage of these three herbs should not exceed 15 g. In
consideration of the average weight of an adult was 70 kg, the
adult oral dose was 0.21 g/kg/d. After multiplied by the
conversion coefficient of body surface area between human
and rat (6.3), the daily oral dose of rats was about 1.30 g/kg.
(e treatments were administered intragastrically once daily
for 14 days.

2.4. 3ree Rat Models of MGM Diseases. Traditional medi-
cine believed that Heyi, Xila, and Badagan diseases were
caused by abnormal climate change, chronic lack of nutri-
tion, coarse food, and mental stimulation. When the rats
showed the characteristics of Heyi, Xila, and Badagan de-
scribed in “Four-Part Medicine Classics,” it was considered
that the model was successfully constructed [2]. (erefore,
we conducted environmental, diet, and drug interventions
on the model group [10]. All experimental protocols were
approved by the Medical Ethics Committee of the Affiliated
Hospital of Inner Mongolia University for the Nationalities
(ethic code: NM-LL-2019-12-06-01). (e following three
MGM disease models (MGM-DM) were established as
follows:

Heyi rat model (ConA): the rat’s daily drinking water
was replaced by black tea (5 g/100mL); buckwheat (8.5 g/
day) was added to the diet; Gaburi solution (1mL/100 g/day)
was administered, and 0.1mL tail vein bloodletting was
performed on the rats at 5 pm every two days. In addition,
rats were exposed to the continuous cat audio at 70 decibels.
(ese interventions continued for 31 days. After modeling,
the rats with Heyi disease showed significantly decreased
activity, withered hair, listlessness, and slow response.

Xila rat model (ConB): rats were kept at 29± 2°C, and rat
chow was replaced with yellow rice (15 g/day). 0.7 g/kg
sunflower oil was gavaged at 6 am, and 0.7 g/kg pepper was
gavaged at 12 noon every day. In addition, rats were given
1mL liqueur once every other day. (ese interventions
continued for 21 days. After modeling, Xila disease rats
showed drowsiness, dull hair, significantly reduced diet, soft
stool, and yellow urine.

Badagan rat model (ConC): rats were reared at 60± 5%
humidity, and rat chow was replaced with lard and wheat
flour (ratio 1 : 4). (e rats were gavaged 4mL Taraxacum
mongolicum Hand-Mazz. (200% decoction). (ese inter-
ventions continued for 49 days. After modeling, Badagan
disease rats showed dirty hair, listlessness, curling, loose
stools, diarrhea, and low body temperature.

2.5. Fecal Sample Collection and DNA Extraction. (e col-
lected fresh fecal samples of all rats were stored in sterile EP

tubes and frozen at −80.(e E.Z.N.A. fecal DNA Kit (omega
bio TEK, Norcross, GA, United States) was used to extract
DNA from fecal samples according to the manufacturer’s
instructions. (en, the purity and concentration of DNA
were determined by NanoDrop 2000 spectrophotometer
((ermo Fisher Scientific, United States), and DNA quality
was detected by 1% agarose gel electrophoresis.

2.6. 16S rRNAGene Sequencing and Analysis. For analysis of
the intestinal microbiota, extracted DNA was sequenced by
the Illumina HiSeq sequencing platform (Illumina, USA),
and the V3-V4 hypervariable region of the 16S rRNA gene
was targeted with the primers 341F (5′-CCTAYGGG-
RBGCASCAG-3′) and 806R (5′-GGACTACNNGGG-
TATCTAAT-3′). Sequence assembly, quality control, and
clustering were performed using FLASH (version 1.2.11) and
USEARCH (version 10.0).

2.7. SerumSamplePreparation forHPLC-MS/MS. At the end
of treatment, rats were fasted for 12 hours and euthanized
under anesthesia. (en, blood was collected from the ab-
dominal aorta, and the collected blood sample was centri-
fuged at 4500 rpm for 10min to separate serum. (e 200 μL
serum was mixed with the precooled acetonitrile at a volume
ratio of 1 : 3 and then vortexed for 60 s. (e mixed sample
was kept at −20°C for 30min to allow the compounds in the
samples to be fully extracted. Next, the mixed sample was
centrifuged at 4°C for 14000 g for 15min, and the super-
natant was transferred to a new EP tube for concentration
until the solvent was completely volatilized. Finally, the
sample was redissolved with amixture of ammonium acetate
and acetonitrile at a volume ratio of 1 :1. After centrifugation
at 14000 g for 10min, the supernatant was analyzed by
HPLC-MS/MS.

2.8. Serum Metabolomic Analysis. Serum metabolites were
analyzed by (ermo Scientific Q Exactive mass spectrom-
eter. (e Accucore Hilic C18 column (100× 2.1mm, 2.6 μm)
was used to perform the chromatographic separation, and
the column temperature was kept at 35°C. (e mobile phase
consisted of 10mM ammonium acetate (A) and acetonitrile/
10mM ammonium acetate (9 :1) (B). (e flow rate was
0.35mL/min, and injection volume was 2 μL. (e gradient
elution program was as follows: 0∼1min, 100% A; 1∼9min,
0%∼100% B; 9∼12min, 100% B; and 12.1∼15min, 100% A.
(e MS analysis was worked using full scan mode, and the
mass range was recorded from m/z 70 to 1050 both in
positive and negative mode. (e parent ions with TOP10
ionic strength were selected for secondary MS identification.
HCD method was used to fragment the parent ion, and the
secondary MS sequence was determined to generate the
original file of MS detection. (en, Compound Discover
V3.0 software was applied to extract, control, and normalize
the original data. Metabolites were identified by mzCloud
database (https://www.mzcloud.org/) and ChemSpider da-
tabase (https://www.chemspider.com/). (e compound
spectrograms in mzCloud database were obtained through
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the collection of standard substances. And the spectrogram
library contained the secondary or multilevel MS spectro-
grams generated by different collision energies of CID
(collision-induced dissociation) and HCD (higher energy
collision-induced dissociation) fragmentation modes.
Moreover, the structure information of fragment ions was
annotated in the MS spectrogram to facilitate the structure
identification of unknown compounds. (e ChemSpider
database contained more than 30 million structures, pro-
viding more detailed information about compounds.

Orthogonal partial least square discriminate analysis
(OPLS-DA) was performed by SIMCA-P software. OPLS
analysis generated VIP-plot (VIP >1) to select different
variables as potential markers. (e differential metabolites
were screened with VIP >1 and p< 0.05.

2.9. Statistical Analysis. Wilcoxon signed rank-sum test was
used to analyze the alpha diversity index and bacterial
community, and statistical significance was defined at
p< 0.05. PERMANOVA analysis was used to test the dif-
ferences between groups. Kruskal–Wallis sum-rank test was
applied to analyze differential biomarker in line discriminant
analysis (LDA) effect size (LEfSe) analysis, with | LDA score
|> 3 and p< 0.05 as screening threshold.

3. Results

3.1. Changes in Intestinal Microbiota Diversity in Different
MGM-DM Rats after Treatment. Changes in intestinal
microbiota were thought to be involved in the occurrence,
development, and treatment of diseases [5]. To determine
whether the intestinal microbiota of rats changed after
treatment, 16S rRNA gene sequencing analysis was per-
formed. Alpha diversity contains four indices ACE, Chao1,
Shannon, and Simpson, which is an analysis of species di-
versity in a single sample. ACE and Chao1 reflect the
community richness of species, while Shannon and Simpson
represent microbial diversity [5]. As listed in Table 1, there
were no significant differences in ACE and Chao 1 between
the three MGM-DM groups and the corresponding treat-
ment groups (p> 0.05). Among the three treatment groups,
the Shannon value of TreatA and TreatB was higher than that
of the corresponding MGM-DM group, and only the
Simpson value of TreatA decreased significantly.

We also applied principal coordinates analysis (PCoA)
and PERMANOVA analysis to evaluate the beta diversity of
all samples. (e results showed that Heyi and Xila disease

model groups and their treatment groups could be clearly
distinguished in the PCoA diagram (Figures 1(a) and 1(c)),
while the differences between the Badagan disease model
group and the treatment group were not significant
(Figure 1(b)). Further analysis by PERMANOVA showed
significant differences between all MGM-DM groups and the
corresponding treatment groups (p< 0.05, Figures 1(d)–
1(f )). Such data indicated that the treatment did not cause a
significant change in the abundance of intestinal microbial
species, whereas the diversity of intestinal microbial species
was increased both in Heyi disease rats and Xila disease rats
after treatment.

3.2. Alterations of Intestinal Microbiota Composition in Dif-
ferent MGM-DM Rats after Treatment. Next, we analyzed
the alterations of intestinal microbiota composition of rats
after treatment. At the genus level, Lactobacillus and
uncultured_bacterium_f_ Muribaculaceae accounted for the
largest proportion in all groups (Figures 2(a)–2(c)). In Heyi
disease model, compared with ConA group, the abundance
of Akkermansia in TreatA group was significantly decreased,
while the Romboutsia was significantly increased (p val-
ue< 0.05, Figure 2(d)). In Xila disease model, compared with
ConB group, the abundance of Lactobacillus, Romboutsia,
Alloprevotella, and Clostridium_sensu_stricto_1 in TreatB
group was significantly decreased, while the Treponema_2
was opposite (p value< 0.05, Figure 2(e)). However, there
was no significant difference in the abundance of the top10
bacteria at the genus level between TreatC group and ConC
group (Figure 2(f )).

To identify the specific intestinal bacterial biomarkers
(BBM) at the genus level, LEfSe analysis was used. TreatA
group had 10 groups of BBM with significantly higher
abundance than that of ConA group, including Bacillales,
Lachnospiraceae_XPB1014_group, Peptostreptococcaceae,
UBA1819, Erysipelotrichia, Beijerinckiaceae, Sphingomonas,
Desulfovibrio, Tepidimonas, Moraxellaceae (Figure 3(a)).
TreatB group had 9 groups of BBM with significantly higher
abundance than that in ConB group, including Fla-
vobacteriales, Lachnospiraceae_FCS020_group, Lachnospir-
aceae_XPB1014_group, Ruminiclostridium_9,
Ruminococcaceae_UCG_005, uncultured_bacterium_-
f_Ruminococcaceae, Negativicutes, Proteobacteria, Spiro-
chaetes (Figure 3(b)). TreatC group had 3 groups of BBM
with significantly higher abundance than those of ConC
group including Prevotellaceae_Ga6A1_group, Elusimicro-
bia (from phylum to genus: Elusimicrobia, Elusimicrobiales,

Table 1: Alpha diversity changes in rats with different diseases after treatment.

Alpha
diversity
index

Heyi disease rats Xila disease rats Badagan disease rats

ConA TreatA p

value ConB TreatB p

value ConC TreatC p

value
ACE 576.209± 3.967 563.702± 6.409 0.134 574.616± 7.046 580.255± 3.650 0.474 570.129± 7.981 571.876± 5.592 0.86
Chao1 587.885± 6.454 574.586± 9.782 0.295 581.389± 8.257 582.350± 3.8100 0.914 577.426± 8.091 583.689± 7.49 0.576
Shannon 3.365± 0.090 3.704± 0.102 0.025 3.541± 0.068 3.8530± 0.103 0.023 3.510± 0.166 3.780± 0.112 0.193
Simpson 0.109± 0.015 0.070± 0.008 0.026 0.096± 0.008 0.072± 0.009 0.071 0.121± 0.023 0.077± 0.011 0.108
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Figure 1: Beta diversity analysis of intestinal microbial community. (a)–(c) PCoA analysis of variation between the bacterial communities
presenting in all groups. (a) Heyi disease model, (b) Xila disease model, and (c) Badagan disease model. Each data point represented an
individual sample. (d)–(f) PERMANOVA analysis of three MGM-DM groups and treatment groups. Y-axis: Bray Curtis distance. p< 0.05
was considered as significant difference.
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Elusimicrobiaceae, Elusimicrobium), Escherichia_Shigella
(Figure 3(c)).

3.3. Prediction of Intestinal Microbial Function. To better
understand the functional changes associated with pertur-
bation in microbial composition, PICRUSt analysis was
applied to predict the potential functions of intestinal
microbiota. Compared with ConA, the abundance of “xe-
nobiotics biodegradation and metabolism” pathway in
TreatA was significantly increased (Figure 3(d)). Compared
with ConB, the abundance of “cancers: specific types”
pathway was significantly decreased, while the abundance of
“carbohydrate metabolism” pathway and “metabolism of
other amino acids” pathway was significantly increased in
TreatB (Figure 3(e)). And there was no significant difference
between TreatC and ConC in each pathway.

3.4. Identification of SerumMetabolic Markers. Here, serum
metabolic profiles of all rats were obtained from HPLC-MS/
MS in positive and negative modes. In addition, we used
OPLS-DA analysis to evaluate whether there were differ-
ences between the disease group and the treatment group. As
shown in Figure 4(a), the metabolic profiles of the three
disease groups and their corresponding treatment groups
were significantly separated, indicating that the endogenous
metabolites of rats changed significantly after treatment.
Next, we screened differential metabolites in the OPLS-DA

analysis with VIP >1 and p< 0.05 as the threshold. Com-
pared with ConA group, 26 differential metabolites under
positive ion mode and 19 different metabolites under
negative ion mode were detected in TreatA group (Table S1),
resulting in 45 differential metabolites involved in 4 meta-
bolic pathways, including “primary bile acid biosynthesis,”
“pyrimidine metabolism,” “arginine and proline meta-
bolism,” and “tryptophan metabolism” (the metabolic heat
map of 45 differential metabolites was shown in Figure 4(b)).
Compared with ConC group, 40 differential metabolites
under positive ion mode and 22 different metabolites under
negative ion mode were detected in TreatC group (Table S1),
resulting in 62 differential metabolites involved in 4 meta-
bolic pathways, including “primary bile acid biosynthesis,”
glycine, “serine and threonine metabolism,” “sphingolipid
metabolism,” and “biosynthesis of unsaturated fatty acid”
(the metabolic heat map of 62 differential metabolites was
shown in Figure 4(c)).

4. Discussion

(is study established three rat models with MGM disease
and treated them with FR, LC, and PG herbs. Significant
changes in intestinal microbiota and serummetabolites were
detected in Heyi, Xila, and Badagan disease rats after
treatment via 16S rRNA gene sequencing andmetabolomics.

(e poor dietary habits, harsh living environment, and
negative mental stimulation could cause serious health
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Figure 2: Changes in composition of Top10 intestinal microbiota at genus levels in each group. (a)–(c) Intestinal microbial composition at
genus level in rats. (a) Heyi disease model, (b) Xila disease model, and (c) Badagan disease model. (d)–(f) intestinal microbial abundance at
genus level in rats. (d) Heyi disease model, (e) Xila disease model, and (f) Badagan disease model.
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Figure 3: Continued.
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problems [19–21]. Studies have shown that changes in in-
testinal microbiota link poor dietary habits to Alzheimer’s
disease [22]. (erefore, the intestinal microbiota may serve
as a bridge between disease and risk factors and be con-
sidered as an effective way of treatment [7, 23]. In our
previous studies, we found that the intestinal microbiota of
rats with Heyi, Xila, and Badagan diseases changed signif-
icantly, accompanied by the decrease of beneficial bacteria
and the increase of harmful bacteria [10]. In the present
study, we observed no significant changes in the ACE index
and Chao1 index in all groups, indicating that treatment did
not change the abundance of intestinal microbiota in rats,
but the diversity of intestinal microbial species of Heyi
disease rats and Xila disease rats was significantly increased
after treatment. Beta diversity analysis showed that there
were significant differences betweenHeyi disease rats and FR
treatment rats, as well as Xila disease rats and LC treatment
rats, suggesting changes in microbial species composition,
while these changes were not found in the Badagan rat
model. In the Heyi disease model, the abundance of
Akkermansia in rats was significantly decreased after
treatment, while the Romboutsia was significantly increased.
(is suggested that Akkermansia and Romboutsia could be
used as an indicator of Heyi disease treatment.

However, in previous studies, Akkermansia was con-
sidered beneficial because it could regulate the thickness of
intestinal mucus and maintain the integrity of the he in-
testinal barrier [24]. In this study, we speculated that the
decrease in Akkermansia abundance might be related to the
treatment dose and treatment cycle. In the Xila disease
model, compared with ConB group, the abundance of
Lactobacillus, Romboutsia, Alloprevotella, and

Clostridium_sensu_stricto_1 in the TreatB group was sig-
nificantly decreased, while the Treponema_2 was opposite.
We also found that there were 10, 9, and 3 BBMs that in-
creased in Heyi, Xila, and Badagan disease rats after treat-
ment, respectively. (e disorder of intestinal microbiota led
to the decline of intestinal barrier function and immunity,
which further induced intestinal inflammation and caused a
series of pathological reactions [25]. (erefore, regulating
the dynamic balance of intestinal flora was conducive to
health recovery. Moreover, changes in the KEGG pathway
were compared before and after treatment. In the Heyi
disease model, the abundance of “xenobiotics biodegrada-
tion and metabolism” pathway was significantly increased in
the TreatA group. In the Xila disease model, the abundance
of “cancers: specific types” pathway was significantly de-
creased, but the abundance of “carbohydrate metabolism”
pathway and “metabolism of other amino acids” pathway
was significantly increased in the TreatB group. We spec-
ulated that these pathways may play an important role in the
treatment of three MGM-DM rats.

Furthermore, metabolomics revealed the effects of herbal
treatments on serum metabolites. After treatment, a total of
45 different metabolites between TreatA and ConA were
detected, involving four pathways: “primary bile acid bio-
synthesis,” “pyrimidine metabolism,” “arginine and proline
metabolism,” and “tryptophan metabolism.” A total of 62
different metabolites between TreatC and ConC were de-
tected, involving four pathways: “primary bile acid bio-
synthesis,” “glycine, serine and threonine metabolism,”
“sphingolipid metabolism,” and “biosynthesis of unsatu-
rated fatty acids.” We noticed that most of these metabolic
pathways were related to amino acid metabolism and
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Figure 3: LEfSe analysis and KEGG function prediction. (a) (e significantly differential biomarkers between the Heyi rat model and
treatment group based on LEfSe analysis; (b) the significantly differential biomarkers between the Xila rat model and treatment group based
on LEfSe analysis; (c) the significantly differential biomarkers between the Badagan rat model and treatment group based on LEfSe analysis;
(d) differential analysis of KEGG function prediction between Heyi rat model and treatment group; (e) differential analysis of KEGG
function prediction between Xila rat model and treatment group.
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primary bile acid biosynthesis. Most of these metabolites
have been reported to be involved in a variety of biological
processes. For example, glycine was considered as a radical
scavenger that prevented oxidative damage and apoptosis
[26]. Tryptophan could promote intestinal immune defense
[27]. Bile acids protected the integrity of intestinal barrier by
inhibiting the overgrowth of intestinal bacteria. In turn,
intestinal bacteria controlled the composition and pool size
of circulating bile acids [28]. It is widely known that herbal
medicine has the characteristics of multitarget, multipath-
way, and synergistic effect due to its complex chemical

compounds [29]. For example, it was reported that PG
contained a variety of polyphenols (such as gallic acid and
ellagic acid), so PG extract had strong antibacterial, anti-
oxidant, and free radical scavenging abilities [30]. Wu et al.
found that the polysaccharide in PG could promote the
proliferation of spleen lymphocytes and increase the ex-
pression of immunoglobulin in immunosuppressive model
mice [31]. Ferulic acid, one of the main components in PG
and FS, had a wide range of pharmacological activities,
especially in inflammation, oxidative stress, and platelet
aggregation [32, 33]. Jia et al. used HPLC-EIS-MS/MS
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Figure 4: Serum metabolic profiling. (a) (e OPLS-DA score plot of three MGM-DM groups and corresponding treatment groups on
positive ion and negative ion modes; (b) heat map of metabolic levels of differential metabolites between Heyi rat model and treatment
group; (c) heat map of metabolic levels of differential metabolites between Badagan rat model and treatment group; (d) KEGG enrichment
analysis of differential metabolites in Heyi rat model and treatment group; (e) KEGG enrichment analysis of differential metabolites in
Badagan rat model and treatment group.
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method to identify 21 components in LC, including quer-
cetin, luteolin, swertiamarin, gentiopicroside, and apigenin
[34]. Recent studies have shown that quercetin could reduce
the passive coping behavior induced by psychosocial stress
via regulating the HPA axis and inhibiting brain oxidative
stress and neuroinflammation [35]. In addition, luteolin has
been shown to significantly alter the composition and
richness of intestinal microbiota in rats with nonalcoholic
fatty liver disease [36]. A large number of chemical com-
ponents were considered as the key to the effectiveness of
herbal medicine [37]. (erefore, the three herbs contain a
variety of active ingredients, which were the material basis
for the treatment of MGM disease rats, and these com-
pounds caused the difference in metabolic level between the
control group and the treatment group. In general, the
metabolic pathways in MGM-DM rats were disordered, and
FS, LC, and PG could effectively regulate the disordered
metabolic pathways, and the mechanism might be related to
the regulation of amino acid metabolism and primary bile
acid synthesis.

Despite all this, there are some limitations to our study.
We did not pay enough attention to the biochemical
changes and pathological examination of rats before and
after treatment. In addition, the influence of changes in
intestinal microbiota on herbal therapy should be further
explored.

5. Conclusion

In summary, 16S rRNA gene sequencing and metabonomics
analysis were used to investigate the changes of intestinal
microbiota and serum metabolites in rats of three Mon-
golian medicine disease models after treatment. Our results
showed that intestinal microbiota and serum metabolites in
treatment group rats were significantly different from that in
model group rats. Our findings provide more clues for
further study of Mongolian medicine.
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