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Muscle synergy has been applied to comprehend how the central nervous system (CNS) controls movements for decades. However, it
is not clear about the motion control mechanism and the relationship between motions and muscle synergies. In this paper, we
designed two experiments to corroborate the hypothesis: (1) motions can be decomposed to motion primitives, which are driven by
muscle synergy primitives and (2) variations of motion primitives in direction and scale are modulated by activation coefficients
rather than muscle synergy primitives. Surface electromyographic (EMG) signals were recorded from nine muscles of the upper limb.
Nonnegative matrix factorization (NMF) was applied to extract muscle synergy vectors and corresponding activation coefficients. We
found that synergy structures of different movement patterns were similar (¢ = 0.05). The motion modulation indexes (MMI) among
movement patterns in reaching movements showed apparent differences. Merging coefficients and reconstructed similarity of
synergies between simple motions and complex motions were significant. This study revealed the motion control mechanism of the

CNS and provided a rehabilitation and evaluation method for patients with motor dysfunction in exercise and neuroscience.

1. Introduction

A large amount of research has reported that the CNS uses a
dimensionality reduction pattern to coactivate a set of motion
primitives (MP) to achieve daily activity living (DAL).
However, motor control is redundancy and we could achieve
a specific motion by combining various activation muscles [1].
How the CNS selects primitives from a vast pool and achieves
movement behaviors is a complicated issue in the field of
movement neuroscience and neurorehabilitation.
Modularity or muscle synergy as a building block, both
structural and computational, exhibited feasibility for
achieving motion control [2]. It has been proven in animal
experiments, such as in cats, frogs, and monkeys. d’Avella
[3] analyzed the movements of frogs during jumping,
swimming, and walking in naturalistic conditions and found
three shared and two task-specific muscle synergies across
behaviors. Research in rhesus macaques showed that the

grasping and transporting movements were achieved by
modulating the muscle synergies [4, 5]. Ting and Mac-
pherson [6] analyzed the postural and balance control of cats
and found that muscle synergies were correlated to the
movement direction and endpoint force.

The modularity of motion control was also found in
human motions. The study in various human locomotions,
consisting of walking and running at different speeds,
walking forward or backward, and walking under different
loading conditions and different styles (rectilinear and
curvilinear trajectories) [7, 8], showed that motions were
driven by combining a few muscle synergy primitives.
Shared and task-specific muscle synergies were also found in
human locomotion [9, 10]. And, Barroso found muscle
synergies merging in human walking and cycling [11], and
cycling synergies are a linear combination of walking syn-
ergies. In the clinical research of stroke, decomposing and
merging were more evident [12]. Comparing to the lower
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limb, the upper limb movement is more complicated and
exquisite. d’Avella et al. [13, 14] analyzed and summarized
the movements of point-to-point at different speeds, loads,
forearm postures, and via-point movements, showing that
the CNS achieved a goal by combining a set of building
blocks (muscle synergy primitives). Israely et al. [15] studied
the muscle synergy modulation function of hand-reaching
tasks from different directions and found a representative set
of synergies, which were from the muscle synergies extracted
from the center of the reaching space, which could be
modulated to achieve motions in different directions.
Similar results were found in poststroke [12, 15]. However,
there was little research on the relationship between
movement patterns and muscle synergies. Besides, the re-
lationship between simple motions and complex motions is
ambiguous. A deeper understanding of motion control in
modularity is necessary.

In this paper, we would mainly analyze the relationship
between muscle synergies and motion primitives. Based on
the prior research, two hypotheses are tested: (1) any motion
can be decomposed to motion primitives, which are driven
by muscle synergy primitives and (2) variations of motion
primitives in direction and scale are modulated by activation
coeflicients rather than muscle synergy primitives.

2. Materials and Methods

2.1. Subjects. Twenty-eight subjects with no neurological
injury (male: eleven, female: seventeen, and age: 23.68 + 1.74
years) were recruited for the study. All subjects are right-
hand dominant. They were informed about the procedure
and possible discomfort before giving their informed con-
sent. The research was approved by the ethical committee of
the university.

2.2. Experiment Procedures. 'Two experiments were designed
for corroborating hypotheses. The first experiment (E1)
consisted of three simple upper limb motions (SM) and five
complex upper limb motions (CM). The simple motions
included shoulder flexion/extension, shoulder abduction,
and elbow flexion/extension. The complex motions covered
touching head in the sagittal plane and the frontal plane,
respectively, putting one hand behind the back, and shoulder
pushing up in the sagittal plane and the frontal plane, re-
spectively. All participants stood in the anatomic pose. More
detailed motion information was illustrated by Pan et al.
[12]. All subjects participated in the El. The second ex-
periment (E2) [16] was carried out in eleven male subjects.
The subjects for E2 were instructed to execute reaching
movements in six directions and three distances in a hor-
izontal plane in a seating pose. Repeating the procedure six
times for every reaching movement, 108 (3 x6x6) trials
were performed for every subject.

2.3. Data Collecting and Preprocessing. Surface electromyo-
graphic (EMG) signals were recorded (Trigno Wireless EMG
System, Delsys, USA) from nine dominant muscles of the right
upper limb, including triceps brachii long and lateral head
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(TriLong and TriLat); pectoralis major (Pecm); deltoid anterior,
medial, and posterior (DeltA, DeltM, and DeltP); trapezius
upper (TrapUpper); biceps brachii (Bic); and brachioradialis
(Brad). Electrodes were placed longitudinally along with the
muscle fiber direction on corresponding muscles based on the
guidelines of the Surface Electromyography for the Non-
invasive Assessment of Muscles (SENIAM) [17].

Before the EMG processing, we eliminated the re-
cordings contaminated due to disturbance and noise. Then,
raw EMG signals were high-pass filtered (5" order But-
terworth filter, the cutoff frequency of 50 Hz), zero-meaned,
rectified, low-pass filtered (5™ order Butterworth filter, the
cutoff frequency of 5Hz), and integrated over 20ms
[3, 11, 16]. To facilitate comparison across subjects, the EMG
envelope was normalized by the average of the top 10
maximum of each muscle from every individual [11].

2.4. Data Analysis

2.4.1. Extracting Muscle Synergies. Muscle synergy theory
assumes that EMG patterns can be described as a linear
combination of a set of muscle synergies (time invariant)
activated by corresponding activation coeflicients (time
variant). It can be described as follows:

E, = mencnxt + €puxt> (D

where E, ., is the preprocessed EMG, m is the number of
muscles, and ¢ is the number of sampling. W, ., specifies the
spatial profiles of activation, named the muscle synergy
matrix, n is the number of muscle synergies. C,, is the
activation coefficient, which is time varying. e,,,,, is the error
of reconstruction. We applied the nonnegative matrix fac-
torization (NMF) [18] to extract muscle synergies. To avoid
W and C converge to alocal minimum, we repeated 50 times
for each synergy.

2.4.2. Determining the Minimum Number of Muscle Synergy.
The NMF algorithm starts with an initialized n. We increased
the number of muscle synergy from one to nine. Re-
construction quality was evaluated by calculating the variance
accounted for (VAF) [14]. The structure of muscle synergy was
affected by the minimum number of synergy. To reconstruct
the EMG patterns better and decrease the dimensionality of
the muscle synergies, two criteria were applied. Criteria 1: the
minimum of muscle synergy was defined as the number that
the total VAF was greater than 95% [12] (in the E2, VAF > 90%
[19]) and criteria 2: an additional synergy did not contribute
more than 5% in the reconstruction of the EMG envelope. The
VAF is defined as follows [20]:

221 Z§-=1 (ei,j)2

VAF=1- : >
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(2)

2.4.3. Evaluating the Similarity and Merging the Synergies.
Before calculating the synergies similarity, we first matched
the muscle synergy vectors from all synergy sets adopting the
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Hungarian algorithm [21]. The Pearson correlation co-
efficient (r; j) and cosine similarity (s; j) were used to assess
the similarity of synergy vectors. To identify how the syn-
ergies extracted from complex motions were reconstructed
by the linear combination of synergies extracted from simple
motions, we applied the algorithm proposed by Cheung et al.
[22], in
LSV

CM i SM i .
u)i = kawk 5 meO, 1= 1,...,1’lCM, (3)
k=1

where wM is the ith synergy vector from a complex motion,
wM is the kth synergy vector from simple motion, and m}, is
a nonnegative coefficient which denotes contributions of the
kth synergy vector from simple motion for the structure of
ith synergy vector from the complex motion.

2.4.4. Motion Modulation Indexes (MMI). In the E2, we
executed reaching movements in different directions and
distances. To assess the modulating extent of activation
coeflicients among motion patterns, the motion modulation
indexes were applied. We applied two indexes, root mean
square of modulating signals (RMS-MS) and the VAF of
synergy (VAF-Syn). RMS-MS represented an absolute ac-
tivation degree, and VAF-Synergy (VAF;"") showed a rel-
ative activation degree. The two indexes could give an

objective description of modulation. For one synergy, the
VAF;"" is defined as [16]

2
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where w; is the ith muscle synergy and c! is the corre-
sponding activation coeflicient. VAFg and VAF"" are the
VAF and the synergy VAF of the ith muscle synergy,
respectively.

3. Results
3.1. Analysis of E2

3.1.1. Extracting Muscle Synergies. The VAF is shown in
Figure 1. According to the criteria described above, we
identified three synergies (2.82 + 0.40, corresponding VAF is
0.94 +0.01) in reaching movement (E2) for further analysis.
Figure 2 exhibits three synergy structures extracted from
preprocessed and pooled EMG data. Every synergy activated
certain muscles corresponding to the upper limb motion.
The first synergy mainly drove the shoulder flexion/ab-
duction and internal rotation (Pecm and DeltA) and elbow
flexion (Bic). The second synergy typically involved the
movement of elbow extension (TriLat and TriLong),
shoulder abduction (DeltM and DeltP), shoulder external
rotation (DeltP), and shoulder extension (TriLat, TriLong,
and DeltP). The third synergy covered the elbow flexors
(Brad and Bic) and TrapUpper.
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Figure 1: The variance accounted for (VAF) with respect to the
number of muscle synergies. Colored bars indicate different motion
patterns, respectively. Muscle synergies were extracted by the NMF
algorithm. For reaching movement (E2), three synergies were
extracted from the concatenated ENG. We extracted four synergies
from concatenated simple motions (SM). 3, 2, 3, 2, and 2 synergies
were extracted from five complex motions (CM1, CM2, CM3,
CM4, and CM5), respectively.

The cosine similarity (s) and the Pearson correlation
coefficient (r) between synergy vectors from all subjects are
shown in Table 1. Results showed that the parallel synergy
vector in all subjects was relevant. t-test results also illus-
trated that there was no significant difference among synergy
vectors (a = 0.05).

3.1.2. Similarity Analysis in Different Directions and
Distances. To compare the variance of synergy vectors from
different directions and distances, t-test was performed.
Figure 3 shows the mean p values of the t-test among di-
rections (a) and distances (b). Results showed that all p
values were greater than 0.54 in directions (Table 2) and 0.59
in distances (Table 3), indicating that the synergy vectors
from all directions and distances were from a population.
Then, we concatenated the data from all directions and
distances, respectively. The t-test results showed that there
was also no significant correlation in all directions and
distances. For every synergy in six directions (Table 2), the
average p values are 0.71 £0.21, 0.70 +0.21, and 0.73 £ 0.19
(a =0.05, n=Cg =2145). And for every synergy in three
distances (Table 3), the corresponding average p values are
0.69+0.24, 0.78+0.16, and 0.72+0.19 (a =0.05,
n=C3; ="528), respectively.

3.1.3. Motion Modulation Indexes (MMI). The MMI for
every direction and distance are shown in Figure 4. We
found that every synergy was activated mainly in certain
directions or distances. For example, the first synergy was
activated mainly in 0 and —45 direction. The second synergy
was in the direction of 45, 90, 135, and 180. The third synergy
was activated in all directions. In terms of distances, the first
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FIGURE 2: The structure of muscle synergies extracted from reaching movement. Colored bars indicate different subjects (11), and each
muscle is shown in a group. Black wireframes and red bars are the group mean and standard deviation, respectively.

TasLE 1: Cosine similarity (s) and Pearson correlation coefficient (r) among synergy vectors from all subjects and the ¢-test results. The null
hypothesis is that the synergy vectors come from a population (a = 0.05, N=C3, =55).

Synergies s r t-test
Synl 0.94+0.04 0.91+0.07 0.56 +0.24
Synl 0.93+£0.04 0.81 +£0.12 0.80+0.16
Synl 0.85+0.09 0.73+£0.16 0.73+0.19
-45° 0° 45° 90° 135° 180° . Near Medial Far .
0.9 0.9
Synl 0.8 0.8
0.7 0.7
0.6 0.6
Syn2 0.5 0.5
0.4 0.4
0.3 0.3
Syn3 0.2 0.2
0.1 0.1
0 0
(a) (b)

FIGURE 3: t-test results from six directions (a) and three distances (b) among all subjects. The samples are 55 (Cf1 ). The deeper color indicates
a smaller p value.

TABLE 2: t-test results from six directions (n=2145, a = 0.05).

Synergies —45° 0 45° 90° 135° 180°
Synl 0.75+0.18 0.65+0.21 0.67 £0.19 0.68 +0.28 0.66 £0.27 0.75+£0.24
Syn2 0.59+0.23 0.54+0.28 0.77+0.17 0.71£0.22 0.72+0.20 0.73+0.18

Syn3 0.77£0.17 0.81+£0.14 0.72+0.22 0.72+0.20 0.70 £0.24 0.75+£0.18
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TABLE 3: t-test results from three distances (n =528, a = 0.05).

Synergies Near Medial Far

Synl 0.79+0.17 0.60+0.26 0.59+0.27

Syn2 0.72+0.19 0.85+0.12 0.77£0.16

Syn3 0.68 +£0.20 0.73+0.19 0.74+0.18

—— Near
—— Medial
—— Far

Synl

—— Near
—— Medial
—— Far

180

Syn2 Syn3

FIGURE 4: The radar map of MMI for three synergies (Synl, Syn2, and Syn3). The first row is the VAF of synergy (VAF-Syn), and the second
row is the root mean square of modulation signals (RMS-MS). Each column corresponds to a synergy. The radar map shows the six
directions (—45, 0, 45, 90, 135, and 180), and colored lines indicate different distances (near, medial, and far).

two synergies showed similar trends, ie., the farther the
distance, the greater the MMI. However, the third synergy
exhibited the inverse characters, i.e., the farther the distance,
the smaller the MMI. Two criteria, VAF-Syn and RMS-MS,
demonstrated similar characters.

3.2. Analysis of E1

3.2.1. Extracting Muscle Synergies. For E1, we preprocessed
the raw EMG data according to the abovementioned methods.
However, the threshold was set 0.95 for determining the
number of minimum synergies. Four synergies were selected
for simple motion and 3, 2, 3, 2, and 2 synergies were identified
for every complex motion, respectively (Figure 1): more
specifically, 4.11+0.63, 3.11+£0.50, 2.21+0.57, 2.71 +0.66,

2.43+0.57, and 1.82+0.55. The spatial structure of muscle
synergies from every motion pattern is shown in Figure 5. For
simple motion, the first synergy mainly activated shoulder
abductor (DeltA and DeltM) and TrapUpper, which drove the
motion of shoulder abduction. The second synergy primarily
stimulated elbow flexor (Bic and Brad), which actuated the
motion of elbow flexion. The third synergy drove the shoulder
and elbow extension (TriLat, TriLong, DeltM, and DeltP). The
forth synergy led to the motion of shoulder flexion (Pecm and
DeltA). For every complex motion, every synergy chiefly
activated certain muscles also, which actuated similar upper
motions.

t-test analysis was conducted among the subjects
(a = 0.05). The synergy similarity among subjects is shown
in Figure 6. The results rejected the null hypothesis (the
sample data come from a population). We analyzed the



Simple motion

Synl

ST

Syn2
SOOO
OO

Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
03
2 s | ;
202
0
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
08
T 06 ‘
£ 04 | ! |
0'% E 1 d—u{a—rh 4 IR H.l NN
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic

Complex motion 2

0.8 |

Synl

0.4

0.2 ﬂ
0

TriLat Trilong DeltM  DeltP  DeltA
0.2 ! I

ki1 Bl “ﬁﬁl

TriLong DeltM  DeltP DeltA  Pecm TrapUpper Brad Bic

|

Pecm TrapUpper Brad Bic

Pecm TrapUpper Brad Bic

08
0.6 |

Syn2

o

TriLat

Complex motion 4

TriLat DeltA

TriLong DeltM  DeltP

08 - L ”
06 |

o
£
@ 04
" i n—h—l L—L‘—L mnli—h
0 “—l 1 I. .| jull s
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic

Journal of Healthcare Engineering

Complex motion 1

I il I || | |
[||ﬂ.ikﬁ.| ﬂ“i |H||‘ T|
TriLat Trilong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
1
0.8 |
06| I
& 04 | \
02 —J| | 1
0 ] adbil ol n
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
1
08 m |
@ 06| I 1|
& 04 F I
02 | |
2 (ki) ot ebsd wes b gy (LI ]I[H
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
Complex motion 3
1~
08 | ‘
= 06 |
Eoaf [ LI
0.2
Oﬂ{q.. , s IOED . i
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
1
08 |
Q06 |
70 | b
o ! : L Wbl
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
1
0.8
Q06
& 04 |,
0.2 f
o ChllLds s mﬁ]m_n:ﬂln
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
Complex motion 5
1
0.8 |
= 0.6
=
oelyhy 1l b
0.2 l | |
0 ]
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic
1
0.8 |
~ 0.6
£
Foat| ]|
!l fin|
[t
Trilat TriLong DeltM  DeltP  DeltA  Pecm TrapUpper Brad Bic

FIGURE 5: Synergy structures extracted from concatenated simple motion and complex motions. Four synergies were extracted from simple
motion, and 3, 2, 3, 2, and 2 synergies were extracted from five complex motions, respectively. Colored bars indicate different subjects (28
subjects for E2). Black wireframes are group means, and red bars are standard deviation.

synergy similarity of all complex motions given in Table 4. A
paired synergy is considered significantly correlated if the p
is>0.5. We found that the synergy structure exhibited cor-
relations between CM1 and CM2, and CM4 and CMS5.
However, the first synergy from CM4 and CM5 displayed a
negative correlation.

3.2.2. Analysis of Synergy Similarity between Simple Motion
and Complex Motions. The similarity of every extracted
synergy between complex motions and the simple motion was
computed by cosine similarity (Figure 7). Table 5 shows the
average of synergy similarity that every complex motion
relates to simple motion. The higher similarity was found

between the synergies from the complex motions and syn-
ergies from simple motion which composed the complex
motion. For instance, touching head in the sagittal plane
(CM1) consists of shoulder and elbow flexion. And, we found
a greater similarity in the CM1-Syn1 and SM-Syn1, and CM1-
Syn3 and SM-Syn2, which was similar in the synergy structure
analysis (Figure 5: complex motion 1). We also found the
merging process between simple motion and complex mo-
tions. Table 6 demonstrates the merging coefficients (Mer-
Coe) and reconstructed similarity (ReSim). We considered
that the merging process was significant when the Mer-Coe
was higher than 0.3 [11]. The results displayed that all
reconstructing similarity was higher than 0.8.
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TaBLE 4: Similarity of the synergy among complex motions (CM1 and CM2, CM4 and CM5).

CM1 CM4
CM2 CM5
Synl Syn2 Syn3 Synl Syn2
Synl 0.56 0.25 —-0.64 Synl -0.53 -0.02
Syn2 -0.35 0.51 0.30 Syn2 —-0.34 0.73
TaBLE 5: Average of the synergy similarity between complex motions and simple motion.
CM1 CM2 CM3 CM4 CM5
SM-Syn1 0.74 0.79 0.34 0.69 0.43
SM-Syn2 0.71 0.60 0.74 0.77 0.57
SM-Syn3 0.69 0.85 0.53 0.55 0.81
SM-Syn4 0.71 0.71 0.60 0.87 0.74
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FiGure 7: Cosine similarity of synergies between simple motion and complex motions. CM1-Synl means the first synergy from complex
motion 1. SM-Synl expresses the first synergy from simple motion. Other abbreviations are semblable. A deeper color means a lower

similarity.

4. Discussion

The purpose of this study was to investigate the relationship
between muscle synergies and motion primitives of the
upper limb motions. In previous studies, two muscle synergy

models, time-varying synergy and time-invariant synergy,
were used to analyze muscle patterns [13, 23]. In our study,
we extracted time-invariant muscle synergies adopting the
NMEF algorithm. Two experiments were designed, reaching
movements and simple/complex motions. According to the
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TaBLE 6: Merging coefficients and reconstructed similarity.
CM1 CM2 CM3 CM4 CM5

SM-Syn

Synl Syn2 Syn3 Synl Syn2 Synl Syn2 Syn3 Synl Syn2 Synl Syn2
SM-Syn1 0.93 0.06 0.00 0.59 0.02 0.00 0.00 0.00 0.52 0.00 0.00 0.00
SM-Syn2 0.00 0.10 0.81 0.00 0.25 0.90 0.71 0.00 0.18 0.48 0.00 0.25
SM-Syn3 0.04 0.58 0.10 0.60 0.44 0.00 0.07 0.64 0.00 0.07 0.78 0.35
SM-Syn4 0.11 0.24 0.12 0.00 0.42 0.07 0.07 0.33 0.48 0.57 0.26 0.50
ReSim 0.98 0.92 0.97 0.98 0.95 0.95 0.84 0.81 0.96 0.97 0.88 0.89

criteria predefined, we found three synergies were sufficient
to explain >90% of the total variability of EMG activity of the
nine studied muscles for reaching movements from eleven
subjects. In the study of reaching movements of different
conditions, three to five time-varying muscle synergies were
extracted [24, 25]. The results were coincident with the prior
study. For simple motion and complex motions, we just
selected one or two synergies in the threshold of 0.9, which
could not describe the spatiotemporal structure of the
synergy. Thus, the threshold was set to 0.95, and we selected
4, 3, 2, 3, 2, and 2 synergies, respectively.

The study discussed the influence of directions and
distances to muscle synergy in reaching movements (E2). ¢-
test analysis (Tables 2 and 3) showed that synergies in
different directions and distances were irrelevant. In the
analysis of MMI, we found that RMS-MS and VAF-Syn
exhibited resembled distributions in the radar map (Fig-
ure 4). The main performance was that the first synergy was
activated mainly in the right and right rear motions. The
second synergy mainly involved front, front-left, and left
motions. However, the third synergy covered all directions.
In the analysis of distance, the first two synergies displayed
similar characters, farther distance with greater MMI.
However, the third synergy showed an inverse character. We
speculated that the third synergy was a shared synergy
structure for reaching movements. The conjecture was
verified by analyzing the synergy structure (Figure 2). The
results revealed that the CNS controlled the motions in
different patterns (directions and distances) by adaptively
modulating the corresponding activation coeflicients.

The E1 mainly analyzed the muscle synergy patterns of
the simple motion and complex motions. t-test analysis
showed synergy coincidence among subjects. However,
there was one case which rejected the null hypothesis in
CM3-Synl, CM3-Syn2, CM3-Syn3, and CM5-Synl, re-
spectively (n = C3, = 378). Considering the interference and
noise of EMG signals, we thought the results were reliable.

The CM1 (touching head in the sagittal plane) could be
decomposed into shoulder and elbow flexion. And, the CM2
(touching head in the frontal plane) included the simple
motions of shoulder abduction and elbow flexion. The
analysis of synergy similarity between CMI1 and CM2
showed a positive correlation (>0.5) in the corresponding
synergy. The synergy structure of the two motions (Figure 5)
also displayed analogy. Semblable results were observed
between CM4 and CMS5. The results coincided with the

conclusion in E2.
The similarity of synergy vectors was analyzed between

simple motion and complex motions. The results verified

that the CNS controlled the motions by recruiting a set of
muscle synergy primitives. Combining the study of reaching
movements in E2, we knew that every muscle synergy
pattern corresponded to a motion primitive.

As a quantitative assessment tool, muscle synergy has
been used widely in motor neuroscience and rehabilitation
neuroscience. However, the raw EMG signals are contam-
inated easily, and various preprocessing methods increase
the difficulty to compare among researchers. Researchers
have reported that experiment conditions have an effect on
the envelope of the EMG, including speed, load, and posture
[13]. In further work, we could study how the synergy
modulates the motion in more conditions.

5. Conclusions

This study presented the possible patterns of the CNS
controlling motions by two experiments, reaching move-
ments in a horizontal plane and simple/complex motions.
We applied the NMF to extract muscle synergies. Similarity
analysis and t-test in muscle synergies indicated that the
CNS modulated activation coeflicients to achieve different
motion patterns. Besides, for a complex motion, which
included several motion primitives, the CNS recruited a set
of muscle synergy primitives which drove the corresponding
motion to coactivate the motion. Our results provided an
interpretable strategy for the CNS controlling the motions.
This would be a potential implication for evaluating and
making rehabilitation plans in rehabilitation neuroscience.

Data Availability

The raw data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

There are no conflicts of interest regarding the publication of
this paper.

Acknowledgments

The authors would like to thank all the subjects and
members from the Sensor Network and Application Re-
search Center, School of Electronic, Electrical and Com-
munication Engineering, University of Chinese Academy of
Sciences, and the subjects who participated in the study. This
work was supported by the Postgraduate Research and



Journal of Healthcare Engineering

Practice Innovation Program of Jiangsu Province (grant no.
KYCX19_0061, 2019).

References

[1] A.d’Avella, M. Giese, Y. P. Ivanenko, T. Schack, and F. Flash,
“Modularity in motor control: from muscle synergies to
cognitive action representation,” Frontiers in Computational
Neuroscience, vol. 9, p- 126, 2015.

[2] R. E. Singh, K. Igbal, G. White, and T. E. Hutchinson, “A
systematic review on muscle synergies: from building blocks
of motor behavior to a neurorehabilitation tool,” Applied
Bionics and Biomechanics, vol. 2018, Article ID 3615368,
15 pages, 2018.

[3] A.d’Avellaand E. Bizzi, “Shared and specific muscle synergies
in natural motor behaviors,” Proceedings of the National
Academy of Sciences, vol. 102, no. 8, pp. 3076-3081, 2005.

[4] S. A. Overduin, A. d’Avella, J. M. Carmena, and E. Bizzi,
“Microstimulation activates a handful of muscle synergies,”
Neuron, vol. 76, no. 6, pp. 1071-1077, 2012.

[5] S. A. Overduin, A. d’Avella, J. Roh, and E. Bizzi, “Modulation
of muscle synergy recruitment in primate grasping,” Journal
ofNeuroscience, vol. 28, no. 4, pp. 880-892, 2008.

[6] L. H. Ting and J. M. Macpherson, “A limited set of muscle
synergies for force control during a postural task,” Journal of
Neurophysiology, vol. 93, no. 1, pp. 609-613, 2005.

[7] F.Lacquaniti, Y. P. Ivanenko, and M. Zago, “Patterned control
of human locomotion,” The Journal of Physiology, vol. 590,
no. 10, pp. 2189-2199, 2012.

[8] N. Chia Bejarano, A. Pedrocchi, A. Nardone et al., “Tuning of
muscle synergies during walking along rectilinear and cur-
vilinear trajectories in humans,” Annals of Biomedical Engi-
neering, vol. 45, no. 5, pp- 1204-1218, 2017.

[9] G. Boccia, C. Zoppirolli, L. Bortolan, F. Schena, and
B. Pellegrini, “Shared and task-specific muscle synergies of
Nordic walking and conventional walking,” Scandinavian
Journal of Medicine & Science in Sports, vol. 28, no. 3,
pp. 905-918, 2018.

[10] M. M. Nazifi, H. U. Yoon, K. Beschorner, and P. Hur, “Shared
and task-specific muscle synergies during normal walking and
slipping,” Frontiers in Human Neuroscience, vol. 11, p. 40, 2017.

[11] F.O. Barroso, D. Torricelli, J. C. Moreno et al., “Shared muscle

synergies in human walking and cycling,” Journal of Neu-

rophysiology, vol. 112, no. 8, pp. 1984-1998, 2014.

B. Pan, Y. Sun, B. Xie et al., “Alterations of muscle synergies

during voluntary arm reaching movement in subacute stroke

survivors at different levels of impairment,” Frontiers in

Computational Neuroscience, vol. 12, p. 69, 2018.

[13] A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti,
“Control of fast-reaching movements by muscle synergy
combinations,” Journal of Neuroscience, vol. 26, no. 30,
pp. 7791-7810, 2006.

[14] A. d’Avella and F. Lacquaniti, “Control of reaching move-
ments by muscle synergy combinations,” Frontiers in Com-
putational Neuroscience, vol. 7, p. 42, 2013.

[15] S.Israely, G. Leisman, C. C. Machluf, and E. Carmeli, “Muscle
synergies control during hand-reaching tasks in multiple
directions post-stroke,” Frontiers in Computational Neuro-
science, vol. 12, p. 10, 2018.

[16] L. Sun, B. Pan, S. Ye et al., “Modulation of muscle synergies
with direction and distance during reaching movements,” in
Proceedings of the 2019 9th International IEEE/EMBS Con-
ference on Neural Engineering (NER). IEEE, pp. 1146-1150,
San Francisco, CA, USA, March 2019.

[12

[17] H.J. Hermens, B. Freriks, R. Merletti et al., “European rec-
ommendations for Surface ElectroMyoGraphy,” Roessingh
Research and Development, vol. 8, no. 2, pp. 13-54, 1999.

[18] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Proceedings of the Advances in Neural
Information Processing Systems, pp. 556-562, Vancouver, BC,
Canada, December 2001.

[19] J. Roh, W. Z. Rymer, E. J. Perreault, S. B. Yoo, and R. F. Beer,
“Alterations in upper limb muscle synergy structure in
chronic stroke survivors,” Journal of Neurophysiology,
vol. 109, no. 3, pp. 768-781, 2013.

[20] G. Torres-Oviedo, J. M. Macpherson, and L. H. Ting, “Muscle
synergy organization is robust across a variety of postural
perturbations,” Journal of Neurophysiology, vol. 96, no. 3,
pp. 1530-1546, 2006.

[21] H. W. Kuhn, “The Hungarian method for the assignment
problem,” Naval Research Logistics, vol. 52, no. 1, pp. 7-21,
2005.

[22] V. C. K. Cheung, A. Turolla, M. Agostini et al., “Muscle
synergy patterns as physiological markers of motor cortical
damage,” Proceedings of the National Academy of Sciences,
vol. 109, no. 36, pp. 14652-14656, 2012.

[23] L. H. Ting and J. L. McKay, “Neuromechanics of muscle
synergies for posture and movement,” Current Opinion in
Neurobiology, vol. 17, no. 6, pp. 622-628, 2007.

[24] A. d’Avella, L. Fernandez, A. Portone, and F. Lacquaniti,
“Modulation of phasic and tonic muscle synergies with
reaching direction and speed,” Journal of Neurophysiology,
vol. 100, no. 3, pp. 1433-1454, 2008.

[25] S. Israely, G. Leisman, C. Machluf, T. Shnitzer, and
E. Carmeli, “Direction modulation of muscle synergies in a
hand-reaching task,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 12, pp. 2427-2440,
2017.



