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Abstract
Aims: Temporal lobe epilepsy (TLE) is the most common focal epilepsy syndrome in 
adults and frequently develops drug resistance. Studies have investigated the value 
of peripheral DNA methylation signature as molecular biomarker for diagnosis or 
prognosis. We aimed to explore methylation biomarkers for TLE diagnosis and phar-
macoresistance prediction.
Methods: We initially conducted genome-wide DNA methylation profiling in TLE pa-
tients, and then selected candidate CpGs in training cohort and validated in another 
independent cohort by employing machine learning algorithms. Furthermore, nom-
ogram comprising DNA methylation and clinicopathological data was generated to 
predict the drug response in the entire patient cohort. Lastly, bioinformatics analysis 
for CpG-associated genes was performed using Ingenuity Pathway Analysis.
Results: After screening and validation, eight CpGs were identified for diagnostic 
biomarker with an area under the curve (AUC) of 0.81 and six CpGs for drug-resistant 
prediction biomarker with an AUC of 0.79. The nomogram for drug-resistant predic-
tion comprised methylation risk score, disease course, seizure frequency, and hip-
pocampal sclerosis, with AUC as high as 0.96. Bioinformatics analysis indicated drug 
response–related CpGs corresponding genes closely related to DNA methylation.
Conclusions: This study demonstrates the ability to use peripheral DNA methylation 
signature as molecular biomarker for epilepsy diagnosis and drug-resistant prediction.
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1  | INTRODUC TION

Temporal lobe epilepsy (TLE) is the most common focal epilepsy syn-
drome in adults and frequently develops drug resistance,1 requiring 
surgical treatment which offers a comparatively favorable progno-
sis.2,3 Moreover, cognitive impairment and psychiatric comorbidities 
including depression and anxiety disorders, together with the long-
term actual seizures and accompanying drug usage, often result in 
severe effects on the quality of life and individual health.4,5

At present, the diagnosis of epilepsy mainly depends on clini-
cal manifestation, neuroimaging, and electroencephalogram (EEG). 
These methods are not only expensive and time-consuming, but also 
require professional equipment and trained specialists that are not 
accessible to many patients, which result in delayed diagnosis or mis-
diagnosis to some extent.6,7 Furthermore, drug-response prediction 
is mainly based on subjective clinical features by experience and has 
not come to a conclude.4,8,9 Earlier identification of drug-resistant 
patients makes it possible to benefit from epilepsy surgery. Thus, 
biomarkers for assisting the current diagnosis and predicting the 
treatment outcome are in urgent need. Preliminary attempts have 
been made in circulating molecules biomarkers of epilepsy, includ-
ing inflammatory cytokines, S100 calcium-binding protein B(S100B), 
and matrix metallopeptidase 9(MMP9), and recently miRNA.10-14 
However, the limitations of these studies mainly related to small 
sample size and lack of validation, as well as heterogeneity of epi-
lepsy that prevent the clinical value of these biomarkers.15

DNA methylation, the best-studied epigenetic mechanism, refers 
to the covalent attachment of methyl groups to the cytosine resi-
dues (mainly confined in CpG sites) mediated by DNA methyltrans-
ferase (DNMT).16,17 It is mostly stable throughout the genome and is 
associated with transcriptional activation/repression.18,19 Aberrant 
DNA methylation implicated in underlying epileptogenesis and pro-
gression mechanisms of epilepsy has gained considerable attention. 
Altered expression of DNMTs and methylation changes in individ-
ual candidate genes (ie, RELN) have been found in TLE patients.20-23 
Several genome-wide studies using epileptic brain tissue have iden-
tified differential methylation events occurred in genes associated 
with inflammation, neuronal development, etc24-27 Moreover, our 
previous research reported that dysregulated methylation impli-
cated in both protein-encoding genes and noncoding RNA genes in 
peripheral blood DNA from TLE patients.28,29

A substantial number of studies have investigated the value of 
peripheral DNA methylation signature as molecular biomarker for 
diagnosis or prognosis, especially in cancer research.15,30-32 The 
prognostic value of O6-methylguanine-DNA-methyltransferase 
(MGMT) promoter methylation in glioblastoma and methylated 
SEPTIN 9(SEPT9) in plasma for detection of asymptomatic colorec-
tal cancer is well-known paradigms,33-35 which have been included 
in clinical guidelines and translated into the commercially available 
clinical test.15 In addition, there was a trend that researchers fa-
vored combinatorial biomarkers of multiple CpG signature.36-39 DNA 
methylation–based biomarkers present advantages with regard to 
clinical application: presence in various biofluids, more stable than 

other biological materials (such as RNA or protein), easy detection 
by well-established methodologies, and cell-type specificity.15,31 
However, to date, methylation biomarkers for TLE diagnosis and 
pharmacoresistance prediction have not been explored.

In this study, we aimed to identify and validate disease-related 
and drug response–related CpGs in TLE. We initially conducted ge-
nome-wide DNA methylation profiling in TLE patients; then, we se-
lected candidate CpGs in training cohort and validated those CpGs 
in another independent cohort by employing machine learning al-
gorithms. Furthermore, a nomogram comprising DNA methylation 
and clinicopathological data was generated to predict the drug re-
sponse in the entire patient cohort. Lastly, mechanistic links were 
pursued for all biomarker CpGs corresponding genes by bioinfor-
matics analysis.

2  | MATERIAL S AND METHODS

2.1 | Patient cohorts

The study was carried out on a cohort of 78 patients with TLE and 
78 sex- and age-matched healthy controls, from the Department 
of Neurology at Xiangya Hospital. And all patients went through 
comprehensive medical history, physical examination, cranial mag-
netic resonance imaging (MRI) scans, and EEG. Inclusion criteria of 
TLE and drug-resistant epilepsy were accorded to our previous re-
search.28 Written informed consent was obtained from all enrolled 
participants. Study was conducted in accordance with the guide-
line for the research involving human and approved by the Ethics 
Committee of Central South University, Xiangya School of Medicine 
and the affiliated Xiangya Hospital (201303120). The data were 
divided into two sets: in the training cohort, 30 TLE patients were 
analyzed; in the validation phase, candidate CpGs were validated in 
another independent cohort (n = 48).

2.2 | DNA methylation quality 
control and processing

Whole blood DNA extraction and quality control were constructed 
as in our previous study.28 The discovery and training samples were 
run on the Illumina Infinium HumanMethylation450 BeadChip 
Kit (450K array). The validation samples were run on the Illumina 
Infinium HumanMethylationEPIC BeadChip (850K array). The sam-
ples DNA underwent bisulfite treatment using the EZ-96 DNA 
Methylation kit (Zymo Research Corporation, Irvine, CA, USA) and 
hybridized to arrays according to Illumina recommended protocols. 
All samples passed the Illumina quality control. Methylation at indi-
vidual CpG was reported as a methylation β-value, ranging continu-
ously from 0 (unmethylated) to 1 (completely methylated). The minfi 
R package (Version 1.18.1) was used to retrieve raw data of 450K and 
850K array. Initially, we excluded probes located on the sex chro-
mosome and null probes. We also removed the failed probes with a 
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detection P-value > .05 in more than 5% samples. The probes with 
single-nucleotide polymorphisms of MAF > 5% within 10 bp of the 
CpG sites were also rejected. We next performed Subset-quantile 
Within Array Normalization (SWAN) methods for normalization.40 
The probes of 450K assay are expected to perform similarly on data 
from the 850K array. In this study, we removed the set of CpG sites 
that were not included in the 850K array.

2.3 | Building a diagnostic model

We included three phases to identify and validate disease-related 
CpGs signature for patients with TLE. In the discovery phase, the 
logical regression test was performed to obtain differentially meth-
ylated CpG sites (DMCs) between 30 TLE and 30 normal control 
samples, with a threshold value of .001 for P-value was used sub-
sequently for filtration. The 237 candidate CpGs were analyzed by 
Least Absolute Shrinkage and Selection Operator (LASSO) methods. 
The CpGs were then ranked by the regression parameters. In the 
training phase, to further shrink the marker numbers to a reason-
able range, support vector machine (SVM) algorithm was used for 
different number of CpGs. As a result, eight CpGs with the highest 
prediction accuracy were confirmed. SVM algorithms were tuned by 
5-fold internal cross-validation, which implies optimal determination 
of parameters of the SVM algorithm. In the validation phase, the 
parameters of the SVM model from the training cohort were used 
to an independent cohort of 96 samples (48 TLE and 48 normal con-
trols) for validating the diagnostic performance of the model.

2.4 | Building a predictive model for drug response

In the discovery phase, the t test was performed to identify DMCs 
between 10 drug-resistant and 20 drug-responsive samples, with a 
threshold value of .005 for P-value. After 99 DMCs were obtained, 
we used SVM-Recursive Feature Elimination (SVM-RFE) to select 
candidate CpG sites. In the training phase, logistic regression was 
used to further narrow CpGs. Six CpGs with the highest predic-
tion accuracy were identified, with parameter tuning conducted by 
5-fold cross-validation. A risk score was calculated for each patient 
using a formula derived from the methylation levels of these 6 CpGs 
weighted by their regression coefficient. Validation analyses were 
performed in another cohort (17 drug-resistant and 13 drug-respon-
sive samples). In addition, a nomogram comprising integrated DNA 
methylation risk score and clinicopathological data was generated to 
predict the drug response. The performance of the nomogram was 
explored graphically by calibration plots.

2.5 | Bioinformatics analysis

Pathway analysis for CpG-associated genes was performed using 
Ingenuity Pathway Analysis (IPA; http://www.ingen​uity.com/). For 

the purposes of this study, the canonical pathway and diseases func-
tions analysis available in IPA were applied, which resulted in the 
inclusion of CpG corresponding genes and the other identified genes 
interacting with in the analysis. The Fisher's exact test was applied to 
measure the significance of the association between genes mapped 
by IPA and the canonical pathway.

2.6 | Bisulfite pyrosequencing of selected DNA 
methylation loci

Bisulfite pyrosequencing is well-established technique that used 
for quantitative methylation analysis of genomic regions in single-
nucleotide resolution.41 We selected 4 CpG loci (cg25838818, 
cg27564766, cg11954680, and cg26119877) for assay cross-val-
idation by bisulfite pyrosequencing. Blood DNA samples from 10 
TLE patients and 10 healthy control cases or 10 drug-responsive 
TLE cases and 10 drug-resistant TLE cases were bisulfite con-
verted, followed by PCR amplification of the relevant regions 
using the PyroMark PCR kit (Qiagen, CA, USA) according manu-
facturer's instruction. Nucleotide probes with biotinylated ver-
sion can be detected by streptavidin sepharose, as listed below: 
(a) cg25838818: GTAGTTGAGGGTTAGGAAAGATGTG (F), ATACA 
AATACCAACTCCCTCTAATTCAT (R) and GTGAAAAATTTTAGT 
TGGTG (S).

(b) cg27564766: GGAGGGATAGGGGTTGTTT (F), CCAACCAA 
CCACCTCATC (R) and TTGTGGTGGTTTATAGG (S).

(c) cg11954680: ATTAGAATTAAGAGTGATTTAGGAAGTG (F), AA 
AAAAAAATTTTCCTATTTCACCTTCTA (R) and GTGATTTAGGAAG 
TGGTTAA (S).

(d) cg26119877: AAGATTGGGTGGTTTATAAGAAAG (F), CCACA 
AATAAAACACATTTTACTATAACAC (R) and GTTGTTTGGGATTAG 
TTG (S).

Pyrosequencing assay, purification, and subsequent processing 
of the biotinylated single-stranded DNA were carried out according 
to the manufacturer's recommendations.

2.7 | Statistical analysis

In the comparative analysis of clinical characteristics (SPSS18.0), 
measurement data (age, disease course, and seizure frequency) were 
subject to K–S test following by statistically analyzing with Student's 
t test or nonparametric test, and enumeration data (HS, aura, and 
SGS) were assessed using chi-square test, with P-value <  .05 con-
sidered statistically significant. For the current research, scikit-learn 
(Version: 0.20) was used to perform the LASSO, SVMs, RFE, and 
logistic regression. The predictability of the model was evaluated 
by the area under the receiver operating characteristic (ROC) curve 
(AUC). The Youden's index was defined for all points of a ROC curve, 
the maximum value of which may be used as a criterion for screening 
the optimum cutoff point. The nomogram was constructed using the 
rms package in R (Version: 3.5.1). All statistical tests were two-sided.

http://www.ingenuity.com/
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3  | RESULTS

3.1 | Characteristics of individuals

A total of 156 participants (including 10 patients with drug-resist-
ant epilepsy and 20 patients with drug-responsive epilepsy and 30 
healthy controls in discovery and training phase, 17 drug-resistant, 
13 drug-responsive patients and 18 unclassified patients and 48 
healthy controls in validation phase) were recruited to our study. No 
significant differences of age and gender were found in the training 
and validation set. The duration of seizures in patients with drug-
resistant epilepsy was significantly longer than that in patients with 
drug-responsive epilepsy (P =  .01 in training phases and P =  .04 in 
validation phases). The pathology of hippocampal sclerosis (HS) in 
patients with drug-resistant epilepsy was significantly more than 
that in patients with drug-responsive epilepsy (P =  .002 in training 
phases and P = .026 in validation phases). Seizure frequency, the ex-
istence of aura, and secondarily generalized seizure were not related 
to drug response of TLE patients. The detailed clinical characteristics 
of participants were listed in Table 1.

3.2 | Diagnostic model for TLE

To identify the TLE-associated CpGs, we first studied the global 
methylation profiles in the DNA of whole peripheral blood obtained 
from 30 TLE patients and 30 healthy controls. Epigenome-wide as-
sociation identified 237 DMCs associated with TLE at P <  .001 by 
logistic regression (Figure 1A, Table S1).

LASSO algorithm was used to select the most significant CpGs 
from 237 candidate CpGs. We then used SVM algorithm to further 
narrow down the marker numbers. As a result, eight CpGs were 
identified (cg25838818, cg27564766, cg07782795, cg09383187, 
cg09293614, cg09270525, cg09197288, and cg08664849), corre-
sponding to SULT1C2, TP73, BAIAP2, CLIP2, MUM1, PTPRN2, IFI27L1, 

and TBC1D24, respectively (Figure 1B, Table S2). Subsequent valida-
tion, using a separate validation cohort (n = 96), yielded a sensitivity 
of 71%, a specificity of 73%, and an accuracy of 77%, with an AUC of 
0.81 to detect TLE (Figure 1C, Table S3).

3.3 | Prediction model for drug response

T test was used to analyze the DMCs between 10 drug-resistant and 
20 drug-responsive patients, which identified 99 DMCs at P < .005. 
(Figure 2A, Table S4).

99 DMCs were analyzed by SVM-RFE algorithm to select signif-
icant CpGs. Logistic regression was used to further narrow CpGs. 
Six CpGs were identified (cg15999964, cg08768218, cg11954680, 
cg17706086, cg21761639, and cg26119877), corresponding 
to ZNF608, DLC1, PCDHA, MEST, and SLC25A21, respectively 
(cg21761639 has no corresponding gene) (Figure 2B; Table S2).

To better investigate the performance of CpGs signature in 
predicting drug response, a methylation risk score was built with 
the coefficients weighted by the logistic regression model in the 
validation cohort (17 drug-resistant, 13 drug-responsive). The 
methylation risk score was calculated as follows: risk score = 19.3 
*cg15999964  −  43.5 *cg08768218  +  54.9 *cg11954680  +  26.3 
*cg17706086 + 66.8 *cg21761639 + 29.9 *cg26119877 − 86.3, with 
a cutoff value of 0.78. Applying the model yielded a sensitivity of 
77%, a specificity of 71%, and an accuracy of 73%, with an AUC of 
0.79 in the validation cohort, to distinguish drug-responsive from 
drug-resistant patients (Figure 2C, Table S5).

3.4 | Building a predictive nomogram

We performed the multivariate analysis of the methylation risk score 
and clinicopathological characteristics with drug response in the en-
tire TLE cohort (Figure S1). The methylation risk score and HS were 

TA B L E  1   Clinical participants of individuals

Training set Validation set

Drug-
responsive

Drug-
resistant

P-
value Control

Drug-
responsive

Drug-
resistant

P-
value Control

No. 20 10 30 13 17 48

Age, mean ± SD (y) 28.6 ± 10.9 31.4 ± 16.5 .65 31.3 ± 10.3 18.8 ± 10.2 31.6 ± 11.0 .32 31.5 ± 10.3

Female: male 7:13 5:5 .46 12:18 8:5 9:8 .72 25:23

Disease course, 
mean(range) (y)

5 (1-24) 13 (4-29) .01 NA 7 (1-13) 12 (1-26) .04 NA

Seizure frequency, 
mean(range) (/
month)

3 (0.1-120) 1 (0.3-90) .62 NA 2 (0.01-75) 7.5 (1-300) .28 NA

HS 2 (10%) 7 (70%) .002 NA 2 (15%) 10 (59%) .026 NA

Aura 13 (65%) 5 (50%) .46 NA 7 (54%) 10 (59%) 1.0 NA

SGS 12 (60%) 5 (50%) .71 NA 10 (77%) 14 (82%) 1.0 NA

Abbreviations: HS, hippocampal sclerosis; NA, not applicable; SD, standard deviation; SGS, secondarily generalized seizure.
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significantly associated with drug response. To develop a clinically 
applicable method that could predict drug-resistance probability of 
an individual TLE patient, a nomogram was used to built a predic-
tive model in the entire TLE cohort, taking into consideration clinico-
pathological factors (Figure 3). The predictors included methylation 
risk score, disease course, seizure frequency, and HS. Applying the 
model yielded a sensitivity of 94% and a specificity of 89%, with an 
AUC of 0.96 in the entire TLE patient cohort, to distinguish drug-
responsive from drug-resistant patients (Figure  4). The calibration 
plots for drug-response nomogram model were predicted well in the 
entire TLE patient cohort. (Figure S2).

3.5 | Bioinformatics analysis

All biomarker CpGs corresponding genes were uploaded to IPA for 
the canonical pathway and diseases functions analysis, and network 
generation for defined molecular interactions. Results were visual-
ized as networks (Figure S3, Figure S4) and ranked as diseases func-
tions and canonical pathways involved (Table S6). The IPA analysis 
showed that “cell death and survival” and “cellular development” 
were the top-ranked diseases functions. DLC1, IFI27L1, TP73, and 
PTPRN2 involve in “cell death and survival” and TBC1D24, BAIAP2, 
CLIP2, and SULT1C2 involve in “neurological disease.” Furthermore, 
“DNA methylation and transcriptional repression signaling” were the 
top-ranked canonical pathways of 6 drug response–related CpGs 

corresponding genes, and BAIAP2 involves in “axonal guidance sign-
aling” pathway. Notably, DLC1 is closely related DNMT gene (DNMT1 
and DNMT3B) in the gene-interaction network of 6 drug response–
related CpGs corresponding genes.

3.6 | Cross-validation of methylation with bisulfite 
pyrosequencing

To evaluate the accuracy of DNA methylation data from methylation 
beadchip, a subset of CpG loci was selected for additional methyla-
tion validation by the pyrosequencing. Blood DNA samples of TLE 
patients (n = 10) and controls (n = 10) were subjected to methyla-
tion detection at 2 loci (cg25838818, cg27564766), and drug-re-
sponsive TLE (n = 10) and drug-resistant TLE (n = 10) were subjected 
to methylation detection at 2 loci (cg11954680 and cg26119877). 
Pyrosequencing revealed methylation of cg25838818, cg27564766, 
cg11954680, and cg26119877 was correlated with the data from 
beadchip array (Figure 5A-D).

4  | DISCUSSION

In this study, we used the methylation array to screen differential 
CpGs and selected significant CpGs by applying machine learning 
algorithms in the training cohort. Subsequently, we validated the 

F I G U R E  1   Screening and validation of disease-related CpGs. A, Cluster analysis of 237 DMCs associated with TLE at P < .001 by logistic 
regression in the training cohort. B, SVM algorithms in the training cohort. C, Receiver operator characteristic curve of 8 significant CpGs 
prediction of TLE patients or healthy controls. The area under the ROC curve in training cohort was 0.90 and 0.81 for validation cohort
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candidate CpGs and built the methylation-based signature in the 
validation cohort. Finally, a nomogram comprising integrated DNA 
methylation risk score and clinicopathological data was generated to 
predict the drug response in the entire patient cohort. Our data indi-
cated that the methylation-based signature could define human TLE 
and predict drug-resistant. The methylation-based biomarker may 
have clinical applications for individualized diagnosis and treatment 
outcome prediction for patients with TLE. This study introduced a 

methodological framework to screen and validate biomarker and 
demonstrates the ability to use machine learning as a potential clini-
cal tool for epilepsy diagnosis and drug-response prediction after 
more comprehensive validation.

While great efforts have been made in understanding the under-
lying pathogenic and drug-resistant mechanisms of epilepsy, there 
are no existing treatments to prevent or disease-modify the devel-
opment.10 It is believed that the complex and multifactorial features 

F I G U R E  2   Screening and validation of drug response–related CpGs. A, Cluster analysis of 99 DMCs associated with TLE drug response at 
P < .005 by t test in the training cohort. B, Logistic regression algorithms in the training cohort. C, Receiver operator characteristic curve of 6 
significant CpGs prediction of TLE patients drug-responsive or drug-resistant. The area under the ROC curve in training cohort was 0.99 and 
0.79 for validation cohort

F I G U R E  3   Nomogram to predict the 
drug response in the entire TLE patient 
cohort. The nomogram is used by adding 
up the points identified on the scale for 
four variables. The sum is located on the 
“Total points” scale, and a line is drawn 
downward axes to determine the risk of 
resistance
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of epilepsy have led to hampered progress in these areas.10 Recently, 
epigenetics as a mediator of gene-environment interactions had ap-
pealed to growing interesting in understanding the potential role in 
complex diseases.42,43 Notably, DNA methylation is attractive to ex-
plain the underlying epileptogenesis and pharmacoresistance mech-
anism in chronic human epilepsy.27,44-46 Exploring peripheral DNA 
methylation alterations in epilepsy is considered a direction with 
translational significance, given that blood samples are available in 
most clinical settings. Therefore, this study has several strengths 
should be noted. First, our focus on the specific epilepsy syndrome 
(TLE), the comparatively homogeneous groups of patients, advan-
tages over the study involving different epilepsy phenotypes. This 
study features a genome-wide, dual-platform approach to screen 
TLE biomarkers followed by interrogation of several CpGs in a co-
hort of samples. Moreover, we replicated these DNA methylation 
signatures in another independent cohort for validation, and the ma-
chine learning model was performed well.

There are additional mechanistic links between all biomarker 
CpGs corresponding genes and epilepsy. For example, Tre2/Bub2/
Cdc16 (TBC)1 domain family member 24 (TBC1D24) gene is one of 
the more recently discovered pathogenic mutations of familial epi-
lepsy, of which associated disorders range from severe epileptic en-
cephalopathy to nonsyndromic hearing loss.47,48 TBC1D24 has been 
implicated in normal neural development and survival and plays 
an essential role in neurotransmission and presynaptic function.49 
In sporadic mesial TLE-HS, whole-exome sequencing has iden-
tified nonsynonymous de novo variants in BAIAP2 gene, of which 
knockout model might produce aberrant neurological phenotypes 
listed by Mouse Genome Informatics (MGI).50 Interestingly, ade-
nosine treatment reversed the DNA hypermethylation (including 
Sult1c2 gene) status in the brain of TLE model, inhibited sprouting of 
mossy fibers in the hippocampus, and prevented epileptogenesis.51 

Further characterization of molecules such as TBC1D24, BAIAP2, 
and SULT1C2 will provide new insights into TLE development and 
progression.

In addition, we noted that drug response–related CpGs cor-
responding genes closely related to DNA methylation, which 
implicated that DNA methylation play an essential role in phar-
macoresistance mechanisms of epilepsy. Tumor suppressor gene 
deleted in liver cancer 1 (DLC1) is shown to induce apoptosis, fre-
quently silenced by methylation and negative correlation with 
DNMT expression.52,53 Interestingly, previous research found in-
creased expression of DNMT1 and DNMT3A in patients with in-
tractable TLE.22 Hypermethylation of gene promoters was also the 
predominant effect in TLE patients and rodent models as well.24,27-29 
Given the well studied of epigenetic pathomechanisms underlying 
drug resistance in cancer, Kobow proposed that the methylation hy-
pothesis of pharmacoresistance could open such new avenue in the 
field of epilepsy.45

We produced a nomogram including DNA methylation risk score, 
disease course, seizure frequency, and HS for estimation of individ-
ualized outcomes of the drug response in TLE patients. The AUC of 
predictive model is as high as 0.96, which suggests that this model 
is promising to be applicable in clinical practice. In the previous re-
search, some seizure-related characteristics, including the prior 
number of seizures and disease course, were reported to be related 
with the risk of drug resistance.4,9 Another factor strongly linked to 
the increased risk of intractable epilepsy is HS, which is consistent 
with the findings in our study. However, limited studies applied com-
binatorial biomarker signatures to predict drug response in epilepsy 
patients. A model composed of clinical variables (the presence of HS) 
in combination with genetic information (SNP genotypes located in 
11 genes influencing drug transport and metabolism) improved pre-
dictive accuracy for medical intractability in mesial TLE.54 With the 
advent of high-throughput technologies and the availability of mul-
tidimensional data sets, we suggest the need to combine compound 
molecular approaches to achieve higher predictive performance for 
clinical usefulness and better comprehend the knowledge about the 
relevant underlying pathomechanism.

The study also has certain limits and constraints that should be 
noted when interpreting the results. First of all, although our classi-
fication results were promising, we should point out that high dimen-
sional data with small sample size may result in misclassifications and 
biased predictors. A larger set of patients can enhance the robust-
ness of the predictive model. Second, due to the single-center study, 
the results of this pilot study warrant further validation in samples 
from several neurological centers. Third, TLE patients participated in 
this study were all being treated with antiepileptic medication, and 
it is still unknown whether these might affect the DNA methylation 
status. Furthermore, other confounding factors, such as cellular 
composition in whole blood, should also be taken into consider-
ation.55 Fourth, two different platforms of methylation data set were 
hired that is 450K array for training while 850K array for validation. 
Several studies have reported that overall correlations of matched 
samples running both on the 450K and 850K array were quite high 

F I G U R E  4   Receiver operator characteristic curve of 6 
significant CpGs combined and not combined clinicopathological 
factors prediction of drug-responsive or drug-resistant in the entire 
TLE patient cohort
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(r > .90 for all assessed samples).56,57 Last, longitudinal study includ-
ing the patients before antiepileptic medication is recommended to 
warrant clinical significance of the predictive biomarkers. The bio-
logic mechanisms of the candidate markers are still little known, and 
thorough in vivo and vitro experiments are also needed to future 
investigate.

5  | CONCLUSIONS

For the first time, we demonstrated that DNA methylation signa-
ture could define human TLE and compound with clinicopathologi-
cal factors to improve the prediction of response to drug treatment. 
Furthermore, this study introduced a methodological framework to 
screen and validate biomarker and demonstrated the ability to use 
machine learning as a potential clinical investigative tool. Despite the 

limited pathomechanism contributions, we highlight the utilization 
of promising biomarkers in clinical practice for decision-making.
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