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Abstract: For over 40 years the standard treatment for acute myeloid leukemia (AML) patients
has been a combination of chemotherapy consisting of cytarabine and an anthracycline such as
daunorubicin. This standard treatment results in complete remission (CR) in the majority of AML
patients. However, despite these high CR rates, only 30–40% (<60 years) and 10–20% (>60 years) of
patients survive five years after diagnosis. The main cause of this treatment failure is insufficient
eradication of a subpopulation of chemotherapy resistant leukemic cells with stem cell-like properties,
often referred to as “leukemic stem cells” (LSCs). LSCs co-exist in the bone marrow of the AML patient
with residual healthy hematopoietic stem cells (HSCs), which are needed to reconstitute the blood
after therapy. To prevent relapse, development of additional therapies targeting LSCs, while sparing
HSCs, is essential. As LSCs are rare, heterogeneous and dynamic, these cells are extremely difficult to
target by single gene therapies. Modulation of miRNAs and consequently the regulation of hundreds
of their targets may be the key to successful elimination of resistant LSCs, either by inducing apoptosis
or by sensitizing them for chemotherapy. To address the need for specific targeting of LSCs, miRNA
expression patterns in highly enriched HSCs, LSCs, and leukemic progenitors, all derived from the
same patients’ bone marrow, were determined and differentially expressed miRNAs between LSCs
and HSCs and between LSCs and leukemic progenitors were identified. Several of these miRNAs
are specifically expressed in LSCs and/or HSCs and associated with AML prognosis and treatment
outcome. In this review, we will focus on the expression and function of miRNAs expressed in normal
and leukemic stem cells that are residing within the AML bone marrow. Moreover, we will review
their possible prospective as specific targets for anti-LSC therapy.
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1. Introduction

The treatment outcome of acute myeloid leukemia (AML) patients depends on several factors,
including karyotype and molecular alterations present in the leukemic cell bulk. Combination
chemotherapy leads to complete remission (CR) in the majority of patients [1]. However, 50%
of patients that have been in CR develop a relapse within 5 years after their initial diagnosis.
This recurrence of the disease is thought to be caused by chemotherapy resistant leukemic cells
with stem cell-like properties, named “leukemic stem cells” (LSCs) [2–4]. To improve the treatment
outcome of AML patients it will be crucial to eradicate LSCs to finally prevent relapse. LSCs are
functionally defined by their ability to initiate AML in immunodeficient mice [5], and were initially
identified as a population of leukemic cells with a CD34+CD38− immunophenotype, similar to
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normal hematopoietic stem cells (HSCs) [4,5]. However, LSCs showed to be more heterogeneous
than the CD34+CD38− phenotype and to reside also in other cell compartments [6–9]. Moreover, at
AML relapse, LSC frequency and phenotypic diversity showed to much greater than at diagnosis,
indicating that chemotherapy promotes changes in the LSC compartment [10]. In contrast to what is
observed in the patient at relapse, cytarabine resistant cells generated in an AML xenograft mouse
model are not enriched for the CD34+CD38− phenotype or for cells containing enhanced functional
leukemia-initiating potential, neither were these cells enriched for stem cell genes [8]. The clinical
importance of LSCs was shown by a study of Ng et al., in where it was demonstrated that the presence
of a 17 gene LSC expression signature derived from functionally defined LSCs could predict the risk for
relapse [11]. Altogether, to improve treatment outcome for AML patients it will be crucial to eradicate
the dynamic LSC compartment during the disease course.

LSCs co-exist with residual normal CD34+CD38− HSCs in the bone marrow of the AML patient.
Increasing the chemotherapy dose might eliminate LSCs, nevertheless will inevitably result in the
non-specific elimination of HSCs, leading to prolonged or permanent marrow aplasia and other
toxicities. Therefore, it will be crucial to develop additional therapies that specifically eradicate LSCs
but that will spare HSCs (Figure 1). Several cell properties enabling discrimination of LSCs from HSCs
within AML bone marrows were identified, including expression of CLEC12A (CLL-1), CD123, TIM-3,
CD34 and CD45, scatter properties and activity of aldehyde dehydrogenases [12–16].
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survive the treatment (minimal residual disease, MRD). MRD contains chemotherapy resistant LSCs, 
which have the capacity to re-initiate leukemia and form a relapse. (B) MicroRNA-based therapy in 
combination with chemotherapy could eradicate LSCs and leukemic progenitors (LP) while sparing, 
or stimulating, HSCs. 

Previously, gene expression profiling (GEP) has been performed to uncover transcriptional 
programs present in normal bone marrow and AML cells and to discriminate between AML subtypes 
and responding and non-responding patients. Moreover, the presence of a gene expression profile 
GEP can also predict patient survival [5–8]. However, GEP has not often succeeded in the uncovering 
of genes that upon targeting specifically eradicate leukemia cells, leaving the HSCs untouched. The 

Figure 1. Role of LSCs in relapse development. At diagnosis, AML consist of a heterogeneous
population of leukemic (stem) cells and residual normal hematopoietic (stem) cells. (A) Treatment
with chemotherapy often results in complete remission. However, small numbers of leukemic cells
survive the treatment (minimal residual disease, MRD). MRD contains chemotherapy resistant LSCs,
which have the capacity to re-initiate leukemia and form a relapse. (B) MicroRNA-based therapy in
combination with chemotherapy could eradicate LSCs and leukemic progenitors (LP) while sparing, or
stimulating, HSCs.

Previously, gene expression profiling (GEP) has been performed to uncover transcriptional
programs present in normal bone marrow and AML cells and to discriminate between AML subtypes
and responding and non-responding patients. Moreover, the presence of a gene expression profile GEP
can also predict patient survival [5–8]. However, GEP has not often succeeded in the uncovering of
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genes that upon targeting specifically eradicate leukemia cells, leaving the HSCs untouched. The reason
for this might be that a complex phenomenon like therapy resistance and cancer cell maintenance is not
easily overruled by targeting a single gene. To unravel chemotherapy resistance mechanisms present
in LSCs, several studies compared the gene expression signature of CD34+CD38− LSCs or functionally
defined LSCs with that of non-LSC compartments, AML blasts or leukemic progenitors [11,17–19].
To identify whether potential anti-LSC targets might be specific and sparing healthy HSCs, GEPs of
LSCs were compared with those of HSCs [20–22]. All these past studies compared the gene expression
of AML LSCs with that of HSCs derived from healthy donors. However, as AML induce changes in
HSCs and in the healthy bone marrow microenvironment, thereby suppressing HSC function and
supporting LSC survival, self-renewal and chemotherapy resistance [23–26] these studies did not
take into account the changes induced in HSCs by the leukemia itself. As LSCs utilize a variety of
mechanisms to resist chemotherapy and to drive relapse, the major challenge in targeting all the
leukemic cells that contain stem cell properties is their heterogeneity. MiRNA-based therapeutic
strategies might successfully eliminate a large population of AML cells with stem cell features as they
target hundreds of genes at the same time.

2. MicroRNAs

MicroRNAs (MiRNAs) are a class of small, non-coding RNAs of 18–25 nucleotides that
post-transcriptionally control the translation and stability of mRNAs [27]. A miRNA is synthesized
as a long RNA transcript known as pri-miRNA, which is cleaved by the RNAse III endoribonuclease
Drosha to a pre-miRNA. This pre-miRNA is further processed in the cytoplasm by the protein Dicer to a
mature functional miRNA [27]. The mature miRNA is silencing its target genes via mRNA degradation
or via prevention of translation of the mRNA (Figure 2). By targeting tens to hundreds of genes at the
same time, miRNAs can control basic biological functions and pathways such as HSC differentiation.
Distinct miRNAs fine-tune each step of haematopoiesis, including the number and repopulation
potential of HSCs [28–30]. Dicer showed to be essential for the persistence of HSCs and specifically
miR-125a is able to control the number of HSCs by regulating hematopoietic stem/progenitor cell
apoptosis [31] and long-term repopulating stem cell potential of mouse and human progenitors [30].
Deregulation of miRNA expression and function in hematopoietic cells can result in the development
of cancer and cancer progression [32,33].

AML is characterized by founder mutations in an HSC or a more differentiated progenitor,
disrupting the differentiation pathway originating from these cell populations and leading to
abnormal miRNA expression patterns. A aberrant miRNA signatures strongly correlate with
tumour classification, cytogenetics, molecular abnormalities, prognosis and therapy response [34–36].
Strikingly, miRNA expression profiles can provide prognostic information that is complementing
cytogenetics, mutation analysis, and gene expression data [34] and can even be more potent in disease
classification and prediction of therapy response and outcome than a GEP. For example, a miRNA
expression profile could better classify acute leukemia of ambiguous lineage as either lymphoid or
myeloid [37] than a GEP [38]. The outperformance of miRNA GEPs as compared to mRNA GEPs
might be due to the enhanced stability of miRNAs as compared to mRNAs. Recently, it was also
shown that specific serum exosome miRNAs can function as biomarkers for AML, circumventing the
use of invasive bone-marrow aspirations and dependence on available leukemic blasts [39].

The aberrant expression of miRNAs contributes to the character of the tumor and can be either
oncogenic or tumor suppressive depending on the cellular context and available expressed miRNA
targets. In view of heterogeneity of LSCs and AML as being a heterogeneous disease, not successfully
treated by targeting a single gene, miRNA modulation may hold the key to successful elimination of
therapy resistant leukemic (stem) cells either by inducing apoptosis or by sensitizing for chemotherapy.
Moreover, since there is differential expression of miRNAs in AML and normal bone marrow as well as
in LSCs and HSCs and LSCs and leukemic progenitors, agents that modulate activity might potentially
lead to leukemia and/or LSC-specific effects.
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By using aldehyde dehydrogenases (ALDH) activity miRNA expression profiles of LSCs, leukemic
progenitors and HSCs all obtained from the same AML sample were obtained [16,40]. This approach
resulted in identification of miRNAs differentially expressed between LSC and HSC populations and
between LSCs and leukemic progenitors [40]. Several of those miRNAs showed to be specifically
expressed in LSCs and/or HSCs, and to have prognostic value in AML and/or to function as targets
for miRNA-based anti-LSC therapy [40,41].
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Figure 2. MicroRNA biogenesis and function. Primary miRNAs (pri-miRNA) are transcribed from
miRNA genes by RNA polymerase II (RNA-Pol II). In the nucleus, the endonuclease Drosha together
with a double-stranded RNA (dsRNA)-binding protein (DGCR8) cleave the stem–loop structure of
the pri-miRNA. This results in a precursor miRNA (pre-miRNA) which is exported from the nucleus
by exportin 5 (XPO5). In the cytoplasm, the pre-miRNA is then further cleaved by the endonuclease
Dicer leading to a miRNA–miRNA* duplex. This duplex is loaded into an Argonaute (AGO) protein.
The mature RNA-induced-silencing complex (RISC) is formed when miRNA*-strand is expelled from
the AGO protein. The RISC complex can inhibit initiation of translation by affecting recruitment of
40S small ribosomal subunit and/or by inhibiting the 60S subunit. Alternatively, RISC may obstruct
translation by inhibiting the elongation of ribosomes. RISC binding can also lead to recruitment
of RNA decapping and/or deadenylating enzymes leading to mRNA destabilization. Some of the
target mRNAs bound by the RISC are transported into cytoplasmic processing bodies (P-bodies) for
degradation or storage.

3. MicroRNAs in Healthy HSCs

HSCs can undergo self-renewal and give rise to all the cells of the hematopoietic system
during life. To do so, there is a balance between self-renewal and differentiation that is
strictly controlled by several molecular factors, including the activity of miRNAs. Over the
last years, the expression and function of miRNAs during hematopoiesis have been intensively
studied however studies about the expression of miRNAs in highly enriched human stem and
progenitor cell populations are scarce. This is partly due to a lack of consensus on which
markers to use for isolation of pure HSCs but also due to the difficulty in isolating sufficient
numbers of HSCs for profiling. In general, human HSCs reside within the immuno-phenotypical
defined compartment of lineage negative (Lin−) CD34+CD38−CD90+CD49f+CD45RA− cells,
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which differentiate into Lin−CD34+CD38−CD90−CD49f−CD45RA−(Thy−1neg-lo) [42] multipotent
progenitors (MPP) containing both lymphoid and myeloid potential [43,44] The more committed
Lin−CD34+CD38+ common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP)
and megakaryocyte-erythroid progenitors (MEP) that develop from the MPP, can be separated using
differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are
also characterized by expression of CD133 [47,48].

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50],
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale
miRNA profiling of human CD34+ peripheral blood and bone marrow cells and identified 33
miRNA [51]. Since then, other groups have performed similar analysis in more HSC-enriched fractions.
Both miR-29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38−
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased numbers
of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and apoptosis, which
is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of miR-29a in mouse
HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid differentiation,
and induction of a myeloproliferative disorder that can develop into AML [55]. Comparing the
expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), erythroid and
myeloid mouse cells identified 131 miRNAs differentially expressed between these cell types. MiR-99b,
let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated upon differentiation.
Overexpression of miR-125a increases the number of cobblestone-area forming cells and overexpression
of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a primitive state [58] (Table 1).
Ectopic expression of miR-125a in murine and human multipotent progenitors resulted also in
increased self-renewal and robust long-term multi-lineage repopulation in transplanted recipient
mice [30]. Besides enhancing HSC self-renewal potential, the size of the HSC population is modulated
by miR-125a by regulating apoptosis [31] (Table 1).

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the
miR that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed
that miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes
self-renewal and inhibits apoptosis in HSCs [50,56,58].

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human,
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60].

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets.

Cell
Stage microRNA Target Function References

HSC

Let-7 Hmg2a

1 
 

 self-renewal [61]

miR-12 Tip110
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CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

proliferation [63,64]

Bmf/KLF13/p53
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

apoptosis [56,58,65]

STAT3/c-
JUN/JUND/LIN28A/CBFB
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

differentiation [63,66–70]
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Table 1. Cont.

Cell
Stage microRNA Target Function References

miR-126 HOXA9/PI3K/AKT2/CRKII

1 
 

 self-renewal [71,72]

miR-132 FOXO3
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

proliferation [73]

miR-146a TRAF6/IRAK1/STAT1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

self-renewal [74–76]

miR-17-92 cluster
E2F1/E2F2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

proliferation and block differentiation [77,78]

PTEN/Bim
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

apoptosis [79,80]

miR-196b HOXA9/MEIS1/FAS/HOXB8
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

differentiation [81,82]

miR-24 Bim/CASP9
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

apoptosis [83]

miR-29a Dnmt3a
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

self-renewal [57]

miR-33 p53 self-renewal [84]

miR-22 Tet2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

self-renewal [85]

MPP

miR-17/20/93/106 SQSTM1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

differentiation towards myeloid progenitors [54,86]

miR-24 Unknown
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

differentiation towards myeloid progenitors [83]

miR-29a HBP1, FZD5, TPM1

Cancers 2017, 9, 74  5 of 22 

 

differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

differentiation towards myeloid progenitors [55]

miR-520h ABCG2 differentiation towards myeloid progenitors [49]

miR-181a Bcl2, CD69
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

differentiation towards lymphoid progenitors [87–89]

CMP

miR-142-3p CCNT2/TAB2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic-macrophage differentiation [90]

miR-155 PU.1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic-macrophage differentiation [91]

miR-29a CCNT2/CDK6 granulocytic-macrophage differentiation [90]

miR-130a C/EBPε
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic differentiation [92]

GMP

miR-17-5p/20a/106a RUNX1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

monocytic differentiation and maturation [93]

miR-223 MEF2C
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

progenitor proliferation and granulocyte
differentiation [94]

miR-223
miR-27

NFI-A/E2F1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic differentiation [95–97]

RUNX1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic differentiation [98]

miR-30c NOTCH1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic differentiation [99]

miR-34a E2F3
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

granulocytic differentiation [100]

miR-424 NFI-A
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

monocytic differentiation [101]

miR-486-3p MAF Skews from monocytopoiesis towards granulopoiesis [102]

miR-105 MYB megakaryopoiesis [103]

miR-22 PU.1, MECOM
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

monocytic differentiation [104,105]

miR-181a Unknown
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

megakaryocytic differentiation [106]

Lin28, let7 megakaryocytic differentiation [107]

MEP

miR-125b Unknown
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

proliferation and self-renewal [108]

miR-126 MYB Skews from erythropoiesis towards megakaryopoiesis [109]

miR-145 Fli-1 Skews from megakaryopoiesis towards erythropoiesis [110]

miR-146a CXCR4 Impairs megakaryocytic proliferation, differentiation
and maturation [111]

miR-15 MYB
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythropoiesis [112]

miR-150 MYB Skews from erythropoiesis towards megakaryopoiesis [109,113,
114]

miR-155 ETS-1/MEIS1
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

megakaryocytic proliferation and
differentiation [115]
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Table 1. Cont.

Cell
Stage microRNA Target Function References
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

megakaryocytic proliferation and
differentiation [115]

miR-199b-5p c-Kit
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythroid differentiation [116]

miR-221/222 c-Kit Impairs proliferation and accelerates differentiation of
erythroid cells [32]

miR-223 LMO2 Skews from erythroid towards megakaryocytic
differentiation [117]

miR-23 SHP2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythroid differentiation [118]

miR-27a/24 GATA2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythroid differentiation [119]

miR-299-5p Unknown Skews from erythroid-monocytic towards
megakaryocytic-granulocytic differentiation [120]

miR-34a MYB/CDK4/CDK6
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

megakaryocytic differentiation and inhibit
cell cycle [121]

miR-376a CDK2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythroid differentiation [122]

miR-451/144 GATA2
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythroid differentiation [123–125]

miR-486-3p MAF/BCL11A Skews from megakaryopoiesis towards erythropoiesis [102,126]

miR-146b PDGFRA
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differential expression of CD123, CD110 and CD45RA [45,46]. HSCs and immature progenitors are 
also characterized by expression of CD133 [47,48]. 

The expression of miRNAs has been mostly studied in fractions containing murine HSCs [49,50], 
in human CD34+ and CD133+ cell fractions [51–54] and in human CD34+CD38− [49] and 
CD90+CD45RA− fractions [55,56]. The group of Georgantas performed the first large scale miRNA 
profiling of human CD34+ peripheral blood and bone marrow cells and identified 33 miRNA [51]. 
Since then, other groups have performed similar analysis in more HSC-enriched fractions. Both miR-
29a and miR-125a/b consistently showed higher expression in HSCs (Lin−CD34+CD38− 
CD90+CD45RA−) and multipotent progenitors (Lin−CD34+CD38−CD90−CD45RA−) than in 
committed and differentiated progenitors [55,56]. Depletion of miR-29a resulted in decreased 
numbers of HSCs and progenitors, decreased HSC self-renewal, increased HSC cell cycling and 
apoptosis, which is partly due to the enhanced expression of DNMT3A [57]. Ectopic expression of 
miR-29a in mouse HSC/progenitors resulted in acquisition of self-renewal capacity, a bias to myeloid 
differentiation, and induction of a myeloproliferative disorder that can develop into AML [55]. 
Comparing the expression of miRNAs in Lin−Sca−1+c−Kit+ (LSK), Lin−Sca−1−c−Kit+ (LS−K+), 
erythroid and myeloid mouse cells identified 131 miRNAs differentially expressed between these cell 
types. MiR-99b, let-7e and miR-125a showed to be highly expressed in LSKs and down-regulated 
upon differentiation. Overexpression of miR-125a increases the number of cobblestone-area forming 
cells and overexpression of miR-99b/let-7e/miR125a or miR-125a alone keeps the mouse HSCs in a 
primitive state [58] (Table 1). Ectopic expression of miR-125a in murine and human multipotent 
progenitors resulted also in increased self-renewal and robust long-term multi-lineage repopulation 
in transplanted recipient mice [30]. Besides enhancing HSC self-renewal potential, the size of the 
HSC population is modulated by miR-125a by regulating apoptosis [31] (Table 1). 

An expression profiling and functional study by O’Connell et al identified 11 miRNAs enriched 
in HSCs. Ectopic expression of these miRNAs in normal bone marrow identified miR-125b as the miR 
that induces the greatest increase in repopulation potential [50]. Moreover, Ooi et al showed that 
miR-125b overexpression led to a reduction in apoptosis in HSCs [56]. Thus, miR-125b promotes self-
renewal and inhibits apoptosis in HSCs [50,56,58]. 

MiR-126 and miR-130a are expressed in HSCs and early progenitors from both mice and human, 
but not in differentiated progenitors [59]. Downregulation of miR-126 in HSCs results in enhanced 
hematopoietic stem/progenitor cell proliferation without inducing exhaustion, resulting in expansion 
of mouse and human long-term repopulating HSCs. Decreased miR-126 increases also cell cycle 
progression and the number of HSCs (CD34+CD38-CD90+CD45RA−) [60]. 

Table 1. miRNAs involved in myelopoiesis which are involved in key (stem) cell processes 
(differentiation, self-renewal, apoptosis and proliferation) and their identified targets. 

Cell 
Stage 

microRNA Target Function References 

HSC 

Let-7 Hmg2a self-renewal [61] 
miR-124 Tip110 differentiation [62] 

miR-125a BAK1 apoptosis [30,31,58] 

miR-125b 

ABTB1/CDC25C/PPP1CA proliferation [63,64] 
Bmf/KLF13/p53 apoptosis [56,58,65] 

STAT3/c-
JUN/JUND/LIN28A/CBFB 

differentiation [63,66–70] 

miR-126 HOXA9/PI3K/AKT2/CRKII self-renewal [71,72] 
miR-132 FOXO3 proliferation [73] 

miR-146a TRAF6/IRAK1/STAT1 self-renewal [74–76] 

miR-17-92 cluster 
E2F1/E2F2 

proliferation and block 
differentiation 

[77,78] 

PTEN/Bim apoptosis [79,80] 
miR-196b HOXA9/MEIS1/FAS/HOXB8 differentiation [81,82] 

miR-24 Bim/CASP9 apoptosis [83] 
miR-29a Dnmt3a self-renewal [57] 
miR-33 p53 self-renewal [84] 

erythrocytic-megakaryocytic differentiation [127]

Among the numerous miRNA expression studies in HSCs and progenitors there is considerable
variation in results. This is partly due to the use of different profiling methods but also due to profiling
of different immune-phenotypically defined HSCs that were derived from different sources; e.g.,
whole bone marrow, total CD34+ population or progenitor populations. Several studies investigating
the functional role of specific miRNAs in normal hematopoiesis have been published and many of
the identified miRNAs showed to affect progenitor lineage commitment and functions of mature
hematopoietic cells (Table 1). Leukemia-inducing mutations cause aberrant miRNA expression in
HSCs and or progenitors, resulting in impaired differentiation, apoptosis and/or self-renewal [128].

4. Differential Expression of MicroRNAs between LSCs and HSCs Residing within the AML
Bone Marrow

The CD34+CD38− cell compartment residing within the AML bone marrow includes both
leukemic and normal stem cells [4]. Both stem cell compartments have many features in common and
the extent to which they differ is important for development of therapies targeting relapse-initiating
cells while sparing HSCs. The properties of normal HSCs are influenced by the leukemic
microenvironment but also by the AML cells themselves [24–26]. It has even been shown that AML
cells can suppress hematopoiesis by the miRNAs in exosomes released from the AML cells [24].
Since LSCs and HSCs are influenced by both the leukemic microenvironment and the leukemic cells,
searching for differences in miRNA expression between HSCs and LSCs that are both obtained from
the AML patient’s bone marrow will enhance the chance of finding genuine anti-LSC targets.

For the purification of HSCs and LSCs from an AML bone marrow the unequivocal separation
of both compartments is necessary. LSCs often have aberrant protein expression, i.e., cell surface
markers that do not fit to their lineage or maturation state [12,14,15]. Frequently observed non-myeloid
lineage markers that are often used to distinguish between leukemic and normal myeloid cells are
for example CD7, CD19, CD11b and CD56 [129]. These lineage markers are generally absent on
normal HSCs while expressed in a subset of AML cases on leukemic stem and progenitor cells [14].
Other markers that are specifically expressed on LSCs and lacking on HSCs are for example CLL-1 and
CD123 [15,130]. Generally, the expression of an aberrant immune-phenotypic marker is not absolute;
i.e., not expressed on all leukemic cells within one patient, but also not present in all AML patients,
which makes it difficult to use one particular biomarker for the isolation of LSCs and HSCs from all
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the AML patients [reviewed in [131]. Since HSCs have high ALDH activity and CD34+CD38− LSCs
are in general characterized by lower ALDH activity, this problem can be circumvented by using
ALDH activity as a functional biomarker. Using the difference in ALDH activity in combination with
detection of aberrant leukemia-associated marker expression, CD34+CD38− HSCs and CD34+CD38−
LSCs from AML bone marrows have been purified. After determining the expression of miRNAs
in these cell fractions the comparison of the miRNA profiles of LSCs with those of residual HSCs
revealed that MiR-551b, miR-10a, miR-151-5p, miR-29b and miR-125b are higher expressed in HSCs
than in LSCs while miR-181b, miR-221, miR-21 and miR-22 are higher expressed in LSCs than in HSCs
(Figure 3) [40].
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Mir551b is the top differentially expressed miRNA between residual HSCs and LSCs, showing
high expression in HSCs [40]. MiR-551b is not only highly expressed in residual HSCs in AML
but also in HSCs residing in healthy bone marrow [41], suggesting a link between “stemness” and
presence of miR-551b. Not only genuine normal stem cells have high mir-551b expression but also
AML cases with an undifferentiated stem cell-like phenotype have [41]. Importantly, AML cases with
enhanced miR-551b expression are associated with a poorer clinical outcome than those with lower
miR-551b expression [41], potentially reflecting the influence of “stemness” on therapy sensitivity.
Indeed, in ovarian cancer the expression of miR-551b is enhanced in the side population, the cell
population that is enriched for cancer stem cells [132]. Mir-551b is located at the chromosome 3q26
locus, which is translocated and leading to overexpression of EVI-1 in a subset of AML patients.
In ovarian cancer, amplification of 3q26 leads to increased expression of miR-551b, subsequently
contributing to apoptosis resistance and increased survival and proliferation of the cancer cells. The
mechanisms whereby miR-551b increases proliferation in ovarian cancer cells is not by decreasing the
levels of mRNA targets but by binding to the STAT3 promoter and by recruitment of RNA polymerase
II and TWIST1 [133]. In ovarian cancer and lung cancer cell lines, enhanced miR551b expression
showed to be linked with therapy resistance [132,134]. Other miRNAs highly expressed in residual
HSCs and potentially associated with HSC functions are miR-29b and miR-125b [40]. In general, both
miRNAs are downregulated in AML patients as compared to HSCs [50,56]. However, it might be
possible that miR-29b and miR-125b are higher expressed in a small subset of AML cases or in a small
subpopulation of leukemic cells within the AML bulk. The research group of Marcucci supported a
tumor suppressor role for miR-29b and used synthetic anti-miR-29b oligonucleotides as a novel strategy



Cancers 2017, 9, 74 9 of 23

to eliminate AML cells [135,136]. MiR-29b overexpression had similar effects as the hypomethylating
agents 5-azacytidine and decitabine [56] and its downregulation has been linked to promotion of DNA
hypermethylation in AML cells by directly targeting DNMT3A, DNMT3B and SP1 [137,138]. MiR-29b
upregulation has also demonstrated to inhibit cell proliferation, promote myeloid differentiation and
induce apoptosis [135]. Together these data suggested that the consequences of overexpression of
miR-29b is cell-type specific and may depend on the differentiation and/or transformation state of
the cancer cell. The effect of enhanced miR-29b on the quiescence state of LSCs and thereby their
chemotherapy sensitivity and survival has not been extensively investigated yet.

In AML, miR-125b is strongly upregulated as compared to whole healthy bone marrow,
particularly in patients with a t(2;11)(p21;q23) [139]. Enhanced expression of miR-125b in
myelodysplastic syndrome (MDS) and in AML with a (2;11)(p21;q23) resulted in a differentiation
arrest, indicating a connection between high miR-125b and an immature leukemic phenotype [139,140].
Moreover, miR-125b overexpression causes a myeloproliferative disorder that progressed to an
aggressive form of AML within 3–4 months [50,58,65]. Mice transplanted with hematopoietic
progenitors overexpressing miR-125b led to various types of leukemia, including B-cell acute
lymphoblastic leukemia, T-cell acute lymphoblastic leukemia or a myeloproliferative neoplasm
depending on the degree of miR-125b expression [65].

MiR-181b is one of the upregulated miRNAs in LSCs as compared to HSCs [40]. MiR-181b is part
of a miRNA signature expressed in cytogenetically normal (CN) AML containing high-risk molecular
characteristics (e.g., NPM1 negative, FLT3-ITD positive) and is associated with a good prognosis [141].
Moreover, a 15 miRNA signature, including miR-181b, showed an association with the presence of
the CEBPα mutation, possibly partly explaining the good prognostic characteristics of AML with
high expression of the miR-181 family [142]. The overexpression of miR-181b promotes apoptosis and
inhibits the viability of MLL-rearranged AML cells [143].

Lastly, miR-21 and miR-221, are higher expressed in LSCs and AML blasts than in HSCs and
healthy bone marrow cells [34,40,144]. MiR-221 showed to be a biomarker distinguishing AML from
acute lymphoid leukemia (ALL) [34,37]. An association between “stemness”, DNMT3A expression
and miR-221 has been shown in breast cancer [145]. MiR-21 and miR-221 are both higher expressed in
the pancreatic cancer cells residing in the side population and modulation of miR-21 and miR-221 in
initiating stem-like cells affects tumorigenesis, metastasis, and chemotherapy resistance in pancreatic
cancer [146]. MiR-21 showed to be overexpressed in AML with a NPM1 mutation [147]. Inhibition
of miR-21 in the myeloid cell lines HL60 and K562 reduced cell growth, induced apoptosis and a G1
cell cycle arrest [148]. Moreover, several studies showed that downregulation of miR-21 in myeloid
leukemia cell lines increased the sensitivity to various chemotherapeutic agents [149–151], making
targeting of miR-21 a potential successful selective approach to sensitize LSCs for chemotherapy.

5. MicroRNAs Differentially Expressed between LSCs and Leukemic Progenitors

MiRNAs that are functionally involved in chemotherapy resistance and/or leukemia-initiating
potential might be differentially expressed between LSCs and the chemotherapy sensitive AML
bulk. By comparing miRNA expression in purified LSCs (CD34+CD38−) and leukemic progenitors
(CD34+CD38+) 12 differentially expressed miRNAs were identified (Figure 3) [40]. The top three
lower expressed miRNAs in LSCs as compared to leukemic progenitors are miR-1274a, miR-886 and
miR-1305. Although there is not much information on the function of miR-1274a, it is suggested to be
derived from tRNA processing rather than being a miRNA [152]. In gastric cancer cells, miR-1274a has
been described as an oncogene involved in cell proliferation and migration by targeting FOXO4 [153].

Also miR-886 (vtRNA2-1, pre-miR-886, or CBL3) showed not to be a miRNA but a newly
identified non-coding RNA (ncRNA) [154] that acts as a tumor suppressor targeting Protein Kinase R
(PKR) [155,156]. PKR is a sensor that recognizes viruses and induces apoptosis to eliminate infected
cells. Therefore, the nc886 signaling pathway in cancer cells is suggested to function in sensing and
eliminating pre-malignant cells, analogous to PKR’s role in cellular innate immunity [154]. The nc886 is
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transcribed by RNA polymerase III (Pol III) [157] and is the first case of a Pol III gene whose expression
is silenced by CpG DNA hypermethylation in several types of cancer. Low expression of nc886 has been
associated with poor prognosis in AML, low risk MDS and small cell lung cancer [158–160], suggesting
that its lower expression in LSCs might also be involved in a decreased response to chemotherapy in
these cells. Thus, increasing nc886 expression might be a strategy to enhance chemotherapy sensitivity.

MiR-1305 showed to have a change in expression during the cell cycle in embryonic stem cells.
Downregulation of miR-1305 facilitates the maintenance of pluripotency and increased cell survival,
while its overexpression induced differentiation of pluripotent stem cells, increased cell apoptosis and
sped up G1/S transition [161].

MiRNAs that are higher expressed in LSCs than in leukemic progenitors are miR-126-5p,
miR-126-3p, miR-22, miR-335 and mir-150. MiR-126 is the top miRNA differentially expressed between
CD34+CD38- LSCs and CD34+CD38+ leukemic progenitors. MiR-126 is high expressed in LSCs
and even more enhanced in HSCs [40] (Figure 3). Moreover, miR-126 is part of an LSC-associated
miRNA signature that was derived from functionally validated AML LSCs and its expression
has been linked to LSC activity [60]. Patients with high miR-126 levels co-express genes that are
present in stem cell gene signatures [19,40], implicating that miR-126 influences stem cell properties
and maintenance of “stemness” in both normal and leukemic stem cells. In AML, high miR-126
expression is associated with poor survival and a high chance of relapse [40,60,162], reflecting the
association of enhanced miR-126 activity with a decrease in chemotherapy sensitivity [60]. Both the
overexpression and knockout of miR-126 result in enhanced leukemogenesis in cooperation with
the t(8;21) fusion gene. MiR-126 overexpression has a stronger effect on long-term survival and
progression of AML1-ETO9a-mediated LSCs in mice than does miR-126 knock-out [163]. Knockdown
of miR-126 led to differentiation, apoptosis and reduction of AML growth [40,60] but also enhances
responsiveness to chemotherapy [163]. Most importantly, targeting of miR-126 specifically reduced
the clonogenic capacity of LSCs and leukemic progenitors without affecting normal HSCs [40,60]
(Figure 4). Moreover, miR-126 targeting using nanoparticles resulted in the depletion of LSCs in an
AML xenotransplantation model [162]. This specific effect of miR-126 is due to the opposite function
of miR-126 in LSCs and in HSCs [40,60]. In LSCs, decreased miR-126 attenuates LSC quiescence
and overrules chemotherapy resistance [60]. In HSCs, knockdown of miR-126 results in enhanced
hematopoietic stem/progenitor cell proliferation, increases cell cycle progression and increases the
number of stem cells (CD34+CD38-CD90+CD45RA-) [72] (Figure 4). MiR-126 targets multiple genes
affecting the PI3K/AKT/mTOR pathway [60,72] and its discriminative function in LSCs and HSCs
might reflect the opposite function of the PI3K/PTEN signaling pathway in LSCs and HSCs [164].
The distinct function of miR-126 in HSCs and LSCs makes it an ideal therapeutic target for depletion
of LSCs without harming HSCs and potentially even enhancing hematopoietic recovery.

MiR-22 is upregulated in myelodysplastic syndrome (MDS) and leukemia and its aberrant
expression correlates with poor survival [85]. MiR-22 was identified as being higher in LSCs than in
leukemic progenitors but decreased in residual HSCs as compared to LSCs [40]. In contrast to these
results, Jiang et al., showed that AML cells have lower miR-22 than CD34+ normal healthy bone marrow
cells [104]. Mice that conditionally express miR-22 in the hematopoietic cell compartment showed
decreased levels of 5-hydroxymethylcytosine (5-hmC), enhanced HSC self-renewal and developed
MDS and hematological malignancies [85], indicating the oncogenic function of miR-22. MiR-22 targets
TET2, a member of the TET methylcytosine dioxygenase family, and ectopic expression of TET2
suppressed the miR-22-induced phenotypes [85]. In contrast to this study, Jiang et al. [104] showed
that miR-22 also has a tumor suppressive function. Forced expression of miR-22 inhibited leukemia
development and maintenance in a xenograft AML mouse model [104]. Enhanced miR-22 expression,
regulated by PU.1, resulted in monocyte/macrophage differentiation. In AML, there is downregulation
of PU.1 and Mir-22 as well as upregulation of EVI-1. Reintroduction of miR-22, and the associated
downregulation of its target EVI-1, relieved the differentiation block and inhibited the growth of AML
bone marrow blasts [105].
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Figure 4. MiR-126 expression and modulation in normal hematopoiesis and leukemia. MiR-126 is
highly expressed in normal HSCs. A reduction in miR-126 expression in HSCs, for example by lentiviral
sponges, increases AKT signaling thereby inducing cell-cycle entry via CDK3 that leads to enhanced
self-renewal and expansion of long-term HSCs. Overexpression of miR-126 in HSCs, by mimics or
internal and external stimuli (cytokines), results in a reduction in AKT signaling impairing cell-cycle
entry resulting in increased quiescence and a gradual loss of hematopoietic output. In leukemia,
LSCs highly express miR-126 as compared to leukemic progenitors. Knockdown of miR-126 in LSCs
increases AKT signaling, de-repressing CKD3, thereby inducing differentiation and proliferation
leading to chemo-sensitivity and apoptosis. Overexpression of miR-126 in LSCs lowers AKT signaling
and inhibits cell cycle entry leading to increased quiescence and self-renewal via the suppression of
CDK3 resulting in chemotherapy resistance.

6. Therapeutic Approaches to Specifically Eliminate LSCs: Sensitization to Chemotherapy

As miRNAs can regulate many genes and are also controlled by more than one gene, miRNAs
are very appealing targets for specific anti-LSC therapies. Depending on the expression and
function of miRNAs in AML, there are two approaches for developing miRNA-based therapies:
antagonists and mimics. Antagonists can inhibit miRNAs and are usually single-stranded
oligonucleotides [165]. Efficient silencing of miRNA activity in vivo requires the chemical modification
of these oligonucleotides to improve their binding affinity, bio stability and pharmacokinetic properties.
The most common modifications to increase the duplex melting temperature and to improve their
resistance to nucleases include 2′-O-methyl- (2′-O-Me-), 2′-methoxyethyl- (2′-MOE-), 2′-fluoro- and the
bicyclic locked nucleic acid (LNA) modifications [166–168]. Among these modifications, LNA exhibits
the highest affinity toward complementary RNA [169]. Moreover, increased nuclease resistance is
also achieved by substituting the phosphodiester (PO) backbone linkages with phosphorothioate (PS)
which, apart from nuclease resistance, enhances the binding to plasma proteins leading to reduced
clearance by glomerular filtration and urinary excretion. Moreover, inhibition of miRNAs by ultra-short
8-mer LNAs, which enable antagonism of a complete miRNA family, can result in therapeutic benefit
in mouse disease models [170,171]. Currently, the most advanced therapeutic miRNA antagonists
are directed against miR-122. One anti-miR-122 LNA has already been successfully tested in Phase
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II clinical trials for patients with hepatitis C [172]. Moreover a phase I clinical trial using a synthetic
microRNA antagonist of microRNA-155 (MRG-106) is conducted in patients suffering from cutaneous
T-cell lymphoma (CTCL).

Mimics, double stranded oligonucleotides, are used to restore miRNA function and have been
designed to restore the function of various tumor-suppressive miRNAs [173]. For example miR-29b
is known to be downregulated in AML [135] and a nanoparticle-based delivery system of miR-29b
mimics in AML blasts showed decreased AML cell growth and impaired colony formation in a mice
model of AML [136]. The use of lenti-, adeno- or adeno-associated viruses to drive the expression of a
miRNA has been successfully applied to reduce tumor growth in mouse models [174,175]. The clinical
application of a miRNA mimic of miR-34 (MRX34) is at the moment tested in a phase-I trial including
patients with hematological malignancies [176].

The specific expression of miRNAs during haematopoiesis can also be used to specifically express
a gene in differentiated hematopoietic cells. In a lysosomal storage disorder, there is a need for
specific expression of the enzyme galactocerebrosidase in differentiated hematopoietic cells since its
expression in HSCs results in toxicity. The enhanced expression of miR-126 in HSCs can inhibit the
expression of galactocerebrosidase from a lentiviral construct containing miR-126 binding sites in
HSCs, while miR-126 expression decreases during myeloid differentiation thereby causing expression
of galactocerebrosidase and restoring lysosomal storage [59].

MiRNA-based therapy might not only function as a single agent but also holds great potential in
complementing currently used chemotherapeutics. Since a single miRNA can induce global changes
in overall gene expression, modulation of miRNA expression might be very effective in targeting a
multi-factorial phenomenon like drug resistance. MiRNA modulation has been shown to have the
capacity to enhance the response and suppress the resistance to cytotoxic therapies [177,178].

7. The Delivery of MiRNA Modulators to AML LSCs within the Leukemic Bone Marrow

Successful delivery of therapeutic miRNA(s) to the leukemic cells in the AML bone marrow,
without inducing toxicity, is the final challenge. The charged miRNAs have a small size and
low molecular weight making it possible to formulate them into effective delivery systems which
reduce their clearance and degradation in the blood [179]. Examples of delivery systems for mimics
and anti-miRs are lipids, polyethylenimine, dendrimers, poly (lactide-co-glycolide) particles but
also naturally occurring polymers, such as chitosan, protamine and atelocollagen [136,179–181].
Importantly, the first liposome-formulated mimic is currently being tested in a Phase I clinical trial
in patients with unresectable primary liver cancer. Beside the delivery of mimics and anti-miRs by
formulation, viral constructs can be used [174,175].

Marcucci et al. developed a transferrin-conjugated nanoparticle delivery system conjugating
transferrin (Tf) to PEGylated lipopolyplex nanoparticles (Tf-LPs) which incorporates protamine as
a DNA condensing agent, pH-sensitive fusogenic lipids to improve cytoplasmic delivery, and Tf
as the targeting ligand specific for cellular delivery (commonly overexpressed on cancer cells and
also in AML) [182]. In a study that tested the delivery of miR-29b loaded transferrin-conjugated
nanoparticles (Tf-NP-miR-29b) to leukemic cells in a xenograft mouse model, high uptake and
strong downregulation of miR-29b targets in the leukemic cells was observed [136]. Tf-NP-miR-29b
suppressed AML growth, impaired colony formation, and reduced cell viability in AML patient
samples. In addition, Tf-NP-miR-29b also reduced spleen weight and increased overall survival in NSG
mice transplanted with AML cell lines [136]. Next to miR-29b, transferrin conjugated nanoparticles
containing miR-126 have recently been used. As previously mentioned, treatment with Tf-NP-miR-126
specifically targets the LSC leading to diminished engraftment of both human and mouse AML in
secondary recipient transplantations [162]. Before these works, in vivo targeting of miR-196b was also
reported to successfully eradicate LSCs from AML blasts harboring MLL translocations [183]. A mimic
Tf-NP-miR181a treatment downregulated KRAS, NRAS and MAPK1 and decreased AML growth in
mice, resulting in a longer survival compared to the controls [184]. The use of nanoparticles to force
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expression of miR-22, which is often downregulated in AML, significantly inhibited AML progression
in vivo [104]. Altogether, these studies show the great potential for future miRNA based treatment
and the use of nanoparticles to deliver them to AML cells.

8. Concluding Remarks

Two decades ago miRNA research started with the expression profiling of various hematopoietic
cell populations and types of leukemia which provided us with an enormous number of miRNAs that
could potentially play a regulatory role in normal and malignant hematopoiesis. Indeed, many of these
miRNAs now have established involvement in controlling differentiation, apoptosis, proliferation and
self-renewal in hematopoiesis and leukemia. The most extensively studied miRNAs include miR-125b,
miR-29b and miR-126 which are all involved in stem cell regulation and leukemogenesis. MiRNA-based
therapy that modulates these miRNAs to prevent leukemogenesis or treat frank leukemia is now
possible and holds great potential. Although recent reports on in vivo miRNA treatment are promising,
still many issues in optimizing delivery methods and unknown factors like toxicity, due to off-target
effects, should be evaluated and solved. It is therefore wanted that future miRNA research focusses on
the efficient in vivo delivery and specific targeting of leukemia (stem cells) to really bring miRNAs
from bench to bedside.
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