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A B S T R A C T   

Objective: This study aimed to develop quantitative feature-based models from histopathological 
images to assess aurora kinase A (AURKA) expression and predict the prognosis of patients with 
lung adenocarcinoma (LUAD). 
Methods: A dataset of patients with LUAD was derived from the cancer genome atlas (TCGA) with 
information on clinical characteristics, RNA sequencing and histopathological images. The TCGA- 
LUAD cohort was randomly divided into training (n = 229) and testing (n = 98) sets. We 
extracted quantitative image features from histopathological slides of patients with LUAD using 
computational approaches, constructed a predictive model for AURKA expression in the training 
set, and estimated their predictive performance in the test set. A Cox proportional hazards model 
was used to assess whether the pathomic scores (PS) generated by the model independently 
predicted LUAD survival. 
Results: High AURKA expression was an independent risk factor for overall survival (OS) in pa-
tients with LUAD (hazard ratio = 1.816, 95 % confidence intervals = 1.257–2.623, P = 0.001). 
The model based on histopathological image features had significant predictive value for AURKA 
expression: the area under the curve of the receiver operating characteristic curve in the training 
set and validation set was 0.809 and 0.739, respectively. Decision curve analysis showed that the 
model had clinical utility. Patients with high PS and low PS had different survival rates (P =
0.019). Multivariate analysis suggested that PS was an independent prognostic factor for LUAD 
(hazard ratio = 1.615, 95 % confidence intervals = 1.071–2.438, P = 0.022). 
Conclusion: Pathomics models based on machine learning can accurately predict AURKA 
expression and the PS generated by the model can predict LUAD prognosis.   

1. Introduction 

Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for 21 % of all cancer deaths [1]. Lung adeno-
carcinoma (LUAD) is the most common pathological subtype of lung cancer among them [2]. In recent years, significant advances have 
been made in the treatment of patients with lung cancer through surgery, chemotherapy, radiotherapy, targeted therapy and 
immunotherapy; however, the prognosis of patients with advanced lung cancer remains poor. Traditional prognostic indicators of 
LUAD, such as carcinoembryonic antigen, and computed tomography (CT) imaging, are no longer able to meet the clinical needs of 
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precision medicine. Thus, new prognostic markers need to be identified to stratify the prognosis of patients and provide new indicators 
for the individualization of precision treatment. 

Aurora kinase A (AURKA) is an oncogene that is typically expressed in most cell types. AURKA overexpression is associated with 
several malignant tumor characteristics, including chromosomal instability, mammalian aneuploidy, and abnormal centromere 
replication [3,4]. Additionally, it is overexpressed in a wide variety of tumors, including breast, ovarian, prostate and head and neck 
cancers, and is associated with poor prognosis [5–8]. In colorectal cancer models, when ARID1A mutant cells are treated with AURKA 
inhibitors, these cells are blocked in the G2/M phase and apoptosis is induced; thus targeted inhibition of AURKA may be a new 
therapeutic strategy for ARID1A mutant colorectal cancer [9,10]. 

Detection of AURKA expression relies primarily on paraffin-embedded tissue samples, fresh tissue mRNA, and peripheral blood 
cytokines. However, there are significant flaws in these methods owing to difficulties in real-time detection, specimen collection and 
detection and high cost. Hematoxylin and eosin (HE)-stained tissue slides are the most readily available imaging materials for clinical 
diagnosis. Computer-aided image analysis systems have recently been used to evaluate digital pathological images, with the advan-
tages of high accuracy, speed, and consistency [11,12]. The retrieved histopathological imaging features include a variety of 
morphological and histological data, including cell shape, size, and patterns of the nuclei and cytoplasm texture [13], which reflected 
information on tumor cells and their surrounding microenvironments [14]. Previous studies have demonstrated that the characteristics 
of histopathological images have significant potential for outcome prediction, tumor grading, and classification [15,16]. Additionally, 
digital pathology can act as a link between morphological characteristics and omics profiles (genomics, transcriptomics, and prote-
omics) to improve tumor characterization and understanding underlying biological processes [17]. In glioblastoma [18] and liver 
cancer [19], there is a clear link among gene expression, mutations, and histopathological characteristics. Therefore, histopathological 
image analysis can be used to assess gene expression and evaluate the disease prognosis. 

However, no study has focused on the role of AURKA expression in LUAD prognosis using pathomics. Therefore, in this study, we 
first determined AURKA expression in LUAD samples and then used pathohistological technology to build a pathohistological pre-
diction model to assess AURKA expression in LUAD. We predicted the prognoses of patients with LUAD based on the pathomic scores 
(PS) generated by the model. Finally, we combined biosynthesis analysis to investigate the underlying biological mechanisms of the 
histopathological features. 

2. Materials and methods 

2.1. Data source 

We collected a dataset for 522 patients with LUAD from the cancer genome atlas (TCGA, https://portal.gdc.cancer.gov/). The 
inclusion criteria were patients with LUAD, and the exclusion criteria were non-primary non-first diagnosis, missing clinical data, 
missing follow-up data, a survival time of less than 30 days, and missing RNA-seq samples. Finally, 443 eligible patients were included 
in this study. We also downloaded the pathology images of 478 patients with LUAD from TCGA, deleted those with poor image quality, 
and finally screened the H&E-stained histopathology images of 327 patients with corresponding clinical data and RNA-seq, as 
described above (Fig. 1). Ethical approval was not required, as TCGA database was open to the study. The TCGA database included 
informed consent for all patients. 

Fig. 1. Inclusion and exclusion flowchart: finally, 443 eligible patients for Genetic prognostic study; 327 eligible patients for pathomics study.  
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2.2. Genetic prognostic analysis 

2.2.1. Groups of patients in the genetic prognosis analysis 
The data of 443 patients with LUAD extracted from TCGA were divided into groups with high-expression and low-expression using 

the cutoff value of AURKA expression (cutoff = 2.749), which was obtained using the R program "survminer" [20,21]. The 
high-expression group (n = 266) had an expression level >2.749. The low-expression group (n = 177) had an expression level ≤2.749. 
Wilcox test was used to analyze the relationship between AURKA expression and clinicopathological characteristics (age, sex, and 
patient age). 

2.2.2. Expression of AURKA in tumor tissues and normal tissues 
We obtained the LUAD data from TCGA and relevant normal tissue data from Genotype-Tissue Expression (GTEx). The toil 

technique was used to consistently handle RNA-seq data from TCGA and GTEx in the FPKM format [22]. The Wilcoxon rank-sum test 
was used to analyze the differences in AURKA expression between tumor and normal tissues. 

Fig. 2. The workflow of data analysis and integration. First, we performed histopathological image processing and feature extraction. Secondly, we 
integrated features of histopathological images to generate a model using machine learning and evaluated the model’s predictive performance in the 
validation set. Subsequently, the intergroup variability analysis of the gradient boosting algorithm (GBM) model showed that PS could be used to 
predict AURKA expression. The relationship between PS and OS in patients with LUAD shows that PS could be used to predict LUAD prognosis. 
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2.2.3. Prognostic analysis of AURKA expression in patients with LUAD 
The difference in overall survival (OS) between the AURKA high-expression and low-expression groups was analyzed using 

Kaplan–Meier survival curves. OS was defined as the time interval from the date of diagnosis to the date of death from any cause, or to 
the date on which the patient was last known to be alive. The log-rank test was used to test the significance of survival rates between 
groups. Univariate and multivariate Cox proportional hazards models were used to assess whether AURKA was an independent 
predictor of survival. 

2.2.4. Subgroup and interaction analyses 
One-way Cox regression was used for exploratory subgroup analysis to examine the impact of AURKA expression on patient 

prognosis (high-vs low-expression groups) in various subgroups for each covariate. A likelihood ratio test was used to examine the 
interaction between AURKA expression and other variables. 

2.3. Pathomics method 

The overall framework was summarized in Fig. 2. The details of each section were described in following parts. 

2.3.1. Histopathological image features 
We obtained 478H&E-stained whole-slide histopathological images from TCGA [23,24]. A considerable percentage of white 

backgrounds (between 40 and 80 %) may be observed in whole-slide histopathological images. However, this is often irrelevant for 
cancer analyses. Removing such non-informative regions can markedly reduce the computational cost while ensuring the validity of 
the training samples. Therefore, we used the OTSU algorithm (https://opencv.org/), which is currently the most commonly used 
pathological image processing algorithm in pathomics research, to obtain the tissue regions of pathology sections [25–28]. To be able 
to incorporate samples with different magnifications, increase the number of samples for model training, and thus increase the ac-
curacy of the model’s predictions, we used upsampling [29], which maintains a consistent input resolution while preserving the details 
and texture information in the image. Increased sample size improves prediction accuracy, and 20 × and 40 × are common whole slide 
imaging (WSI) magnifications [30,31]. We divided the 40 × images into multiple sub-images of 1024 × 1024 pixels, and divided the 
20 × images into multiple sub-images of 512 × 512 pixels to obtain the same perspective. We then resized the 512 × 512 pixels 
sub-images to 1024 × 1024 pixels for further analysis. Sub-images with poor image quality (contamination, blurred images, and more 
than 50 % white background) were excluded [19,32], and 327 eligible images of the pathology sections were obtained. To decrease the 
computational cost, we randomly selected 10 sub-images from each pathology image for subsequent analysis. As in Fig. 2, we showed 
representative H&E tiles. Using the open-source package PyRadiomics, 465 pathomic features were extracted from each image tile for 
analysis. The mean value of each extracted feature from the selected 10 tiles was summarized to represent the value of the corre-
sponding slide for further statistical analyses [33–36]. 

2.3.2. TCGA pathology crossover samples 
Patients (n = 327) with available pathological slides and clinical data were split into high- and low-expression groups using the R 

program "survminer" and a cutoff value of 2.7486 was set for AURKA expression. We randomly divided the data from these 327 
samples into a training set (n = 229) and a validation set (n = 98) in a 7:3 ratio. For the training set, the pathohistological feature 
values (465 features retrieved by the PyRadiomics software) were z-score-normalized, and the validation set was standardized using 
the mean and standard deviation of the training set. The between-group variability of the clinical variables across the datasets was 
analyzed. 

2.3.3. Construction of a predictive model 
The training set data were used for feature screening and modeling. We first ranked feature importance using maximum relevance 

minimum redundancy (mRMR) and then selected features using recursive feature elimination(RFE). Finally, the top-ranking features 
were reserved to construct the model using the GBM algorithm. 

2.3.4. GBM model evaluation methodology 
Receiver operating characteristic (ROC) analysis was used to evaluate the efficacy of the GBM model. The evaluation indicators are 

accuracy (ACC), specificity (SPE), sensitivity (SEN), predictability (PPV), and negativity (NPV). The pROC package in R was used to 
determine the area under the ROC curve (AUC) and assess the overall performance of the model. Precision-recall (PR) curves were used 
to evaluate the efficacy of the model by emphasizing positive samples. The PR-AUC is the average of the accuracy values determined 
for each coverage threshold. Calibration curves were applied to evaluate the goodness-of-fit between the model-predicted value and 
the true value of AURKA expression. The Brier score was used to quantify the combined performance of the prediction model, and the 
decision curves were plotted to determine the clinical utility of the model. 

2.3.5. Analysis of intergroup variability in the GBM model 
We compared the difference in PS between the high and low AURKA subgroups using the Wilcoxon test. 

2.3.6. Relationship between PS and LUAD prognosis 
Based on the pathomics model, PS was calculated for each of the 327 samples. We merged the PS with clinical data and calculated 
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the cutoff value of the PS using the Survminer package to classify it as a low/high dichotomous variable. We investigated the prog-
nostic role of PS in patients with LUAD, similar to a previous statistical method for molecular prognosis. 

2.4. Pathohistologic mechanism analysis 

2.4.1. Enrichment analysis of differentially expressed genes between high- and low-PS subgroups 
R software "cluster Profiler" was used to perform gene set enrichment analysis (GSEA) of the KEGG (c2.cp.kegg.v7.5.1. symbols. 

gmt) and Hallmark (h.all.v7.5.1.symbols.gmt) gene sets to explore the underlying molecular mechanisms of gene expression differ-
ences between the high/low PS subgroups. 

2.4.2. Analysis of differentially expressed genes associated with the cell cycle pathway 
The Wilcoxon test was used to assess the differential expression of genes related to the cell cycle pathway between the high- and 

low-PS groups. Box plots were generated to display the results. 

2.4.3. Analysis of differential immune cell abundance 
The gene expression matrix of patients with LUAD was uploaded to the CIBERSORTx database (https://cibersortx.stanford.edu/) 

and the extent of immune cell infiltration in each sample was computed. The R package "limma" was used to examine the extent of 
immune cell infiltration between high- and low-PS groups. Immune infiltration involves multiple genes for simultaneous analysis, and 
limma, which can improve the statistical efficacy and reliability of high-throughput gene expression data, is more appropriate for such 
analyses. 

2.4.4. Analysis of differential drug sensitivity 
We downloaded the IC50 values of 198 drugs from the GDSC database (http://www.cancerrxgene.org/), used the R package 

"oncoPredict" to predict the IC50 values of each sample based on RNA-seq, and analyzed the differences in IC50 values between the 
high- and low-PS groups using the Wilcoxon test. 

2.4.5. Mutation and TMB analyses of LUAD 
We performed mutation and tumor mutation burden (TMB) analyses of LUAD. Mutation data for TCGA-LUAD patients was 

downloaded from TCGA Data Portal (https://portal.gdc.cancer.gov/). The sample size at the intersection of the pathomics data was 
322 patients. Data for somatic cell variants were stored in the Mutation Annotation Format, and mutation data were analyzed using the 
R package maftools. The high- and low-PS groups were the same as those described in Section 2.3.6. 

2.5. Statistical analysis 

Statistical analyses were performed using R version 3.6.3. The Wilcoxon signed-rank test was used to analyze numerical variables. 
The specificity and sensitivity of the machine-learning-based model were assessed using an ROC curve with an AUC value. Survival 
outcomes were shown as Kaplan–Meier survival curves and compared using the log-rank test. Cox regression analysis was used to 
compute the hazard ratio (HR) and 95 % confidence intervals (CIs). Results with P < 0.05 were considered statistically significant. The 
R package "limma" was used to examine the level of immune cell infiltration between high- and low-PS groups. 

3. Results 

3.1. Genetic prognostic analysis 

3.1.1. Expression of AURKA in tumor tissues and normal tissues 
AURKA expression in tumor tissues was higher than that in normal tissues. The median difference between the two groups was 

2.1231 (1.9951–2.2486), which was statistically significant (P < 0.001) (Fig. 3A). 

3.1.2. Baseline information of the patients in the genetic prognosis analysis 
A total of 266 patients with LUAD were in the high AURKA expression group and 177 patients were in the low AURKA expression 

group, with a cutoff value of 2.749. No differences were observed in pathological stage, radiotherapy administered, chemotherapy 
administered, residual tumor after surgery, or tumor location between patients in the high and low AURKA expression groups (P >
0.05), but there were significant differences in age, sex, smoking status, and pathological subtype of patients, suggesting that AURKA 
expression was related to age, sex, smoking status, and pathological subtype of patients (Table 1). 

Fig. 3. (A) Expression of AURKA in tumor tissues and normal tissues. (B) Kaplan–Meier survival curves of high- and low-AURKA expression groups 
in patients with LUAD. (C) Univariate and multivariate Cox regression analyses the effect of AURKA expression and clinicopathologic features on 
patient prognosis. (D) Subgroup and interaction analyses the effect of AURKA expression on patient prognosis in different subgroups of 
each covariate. 
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3.1.3. Prognostic value of AURKA in patients with LUAD 
Fig. 3B shows significant differences in OS between the high- and low-AURKA expression groups (P = 0.001). The median OS 

intervals were 41.93 and 54.07 months, respectively. This suggests that increased AURKA expression is associated with a poor 
prognosis in patients with LUAD. 

3.1.4. Cox proportional hazards analysis 
Univariate Cox regression analysis (Fig. 3C) revealed that high AURKA expression was a significant risk factor for OS (HR = 1.736, 

95 % CI = 1.231–2.447, P = 0.002). Radiotherapy (HR = 1.67, 95 % CI = 1.077–2.589, P = 0.022) and R1/R2 (HR = 4.058, 95 % CI =
2.26–7.287, P < 0.001) versus R0 were significant risk factors for OS in patients with LUAD. Other pathologic subtypes versus not 
otherwise specified (NOS) pathologic type were protective factors for OS (HR = 0.34, 95 % CI = 0.191–0.605, P < 0.001). Other 
variables (age, sex, chemotherapy, smoking status, and tumor location) did not have statistically significant effects on OS (P > 0.05). 

In multivariate Cox regression analysis (Fig. 3C), we observed that after multifactorial adjustment, high AURKA expression (HR =
1.816, 95 % CI = 1.257–2.623, P = 0.001) remained a statistically significant risk factor for OS. High pathological stage (HR = 2.502, 
95 % CI = 1.704–3.675, P < 0.001) and residual tumor R1/R2 (HR = 4.1, 95%CI = 2.015–8.342, P < 0.001) were statistically sig-
nificant risk factors for OS. The other pathological subtypes (HR = 0.296, 95 % CI = 0.164–0.533, P < 0.001) and tumor location in the 
middle lobe of the right lung (HR = 0.307, 95 % CI = 0.097–0.97, P = 0.044) were statistically significant protective factors for OS. 
This indicated that AURKA expression status, pathological stage, residual tumor, pathological subtype, and tumor location in the 
middle lobe of the right lung were independent prognostic factors for LUAD, and high AURKA expression was associated with poor 
prognosis in patients with LUAD. Other variables, including age, sex, chemotherapy, radiotherapy, and smoking status, were not 
significantly associated with the prognosis of patients with LUAD (P > 0.05). 

3.1.5. Subgroup and interaction analyses 
One-way Cox regression was used for exploratory subgroup analysis to determine the effect of AURKA expression (high vs low 

expression groups) on patient prognosis in various subgroups for each covariate. We observed that elevated AURKA expression was a 
risk factor for OS in the subgroup aged ≤65 years (HR = 1.218, 95 % CI = 0.737–2.013, P = 0.441), although not statistically sig-
nificant; in the subgroup aged >65 years, elevated AURKA was a risk factor for OS (HR = 2.592, 95 % CI = 1.604–4.188, P < 0.001), 

Table 1 
Descriptive statistics of patient characteristics.  

Variables Total(n = 443) Low(n = 177) High(n = 266) P 

Age, n (%)    0.027 
≤65 215(49) 74(42) 141(53)  
>65 228(51) 103(58) 125(47)  
Sex, n (%)    <0.001 
Female 244(55) 118(67) 126(47)  
Male 199(45) 59(33) 140(53)  
Pathologic-stage, n (%)    0.072 
I/II 353(80) 149(84) 204(77)  
III/IV 90(20) 28(16) 62(23)  
Radiotherapy, n (%)    0.144 
No 395(89) 163(92) 232(87)  
Yes 48(11) 14(8) 34(13)  
Chemtherapy    0.219 
No 289(65) 122(69) 167(63)  
Yes 154(35) 55(31) 99(37)  
Smoking status, n (%)    <0.001 
Current 105(24) 20(11) 85(32)  
Former 271(61) 120(68) 151(57)  
Nonsmoker 67(15) 37(21) 30(11)  
Residual tumor, n (%)    0.656 
R0 297(67) 117(66) 180(68)  
R1/R2 16(4) 5(3) 11(4)  
RX/Unknown 130(29) 55(31) 75(28)  
Histologic type, n (%)    0.006 
Mixed Subtype 97(22) 49(28) 48(18)  
NOS 270(61) 92(52) 178(67)  
Others 76(17) 36(20) 40(15)  
Tumor location, n (%)    0.203 
L- Lower 69(16) 34(19) 35(13)  
L- Upper 111(25) 38(21) 73(27)  
R-Lower 85(19) 39(22) 46(17)  
R-Middle 20(5) 8(5) 12(5)  
R-Upper 158(36) 58(33) 100(38)  

Histologic type: NOS: Not Otherwise Specified; Others: Acinar, Bronchioloalveolar, Clear Cell, Micropapillary, Papillary, Signet Ring, Solid, 
Mucinous. 

C. Bai et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33107

8

and this result was statistically significant. The P value of the interaction test was 0.041, which indicated statistical significance and 
that there was a significant interaction between AURKA expression and the different age subgroups. Thus, the effect of AURKA on OS 
differed between the two age subgroups. The interaction of AURKA in different subgroups, including sex, pathological stage, radio-
therapy, chemotherapy, smoking status, residual tumor, pathological subtype, and tumor location were statistically insignificant, (all 
P > 0.05), suggesting that the effect of AURKA expression on OS was not significantly different between the different subgroups 
(Fig. 3D). 

3.2. Histopathology results 

3.2.1. Baseline information on TCGA pathology crossover samples 
We discovered that variables, including AURKA expression, age, sex, pathologic stage, radiation therapy, chemotherapy, smoking 

status, residual tumor, pathologic subtype, and tumor location, did not differ significantly (P > 0.05) between the training (n = 229) 
and validation (n = 98) sets. This indicated that the baseline conditions of the patients in the training and validation sets were 
comparable (Table 2). 

3.2.2. GBM model building 
Using the mRMR approach, the first 30 features were selected, and RFE was used to continue feature screening. As shown in Fig. 4A, 

a schematic of the RFE feature screening process is shown, and five features were obtained from the final screening process. Fig. 4B 
illustrates the significance of the filtered characteristics of the GBM algorithm. 

3.2.3. GBM model evaluation 
The AUC value of the model in the training set was 0.809, with a 95 % CI of 0.752–0.866 (Fig. 4C), and the AUC value in the 

validation set was 0.739, with a 95 % CI of 0.629–0.849 (Fig. 4D). In the PR curve, the AUCPR values of the model were 0.865 and 0.749 

Table 2 
Descriptive statistics of patient characteristics in the training and validation sets.  

Variables Total(n = 327) Train(n = 229) Validation(n = 98) P 

AURKA, n (%)    1 
Low 130(40) 91(40) 39(40)  
High 197(60) 138(60) 59(60)  
Age n (%)    0.744 
≤65 164(50) 113(49) 51(52)  
>65 163(50) 116(51) 47(48)  
Sex, n (%)    1 
Female 183(56) 128(56) 55(56)  
Male 144(44) 101(44) 43(44)  
Pathologic-stage, n (%)    1 
I/II 265(81) 186(81) 79(81)  
III/IV 62(19) 43(19) 19(19)  
Radiotherapy, n (%)    0.785 
NO 293(90) 204(89) 89(91)  
YES 34(10) 25(11) 9(9)  
Chemotherapy, n (%)    0.771 
NO 219(67) 155(68) 64(65)  
YES 108(33) 74(32) 34(35)  
Smoking-status, n (%)    0.201 
Nonsmoker 41(13) 24(10) 17(17)  
Current 82(25) 57(25) 25(26)  
Former 204(62) 148(65) 56(57)  
Residual-tumor, n (%)    0.12 
R0 220(67) 159(69) 61(62)  
R1/R2 13(4) 6(3) 7(7)  
RX/Unknown 94(29) 64(28) 30(31)  
Histologic-type, n (%)    0.31 
NOS 204(62) 148(65) 56(57)  
Mixed Subtype 67(20) 42(18) 25(26)  
Others 56(17) 39(17) 17(17)  
Tumor-location, n (%)    0.916 
L-Lower 56(17) 39(17) 17(17)  
L-Upper 76(23) 50(22) 26(27)  
R-Lower 63(19) 45(20) 18(18)  
R-middle 14(4) 10(4) 4(4)  
R-Upper 118(36) 85(37) 33(34)  
OS, n (%)    0.272 
Alive 213(65) 154(67) 59(60)  
Dead 114(35) 75(33) 39(40)   
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for the training and validation sets, respectively (Fig. 4E and F). These results indicated that the pathohistological model had good 
predictive ability. In both the training and validation sets, the calibration curves showed good agreement (P > 0.05) between the 
predicted probability and the true value of the AURKA expression (Fig. 4G and H). The decision curves suggested that the model has 
clinical utility (Fig. 4I and J). 

The training set had a threshold of 0.599, an accuracy of 0.777, a sensitivity of 0.783, a specificity of 0.769, and a Brier score of 
0.186, while the accuracy of the validation set was 0.745, a sensitivity of 0.78, a specificity of 0.692, and a Brier score of 0.203. This 
suggests that our established pathomics model has a better accuracy, sensitivity, and specificity. 

3.2.4. Intergroup variability analysis of the GBM model 
In the training set (Fig. 5A), PS was significantly different between the high AURKA expression group and the low AURKA 

expression group, P < 0.001. In the high AURKA expression group, the PS value was high. Similarly, in the test set (Fig. 5B), PS was 
significantly different between the high AURKA expression group and the low AURKA expression group, P < 0.001. In the high AURKA 
expression group, PS was high. Moreover, it was suggested that the higher the PS, the higher the AURKA expression. This suggests that 
the PS generated by the model can be used to predict AURKA expression. 

3.2.5. Clinical baseline data for high and low PS groups 
We calculated a cutoff value of 0.6098 for PS using the Survminer package and categorized the patients into high PS (n = 177) and 

low PS (n = 150) groups. No significant difference was observed in the age distribution between the high- and low-PS groups (P =

Fig. 4. (A)Schematic of the RFE feature screening. (B)The significance of the filtered characteristics of the GBM algorithm. (C–J) Validation of GBM 
model for AURKA prediction: C and D were the Receiver operating characteristic (ROC) curves of training set and validation set respectively. E and F 
were the precision-recall (PR) curves of training set and validation set respectively. G and H were the calibration curves of training set and vali-
dation set respectively. I and J were the decision curves (DCA) curves of training set and validation set respectively. 
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0.408). Significant differences were observed in the distributions of sex, smoking status, and pathologic subtypes between the high- 
and low-PS groups (P < 0.05). No significant differences were observed in the distribution of pathologic stage, radiotherapy, 
chemotherapy, residual tumor, or tumor location between the high- and low-PS groups (P > 0.05) (Table 3). 

3.2.6. Relationship between PS and OS in patients with LUAD 
The median survival time was 39.03 months in the high PS group and 54.07 months in the low PS group, which was statistically 

significant and suggested that high PS was significantly associated with poor prognosis in LUAD patients (P = 0.019) (Fig. 5C). 

3.2.7. Cox proportional hazards analysis in pathomics 
High PS was a risk factor for OS in the univariate analysis (HR = 1.572, 95%CI = 1.075–2.299, P = 0.02). Pathologic stage III/IV 

(HR = 2.39, 95 % CI = 1.597–3.578, P < 0.001) and Residual tumor R1/R2 type (HR = 4.175, 95 % CI = 2.195–7.942, P < 0.001) were 
significant risk factors for OS. Others pathologic subtypes were protective factors for OS (HR = 0.227, 95 % CI = 0.099–0.519, P <
0.001). Other variables (age, sex, radiotherapy, chemotherapy, smoking status, and tumor location) had no significant effect on OS (P 
> 0.05) (Fig. 5D). 

In the multifactorial analysis, after adjustment, high PS (HR = 1.615, 95 % CI = 1.071–2.438, P = 0.022) was a statistically sig-
nificant risk factor for OS. Male sex (HR = 1.563, 95 % CI = 1.047–2.333, P = 0.029) and pathologic stage III/IV (HR = 2.701, 95 % CI 
= 1.667–4.376, P < 0.001) were significant risk factors for OS. Other pathologic subtypes (HR = 0.193, 95 % CI = 0.082–0.454, P <
0.001) were significant protective factors for OS. Other variables (including age, radiotherapy, chemotherapy, smoking status, and 
tumor location) had no significant effect on OS (P > 0.05) (Fig. 5D). 

3.2.8. Subgroup analyses and interaction tests 
In the subgroup of age less than or equal to 65 years, elevated PS was a risk factor for OS (HR = 1.181, 95 % CI = 0.689–2.022, P =

0.546), although not statistically significant; in the subgroup of age greater than or equal to 66 years, elevated PS was a risk factor for 
OS (HR = 2.141, 95 % CI = 1.246–3.68, P = 0.006), which was statistically significant. The p-value of interaction test was 0.142, which 

Fig. 5. (A, B) Intergroup variability analysis of the GBM model. (C) Kaplan–Meier survival curves of high-PS and low-PS groups in patients with 
LUAD. (D) Univariate and multivariate Cox regression analyses the effect of PS and clinicopathologic features on OS in patients with LUAD. (E) 
Subgroup and interaction analyses the effect of PS on OS in patients with LUAD in different subgroups of each covariate. 

Table 3 
Clinical baseline data for the high- and low-PS groups.  

Variables Total(n = 327) Low(n = 150) High(n = 177) p 

Age, n (%)    0.408 
≤65 164(50) 71(47) 93(53)  
>65 163(50) 79(53) 84(47)  
Sex, n (%)    0.01 
Female 183(56) 96(64) 87(49)  
Male 144(44) 54(36) 90(51)  
Pathologic_ stage, n (%)    0.764 
I/II 265(81) 120(80) 145(82)  
III/IV 62(19) 30(20) 32(18)  
Radiotherapy, n (%)    0.136 
NO 293(90) 139(93) 154(87)  
YES 34(10) 11(7) 23(13)  
Chemotherapy, n (%)    0.821 
NO 219(67) 99(66) 120(68)  
YES 108(33) 51(34) 57(32)  
Smoking_ status, n (%)    <0.001 
Nonsmokers 41(13) 28(19) 13(7)  
Current 82(25) 27(18) 55(31)  
Former 204(62) 95(63) 109(62)  
Residual_ tumor, n (%)    0.896 
R0 220(67) 99(66) 121(68)  
R1/R2 13(4) 6(4) 7(4)  
RX/Unknown 94(29) 45(30) 49(28)  
Histologic_ type, n (%)    0.896 
NOS 204(62) 82(55) 122(69)  
Mixed Subtype 67(20) 37(25) 30(17)  
Others 56(17) 31(20) 25(14)  
Tumor_ location, n (%)    0.634 
L-Lower 56(17) 27(18) 29(16)  
L-Upper 76(23) 29(19) 47(27)  
R-Lower 63(19) 31(21) 32(18)  
R-Middle 14(4) 6(4) 8(5)  
R-Upper 118(36) 57(38) 61(34)   

C. Bai et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e33107

12

indicated lack of significant interaction between PS and different age subgroups. Thus, the effect of PS on OS was similar between the 
two age subgroups. 

The PS interaction between different subgroups for sex, pathological stage, radiotherapy, chemotherapy, smoking status, patho-
logical subtype, and tumor location were statistically insignificant (all p > 0.05), suggesting that the effect of PS on OS was the same 
between these different subgroups. This suggests that PS generated by the model is an independent prognostic factor for LUAD 

Fig. 6. (A) Enrichment analysis of the KEGG gene set. (B) Enrichment analysis of the Hallmark gene set. (C) Analysis of differentially expressed 
genes associated with the cell cycle pathway. (D) Analysis of differential immune cell abundance. (E, F) Analysis of differential drug sensitivity. 
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(Fig. 5E). 

3.3. Pathohistologic mechanism analysis 

3.3.1. Enrichment analysis of differentially expressed genes between high- and low-PSsubgroups 
The top 30 pathways were visualized using GSEA of the KEGG gene collection. We observed that the differentially expressed genes 

in the high PS group were significantly enriched in signaling pathways, such as CELL_CYCLE and p53 (P53_SIGNALING_PATHWAY) 
signaling pathways (Fig. 6A). GSEA revealed the complete spectrum of pathways in the hallmark gene collection. We observed that 
differentially expressed genes in the PS-high group were significantly enriched in signalling pathways, such as G2M_CHECKPOINT and 
EMT (EPITHELIAL)_MESENCHYMAL_TRANSITION (Fig. 6B). 

3.3.2. Analysis of differentially expressed genes associated with the cell cycle pathway 
We discovered that the PS high-expression group had significantly higher levels of CDC27 and DBF4 expression (P < 0.001) 

(Fig. 6C). 

3.3.3. Analysis of differential immune cell abundance 
We analyzed immune cell infiltration in LUAD and observed that CD8+ and activated memory CD4+ T cell infiltration was 

significantly higher in the PS high-expression group (P < 0.001), whereas eosinophil cell infiltration did not show a statistically 
significant difference between the two groups (P > 0.05) (Fig. 6D). 

3.3.4. Analysis of differential drug sensitivity 
We observed that patients were more sensitive to sorafenib and Wee1 inhibitors in the PS high-expression group (P < 0.001) 

(Fig. 6E and F). This suggests a positive correlation between PS expression and the sensitivity to sorafenib and Wee1 inhibitors. The 
higher the PS expression, the stronger the sensitivity to sorafenib and Wee1 inhibitor. This made it possible to predict the sensitivity to 
Wee1 inhibitors and sorafenib based on the PS generated by the pathomics model. 

3.3.5. Mutation analysis and TMB analysis of LUAD 
As shown in Fig. 7A, B, missense_ mutations are the most frequent in both the high- and low-PS groups. Both TP53 and TTN showed 

higher mutation rates in the high PS group than in the low PS group. No significant differences were observed in the mutation rate of 
ARID1A gene(5 %) between the two groups. We speculated that AURKA expression was associated with a poor prognosis in LUAD, 
possibly due to common mutations in genes such as TP53 and TTN. 

4. Discussion 

In this study, we first investigated the prognostic value of AURKA expression in LUAD and observed that increased expression of 
AURKA is an independent risk factor for OS in patients with LUAD. We retrieved histopathological image features and built a 

Fig. 7. Mutation analysis and TMB analysis for LUAD. (A). PS high-expression group (B) PS low-expression group; TMB: Tumor Mutation Burden; 
Multi_ Hit: Genes mutated multiple times in the same sample. 
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pathohistological prediction model for AURKA expression using a machine learning technique. The results showed that the model 
achieved outstanding performance in predicting AURKA expression. PS generated by this model was an independent prognostic factor 
for OS in patients with LUAD. Finally, KEGG and GO enrichment analyses were carried out for functional annotation to identify the 
underlying biological processes. We discovered that they were mostly concentrated in these key pathways, including the CELL_CYCLE, 
P53, and G2M_CHECKPOINT signaling pathways. In the mutation and TMB analyses, we observed that TP53 and TTN had significantly 
higher mutation rates in the high PS group than in the low PS group. 

AURKA is a potential low-penetrance gene associated with tumor susceptibility [5,37]. AURKA is overexpressed and associated 
with a poor prognosis in various malignant tumors [38,39]. NING ZHONG et al. [2] investigated the connection between AURKA 
expression and lung cancer for the first time and discovered that both human LUAD cells and tissues had significantly high AURKA 
expression. However, their results were based on only 101 clinical cases. Mengyu Zhang et al. [40] investigated the relationship 
between AURKA expression status and LUAD in smokers and discovered that such patients had high AURKA expression. Moreover, 
these patients had a shorter median OS than those with lower AURKA expression. These results were consistent with our findings. The 
KM curve in our study suggested that patients with high AURKA expression had a worse prognosis than those with low AURKA 
expression, and multifactorial regression analysis suggested that AURKA overexpression was an independent risk factor for OS in 
patients with LUAD. However, our study population was not restricted to patients with LUAD who smoked; instead, we included a 
broader study population. 

The quantitative morphological properties of H&E-stained pathology sections provide objective, quantitative measurement of the 
morphology and texture of the nuclei and cytoplasm. For instance, the Zernike form features label the nucleic pixels as 1 and the 
cytoplasmic region as 0, and then create Zernike polynomials from binary images [41]. Using expanded structural components to 
match the texture, granularity calculates the size of an image’s texture [42]. Manual inspection typically has difficulty identifying 
these quantitative picture elements; however, computational approaches provide quick and accurate results. Recently, artificial 
intelligence-based computer techniques have been developed to convert pathological images into highly accurate, high-volume data 
containing quantitative features such as textural, morphological, edge-gradient, and biological features, which can be used to quantify 
pathology, molecular expression, and disease prognosis [14,43,44]. Machine learning from histopathological images could predict the 
STK11, EGFR, FAT1, SETBP1, KRAS, and TP53 mutations of LUAD (AUCs varied from 0.733 to 0.856) [32]. Yu et al. [15] recognized 
the predictive significance of the Zernike characteristics in lung cancer. Meanwhile, several studies revealed that histopathological 
image analysis could identify the presence of gene mutations in ovarian, colorectal, and liver malignancies [24,45,46]. This signifi-
cantly improves the efficiency of molecular testing and reduces the cost of human resources. 

To the best of our knowledge, this is the first study to predict AURKA expression in tissue sections using a machine learning-based 
pathomics signature. In this study, we created and tested machine learning classifiers to predict AURKA expression in LUAD using an 
automated procedure that extracts objective elements from histopathological images. As HE-stained images are frequently created in 
clinical practice, our classifier can be successfully used in everyday practice. Moreover, by upsampling, the samples for model training 
contained samples at 20 × and 40 × magnifications, which enabled the model to accurately predict samples at different magnifica-
tions, thereby improving the generalizability of the model. This may be a practical and economical method for predicting AURKA 
expression in LUAD. Based on this pathophysiological model, we could predict the prognosis of LUAD. This suggests that our pathomics 
model has superior accuracy, sensitivity, and specificity. We observed that the higher the PS, the higher the expression of AURKA in the 
intergroup variability analysis. Using univariate and multivariate Cox regression analyses, we observed that the higher PS, the worse 
the prognosis. These results demonstrate that the pathomics model created using machine learning is capable of accurately predicting 
the expression of AURKA and LUAD prognosis. Finally, AURKA is an emerging therapeutic target for cancer. Many preclinical and 
clinical studies have evaluated AURKA inhibitors (NCT01380756, NCT01431664, NCT01719744, and NCT00766324).The model 
constructed in this study can help us make objective, quick, batch, and accurate predictions of AURKA expression. Therefore, this study 
is anticipated to serve as a foundation for directing the use of AURKA inhibitors in clinical settings. 

In the analysis of the pathohistologic mechanism, we observed that CD8+ and activated memory CD4+ T cell infiltration was 
significantly higher in the PS high group (P < 0.001). Our model suggested that a high PS was significantly associated with a poor 
prognosis in patients with LUAD. Immune cells have complex regulatory mechanisms for tumor progression. CD8+ T cells, as the main 
effector immune cells, play an important role in anti-tumor effects [47]. Infiltrating CD8+ T cells are associated with longer OS in 
patients with various malignancies, including melanoma, squamous cell carcinoma (SCCs), large-cell lung cancer, and several types of 
adenocarcinoma [47–49]. However, notable exceptions have been observed for clear cell RCC (ccRCC) [50,51] and prostate cancer 
[52], where a high density of CD8+ T cell was correlated with a shorter OS. Firstly, some studies have shown that various T cell 
subtypes may be associated with a poor prognosis in cancer, possibly because of the heterogeneity of T cells. TIGIT + CD8+T, 
CXCL13+CD8+T, CD39+CD8+T cell infiltration is correlated with poor prognosis in a variety of tumors [53–55]. T helper 1 (TH1) 
cells are a subtype of CD4+ T cells, and recent studies have observed that a high frequency of TH1 cells are associated with reduced 
2-year survival after surgery for non-small cell lung cancer. Second, AURKA inhibitor therapy exerts antitumor effects while inducing 
PD-L1 upregulation, resulting in a decrease in CD8+ T cells. Moreover, a combination of AURKA inhibitor and PD-L1 antibody therapy 
can restore CD8+ T cell infiltration, suggesting that the increase in CD8+ T cells may only be a concomitant phenomenon of high 
AURKA expression [56]. Tumor immunotherapy is the most promising therapeutic modality discovered in recent years, and T cell-rich 
infiltrated tumors are believed to respond better to immunotherapy with immune checkpoint inhibitors in hot tumors [57]. This 
implies that the AURKA-based prediction model has the potential to predict responses to immunotherapy. In this study, we focused on 
analyzing T-cell infiltration in patients in the poor-prognosis group. We plan to further explore this phenomenon in the future. We 
performed mutation and TMB analyses and observed that TP53 and TTN had higher mutation rates in the high-PS group than in the 
low-PS group. No significant differences were observed in the mutation rates of ARID1A between the two groups. Previous studies have 
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observed that targeted inhibition of AURKA may be a new therapeutic strategy for ARID1A mutant colorectal cancer [9,10]. However, 
we observed a low rate of ARID1A mutations (only 5 %) in patients with LUAD. We speculate that AURKA may have different 
mechanisms in LUAD and colon cancer. AURKA is associated with a poor prognosis in LUAD, possibly due to common mutations in 
genes such as TP53 and TTN. 

This study has several limitations. First, we obtained information from TCGA database and constructed and verified a model for the 
training and validation groups. As it was challenging to discover other datasets with comprehensive information on histology and 
omics, this study had a small sample size, was limited to one cohort, and lacked external validation. Therefore, the generalizability of 
our findings should be considered within these constraints. Second, because this study was retrospective, confounding variables 
inevitably had an impact. In addition, representative tumor slices were more likely to be uploaded, which may have resulted in a 
selection bias in TCGA dataset. The usual histological patterns of these tumor slices may aid in their classification [15]. However, as 
clinicians often use depth data from several slides and microscopic images, further research is required to determine the performance 
of prediction models in clinical settings. 

5. Conclusion 

We discovered that pathohistological image features can predict AURKA expression in patients with LUAD through machine 
learning and that PS based on this model could predict the prognosis of patients with LUAD. This can help in risk stratification and 
individualized care for these patients in the future. 
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