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Abstract

Oral administration of hydrogen water ameliorates Parkinson’s disease (PD) in rats, mice,

and humans. We previously reported that the number of putative hydrogen-producing bacte-

ria in intestinal microbiota is low in PD compared to controls. We also reported that the

amount of hydrogen produced by ingestion of lactulose is low in PD patients. The decreased

hydrogen production by intestinal microbiota may be associated with the development and

progression of PD. We measured the amount of hydrogen production using gas chromatog-

raphy by seven bacterial strains, which represented seven major intestinal bacterial groups/

genera/species. Blautia coccoides and Clostridium leptum produced the largest amount of

hydrogen. Escherichia coli and Bacteroides fragilis constituted the second group that pro-

duced hydrogen 34- to 93-fold lower than B. coccoides. Bifidobacterium pseudocatenulatum

and Atopobium parvulum constituted the third group that produced hydrogen 559- to 2164-

fold lower than B. coccoides. Lactobacillus casei produced no detectable hydrogen. Assum-

ing that taxonomically neighboring strains have similar hydrogen production, we simulated

hydrogen production using intestinal microbiota that we previously reported, and found that

PD patients produce a 2.2-fold lower amount of intestinal hydrogen compared to controls.

The lower amount of intestinal hydrogen production in PD was also simulated in cohorts of

two other countries. The number of hydrogen-producing intestinal bacteria may be associ-

ated with the development and progression of PD. Further studies are required to prove its

beneficial effect.

Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder, which is characterized by

muscular rigidity, bradykinesia, resting tremor, impairment of postural reflex, and non-motor
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symptoms including dementia. Pathological hallmark of PD is abnormally aggregated α-synu-

clein protein (Lewy body) in dopaminergic neurons in substantia nigra in the midbrain [1].

The mechanisms underlying abnormal aggregation of α-synuclein have not been fully eluci-

dated. Braak et al. observed in autopsies of idiopathic PD patients and healthy elderly people

that α-synuclein pathology begins in the dorsal nucleus of vagus nerve, and ascends to raphe

nuclei, locus ceruleus, substantia nigra, and cerebral cortex [1]. In 44.6% of PD patients, con-

stipation starts on average 18.1 years before the onset of motor symptoms [2]. Similarly, rapid

eye movement (REM) sleep behavior disorder and depression precede the onset of motor

symptoms approximately 10 and 5 years, which represent abnormalities in Raphe nucleus and

locus ceruleus, respectively [3]. Truncal vagotomy for peptic ulcer in the past markedly

decreases a risk for developing PD in Denmark [4] and Sweden [5]. Accumulating evidence

supports the notion that abnormal α-synuclein first aggregates in the neural plexus in the gas-

trointestinal tract, and ascends into the central nervous system.

In PD, intestinal permeability is increased, and its degree is positively correlated with intes-

tinal staining for (i) Escherichia coli, (ii) nitrotyrosine, a marker for protein oxidation, and (iii)

α-synuclein [6]. Similarly, in a mouse model, hyperpermeability of large intestine and abnor-

mal aggregation of phosphorylated α-synuclein in large intestine are induced by intraperito-

neal injection of lipopolysaccharide [7]. Additionally, the effect of intestinal microbiota on PD

is underscored by the worsening of PD in a mouse model by transplantation of intestinal

microbiota of PD patients [8]. Oxidative stress produced by macrophages in the luminal wall

due to a hyperpermeabilized intestinal wall may account for the accumulation of α-synuclein

in the intestinal mucosa. As the intestinal microbiota is likely to have a marked effect on the

hyperpermeability-induced oxidative stress, the intestinal microbiota may be causally associ-

ated with α-synuclein pathology in the enteric nervous system in PD.

Gut microbiota in PD patients have been recently reported by eight groups including us [9–

16]. Scheperjans et al. compared gut microbiota of 72 PD patients and 72 control subjects by

analyzing 16S ribosomal RNA genes. They found that the relative abundance of Enterobacter-
iaceae was positively associated with the severity of postural instability and gait difficulty [9].

Keshavarzian et al. analyzed gut microbiota in 38 PD patients and 34 healthy controls. They

observed that anti-inflammatory butyrate-producing bacteria from the genera Blautia, Copro-
coccus, and Roseburia were low in PD patients [10]. Unger et al. analyzed fecal concentrations

of small chain fatty acids (SCFA) and 9 bacterial phyla/groups by qRT-PCR in 34 PD patients

and 34 age-matched controls. They found that SCFA concentrations were low in PD. They

also observed that Enterobacteriaceae were increased and Prevotella were decreased in PD

[12], as was observed by Scheperjans et al. in Finland [9].

We analyzed 45 PD patients and 34 healthy cohabitants by quantitative RT-PCR of 16S or

23S rRNA of 19 fecal bacterial groups/genera/species [11]. A two-year follow-up study later

revealed that a low count of Bifidobacterium at year 0 was associated with worsening of PD in

two years [17]. We also found that fecal counts of putative hydrogen-producing bacteria were

low in PD patients [11]. Among the six fecal bacterial groups/genera/species that were pre-

dicted to produce hydrogen, Bacteroides fragilis group, Clostridium perfringens, Pseudomonas
possess hydrogenases to produce hydrogen [18]. Similarly, as most strains in Enterobacteria-
ceae, Blautia and Clostridium produce hydrogen, we assumed that Enterobacteriaceae, Blautia
coccoides group, and Clostridium leptum subgroup that we analyzed by qRT-PCR produce

hydrogen, but hydrogen-productivity of each bacterium remains to be experimentally deter-

mined. Similarly, hydrogen-productivity of the remaining 12 bacteria that we analyzed by

qRT-PCR remains unknown.

We reported that hydrogen water prevents the development and progression of PD in a rat

model [19]. Similarly, hydrogen in drinking water reduces dopaminergic neuronal loss in the
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1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD [20].

Furthermore, drinking hydrogen water significantly suppresses progression of PD evaluated

by Unified Parkinson’s Disease Rating Scale (UPDRS) in a randomized placebo-control study

of 19 PD patients [21]. A large amount of hydrogen is produced by intestinal anaerobic bacte-

ria in human and rodents [22, 23]. The effects of hydrogen produced by intestinal bacteria are

reported in a Concanavarin A (ConA)-induced mouse hepatitis model [24]. They showed that

suppression of intestinal microbiota by antibiotics increased the severity of ConA-induced

hepatitis, while supplementation of hydrogen-producing E. coli, but not hydrogen-deficient

mutant E. coli, ameliorated the ConA-induced hepatitis.

In order to examine the roles of hydrogen-producing intestinal bacteria in PD, we individu-

ally cultured six bacterial strains representing six most prevalent intestinal bacterial groups/

genera/species, and measured the amounts of hydrogen produced by these bacteria. We also

analyzed hydrogen production by Lactobacillus, the count of which was higher than controls

in PD [11].

Materials and methods

Bacterial strains

Blautia coccoides (JCM 1395) was provided by Japan Collection of Microorganisms, RIKEN

BRC, which is participating in the National BioResource Project of the MEXT, Japan. Clostrid-
ium leptum (ATCC 29065), Bacteroides fragilis (ATCC 25285), Bifidobacterium pseudocatenu-
latum (ATCC 27919), Atopobium parvulum (ATCC 33793), and Lactobacillus casei (ATCC

334) were purchased from ATCC. Escherichia coli (W3110) was kindly provided by Dr. Akira

Okamoto at the Aichi University of Education.

Medium

We made culture medium for each bacterium according to the protocols by DSMZ (Table 1).

Blautia coccoides JCM 1395 and B. fragilis ATCC 25285 were revived in modified ATCC 1490.

The constituents of each medium are shown in S1 Table. The experiments were carried out in

a 31-mL screw lip test tube sealed with a butyl rubber stopper and a crimped screw cap with a

hole (Sanshin Industrial Co. Ltd.). The test tube contained 5 mL of liquid medium. The head-

space in the test tube was flushed with 100% N2 gas for DSMZ 58, DSMZ 104, ATCC 416,

ATCC 1490 and LB, or with an 8:2 mixture of N2 and CO2 gas for DSMZ 104c, and the test

tube was autoclaved.

Measurement of hydrogen gas concentration

Hydrogen gas concentration was measured as previously described [25] with partial modifica-

tions. In brief, each bacterium was first cultured in 5 ml of bacterial culture medium in a 31-mL

screw lip test tube, and 100 μl each was inoculated into three or four test tubes containing 5 or 7

ml culture medium (Table 1) followed by static incubation at 37˚C under an anaerobic condition.

Bacterial growth was monitored by measuring the absorbance at 600 nm with Miniphoto

518R (Taitec Corp.) every 0.5 to 1.0 hours. The numbers of bacteria were counted at four or

more points over a course of culture using Bacteria Counter (Sunlead Glass Corp.) to enable

estimation of the bacterial counts from the 600-nm absorbance. A fraction of the headspace

gas (100 μl) was intermittently sampled using a gas-tight syringe, and the concentration of

hydrogen was measured by a GC-7A gas chromatography equipped with thermal conductivity

detector (TCD) (Shimadzu Scientific Instruments, Inc.). For Blautia coccoides JCM 1395 and

B. fragilis ATCC 25285, the concentration of hydrogen was measured by a gas chromatography
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(EAG analyzer GS-23, SensorTec Co. Ltd.) in a high biosafety laboratory. We confirmed that

GC-7A with TCD and EAG analyzer GS-23 gave similar values by analyzing hydrogen gas pro-

duced by E. coliW3110. All gas measurements were performed at room temperature.

Manual annotation of hydrogenase genes in representative human gut

strains

Six strains cultured in this study were genome sequenced previously. Genome sequence of

Blautia coccoides JCM 1395 was not available, and we instead used genome sequence of Blautia
coccoides YL58. We manually annotated hydrogenase genes of these seven strains using

HydDB [26] (S2 Table). Four strains (Blautia coccoides YL58, Clostridium leptum ATCC

29065, Bacteroides fragilis ATCC 25285, and Escherichia coliW3110) carried hydrogenase

genes, and three strains (Bifidobacterium pseudocatenulatum ATCC 27919, Atopobium parvu-
lum ATCC 33793, and Lactobacillus casei ATCC 334) did not.

Hydrogenase genes in phylogenetic relatives of the four hydrogenase-carrying strains were

similarly annotated according to a report by Wolf and colleagues [27] (S3 Table). Phylogenetic rel-

atives of C. leptumATCC 29065, B. fragilisATCC 25285, E. coliW3110 were identified using (i)

our previous taxonomic coverage analysis [28], which used the same primers as YIF-Scan [11],

and (ii) 16S rRNA-based phylogenetic tree of type strains from The All-Species Living Tree Proj-

ect database (https://www.arb-silva.de/fileadmin/silva_databases/living_tree/LTP_release_128/

LTPs128_SSU/LTPs128_SSU_tree.pdf) [29]. Phylogenetic relatives of B. coccoides JCM 1395 were

identified according to a previously reported collation of B. coccoides group [30].

Statistical analysis

All analyses were performed with Prism 6 (GraphPad Software Inc.). To compare hydrogen

productions by seven bacterial groups/genera/species, one-way ANOVA and the Tukey-Kra-

mer posthoc test were used. To compare hydrogen productions in PD and controls, Student

unpaired t-test was used. Statistical significance was considered when p-value was less than

0.05.

Results

Among the twelve fecal bacterial groups/genera/species that we previously analyzed by

qRT-PCR of 16S or 23S rRNA (YIF-Scan) (Table 2 in [11]), we quantified the amount of

Table 1. Bacterial strains used for quantification of hydrogen production and the culture medium.

Genera Strain Mediuma

Blautia Blautia (Clostridium) coccoides (RIKEN BRC JCM 1395) ATCC 1490

Clostridium Clostridium leptum (ATCC 29065) DSMZ 104c

Bacteroides Bacteroides fragilis (ATCC 25285) ATCC 1490

Bifidobacterium Bifidobacterium pseudocatenulatum
(ATCC 27919)

DSMZ 58

Atopobium Atopobium parvulum (ATCC 33793) DSMZ 104

Lactobacillus Lactobacillus casei (ATCC 334) ATCC 416

Escherichia Escherichia coli (W3110) LB

aThe constituents of culture medium are indicated in S1 Table.

Fecal bacterial groups/genera/species analyzed by YIF-Scan, but not cultured in this study, are Prevotella, Clostridium perfrigens, Enterococcus, Staphylococcus, and

Pseudomonas.

https://doi.org/10.1371/journal.pone.0208313.t001
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hydrogen production of six bacterial strains (Blautia coccoides JCM 1395, Clostridium leptum
ATCC 29065, Bacteroides fragilis ATCC 25285, Escherichia coliW3110, Bifidobacterium pseu-
docatenulatum ATCC 27919 and Atopobium parvulum ATCC 33793) representing six most

dominant bacterial groups/genera/species according to YIF-Scan (Blautia coccoides group,

Clostridium leptum subgroup, Bacteroides fragilis group, Enterobacteriaceae, Bifidobacterium,

and Atopobium cluster), respectively. These six prevalent bacterial groups/genera/species con-

stitute 71.3 ± 9.4% (mean and SD) of total fecal bacteria according to the estimation by hybrid-

ization with a generic probe Eub338 [31]. The total number of the other six bacterial groups/

genera/species in YIF-Scan was 1051- and 223-fold lower than the total number of six preva-

lent bacterial groups/genera/species in controls and PD patients, respectively [11]. However,

as the count of Lactobacillus was significantly higher in PD [11], we analyzed hydrogen pro-

duction by a representative strain Lactobacillus casei ATCC 334. We thus cultured seven repre-

sentative strains individually, and quantified temporal profiles of hydrogen productions by

each strain (Fig 1).

We normalized the amount of hydrogen production in two ways. One was to normalize the

hydrogen production by the number of bacteria at the transition between the growth and sta-

tionary phases (Method I). The other was to normalize the hydrogen production by the
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Fig 1. Temporal profiles of the number of bacteria (closed circles) and hydrogen production (open circles). The numbers of bacteria per ml culture

medium are plotted on the left axis (closed circles). The hydrogen concentration was quantified by a gas chromatography, and the number of hydrogen

molecules per ml culture medium was calculated and plotted on the right axis (open circles). Arrows point to the transition between the growth and

stationary phases when the hydrogen concentration accumulated in the gaseous phase was used to calculate the hydrogen production. Note that scales

on the right vertical axes are identical, whereas scales on the left vertical axes and on the horizontal axes are different. Mean and SD are indicated (n = 3

or 4 culture tubes).

https://doi.org/10.1371/journal.pone.0208313.g001
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cumulative number of bacteria from time zero to the transition between the growth and sta-

tionary phases (Method II). Values normalized by Methods I and II had a Pearson’s correlation

coefficient of 0.950 (Table 2 and Fig 2). As hydrogen accumulated during the growth phase

was measured at the transition between the growth and stationary phases, Method II was likely

to be more dependable than Method I. Indeed, hydrogen production by Clostridium leptum
ATCC 29065 was 13.7 times lower with Method II compared to Method I (Table 2 and Fig 2).

This was likely because Clostridium leptum ATCC 29065 grew slower than the other hydro-

gen-producing bacteria.

Blautia coccoides JCM 1395 and Clostridium leptum ATCC 29065 produced larger amounts

of hydrogen gas than the other bacterial strains (Table 2 and Fig 2). Escherichia coliW3110

and Bacteroides fragilis ATCC 25285 also produced hydrogen, but the amounts were less than

those in Blautia coccoides JCM 1395 and Clostridium leptum ATCC 29065. Bifidobacterium
pseudocatenulatum ATCC 27919 and Atopobium parvulum ATCC 33793 constituted the third

group of hydrogen-producing bacteria, and the amounts of hydrogen production were much

less compared to the aforementioned four bacteria. Lactobacillus casei ATCC 334 produced no

Table 2. The amounts of hydrogen production by seven bacterial strains representing major intestinal bacterial groups/genera/species.

Strain # of hydrogen molecules (nmoles)/# of

bacteria (cell)

# of hydrogen molecules (nmoles)/cumulative # of bacteria

(cell) / hour

Blautia coccoides JCM 1395 1.6E-05 ± 1.3E-06 8.1E-06 ± 6.4E-07

C. leptum ATCC 29065 6.2E-06 ± 2.9E-07 4.5E-07 ± 8.6E-08

Escherichia coli W3110 7.8E-07 ± 1.1E-07 2.4E-07 ± 3.3E-08

B. fragilis ATCC 25285 5.5E-07 ± 4.0E-08 8.8E-08 ± 6.1E-09

Bifidobacterium pseudocatenulatum ATCC

27919

8.2E-08 ± 9.7E-08 1.5E-08 ± 1.7E-08

Atopobium parvulum ATCC 33793 2.4E-08 ± 4.4E-09 3.8E-09 ± 8.6E-10

Lactobacillus casei ATCC 334 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00

https://doi.org/10.1371/journal.pone.0208313.t002
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detectable hydrogen. Using the hydrogen production by Method II in each bacterium

(Table 2), we estimated the amount of hydrogen production by intestinal microbiota in 45 PD

patients and 34 healthy cohabitants that we previously analyzed [11]. We multiplied the rate of

hydrogen production (nmoles/bacterial cell/hour) (Table 2) by the count of fecal bacterial

groups/genera/species estimated by qRT-PCR, and summed up the hydrogen production by

seven bacterial strains in each patient or control. The estimated amount of hydrogen produc-

tion in PD was 2.2-fold lower on average than those in controls (Fig 3). We also estimated

intestinal hydrogen production using 16S rRNA amplicon data in Helsinki, Finland (72 PD

patients and 72 controls) [9] and Alabama, USA (197 PD patients and 130 controls) [13]. Simi-

lar to our cohort, hydrogen production was predicted to be low in PD patients in both coun-

tries (S1 Fig).

Discussion

We quantified the amounts of hydrogen production by seven bacterial strains representing

major intestinal bacterial groups/genera/species. There are two possible drawbacks in our

study. First, each culture condition was optimized for a specific strain, and was different from

the intestinal environment. Simulation of intestinal environment [32, 33] would have yielded

more accurate data. Second, we analyzed a single representative strain in each bacterial

groups/genera/species. Multiple strains may exist in a single individual, and the dominant

strain may be different from individual to individual. Similarly, as the number of genera in

intestinal microbiota in human was estimated to be 89 [34], and as not all bacterial species can

be cultured in vitro, quantification of hydrogen production by all observed strains would be

technically unattainable. Despite these limitations, the seven bacterial strains and their taxo-

nomic relatives constituted more than 70% of total fecal bacteria [31].

Among the seven representative bacteria that we analyzed for hydrogen production, three

bacterial groups/genera/species (Blautia coccoides group, Clostridium leptum subgroup, and

Bacteroides fragilis group) were decreased, whereas Lactobacillus was increased in PD [11].

The remaining three bacterial groups/genera/species (Enterobacteriaceae, Bifidobacterium,

and Atopobium cluster) were not changed in PD. We found that Blautia coccoides JCM 1395
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Fig 3. Estimation of the amount of hydrogen production by intestinal microbiota in 45 PD patients and 34

healthy cohabitants that we previously analyzed [11]. The amount of hydrogen production per g stool per hour was

calculated using the amounts of hydrogen production by seven bacterial strains measured in this study (Method II).

(A) Geometric distribution plot. Bars represent mean and SD. P value was calculated with Student’s t-test. (B)

Cumulative distribution function (CDF) plot.
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in Blautia coccoides group and Clostridium leptum ATCC 29065 in Clostridium leptum sub-

group produced larger amounts of hydrogen gas than the other species. In addition, Bacter-
oides fragilis ATCC 25285 in Bacteroides fragilis group constituted the second group of

hydrogen production. Thus, the three bacterial strains in three bacterial groups/genera/species

that were decreased in PD, produced large amounts of hydrogen. In contrast, Lactobacillus
casei ATCC 334 in Lactobacillus, which was increased in PD, did not produce hydrogen. Lack

of hydrogen production in Lactobacillus casei has been previously reported [35]. Lactobacillus
casei produces two lactate molecules from a single glucose molecule (homo lactic acid fermen-

tation) under an anaerobic condition, which does not produce hydrogen.

Hydrogen is either a substrate or a product of hydrogenase. Production of hydrogen is

mediated by reduction of protons [36]. The functions of hydrogenases are diversified, and

those functions can be predicted by their amino acid sequences [37]. Based on the manual

annotation, Blautia coccoides JCM 1395, Clostridium leptum ATCC 29065, and Bacteroides fra-
gilis ATCC 25285 that we cultured have at least one [FeFe]-hydrogenase gene. One of the

hydrogenase genes in B. coccoides JCM 1395 and C. leptum ATCC 29065 encodes a putative

ferredoxin- and NAD-dependent [FeFe]-hydrogenase that is reversibly bifurcates protons

from hydrogen to ferredoxin and NAD [38]. In addition, C. leptumATCC 29065 and B. fragilis
ATCC 25285 have at least one putative ferredoxin oxidizing [FeFe]-hydrogenase gene. Escheri-
chia coliW3110 has putative [NiFe]-hydrogenase coding genes, at least one of which is likely

to encode formate hydrogenlyase to metabolize formate and produce hydrogen [39]. Based on

the genome information, these four strains have a genetic potential to produce hydrogen. On

the other hand, although a very small amount of hydrogen production was observed in Bifido-
bacterium pseudocatenulatum ATCC 27919 and Atopobium parvulum ATCC 33793, they do

not have hydrogenase genes in the genome, implying the presence of hydrogenase-indepen-

dent hydrogen production.

According to the phylogenetic distribution of hydrogenase genes (S3 Table), all but one gut

strains in close proximity to B. coccoides JCM 1395, C. leptum ATCC 29065, and B. fragilis
ATCC 25285 have hydrogenase genes. The presence of [FeFe]-hydrogenase genes and [NiFe]-

hydrogenase genes in prokaryotes genomes are relatively rare (approximately 9.1% and 26.7%,

respectively [36]), suggesting that hydrogen metabolism is important for these taxa to occupy

their niches in human gut. On the other hand, 13 of 21 taxonomic relatives of E. coliW3110

carried hydrogenases, whereas 8 of them did not, suggesting that the human gut inhabitants of

Enterobacteriaceae have variable genetic potential of hydrogen production. Although E. coli
W3110 was the third most hydrogen-producing strain, the amount of hydrogen produced by

this strain was one magnitude less than those of B. coccoides JCM 1395 and C. leptum ATCC

29065. Thus, strain-to-strain variability of hydrogen production in Enterobacteriaceae is

unlikely to have a major effect on our prediction of intestinal hydrogen production.

A large proportion of hydrogen produced by reduction of ferredoxin, formate and NAD(P)

H in hydrogenogens is immediately reoxidized rarely within the same hydrogenogens and

mostly by neighboring hydrogenotrophs (acetogens, methanogens, fumarate reducers, and

sulfate reducers), which would yield no detectable hydrogen [27, 40]. Thus, the presence of

hydrogenase genes does not directly indicate the production of colonic hydrogen pool.

According to the healthy Japanese gut metagenome data, almost all of the genes related to

methanogenesis are underrepresented compared to the metagenome data in other countries

[41]. On the other hand, the genes related to the acetogenesis are overrepresented, and the

genes related to the dissimilatory sulfate reduction are similar compared to the metagenome

data in other countries [41]. As no shotgun metagenome data are currently available for gut

microbiome in Japanese PD patients, we have to perform metagenome-based comparison of

the abundance of hydrogenase genes in the future.
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We previously reported breath hydrogen concentrations after taking 6 g lactulose in 28

healthy controls and 37 PD patients [42]. A synthetic disaccharide, lactulose, is metabolized by

intestinal bacteria and not by human cells. Oral intake of lactulose produces hydrogen as a

byproduct [43]. The hydrogen concentrations gradually increased in both controls and PD

patients. However, the hydrogen concentrations at 180 min in controls was 1.5 times higher

than those in PD, which coincided with our simulation that the amount of hydrogen produced

by intestinal microbiota in controls was 1.69 times higher than those in PD (Fig 3). These

observations support the notion that hydrogen-producing bacteria are less abundant in PD

compared to controls.

Oral administration of lactulose improves chronic portal-systemic encephalopathy [44],

atopic dermatitis [45], hyperammonemia [46], and chronic constipation [47]. Although the

pharmacological mechanisms of lactulose on human diseases remain to be elucidated, lactu-

lose may exert its effect by increasing hydrogen production by intestinal microbiota [48].

Although we observed no effect of lactulose on 6-OHDA-induced hemi-parkinsonism in

rats [42], lactulose may be able to compensate for decreased hydrogen production in PD

patients.

Molecular hydrogen reduces hydroxyl radicals in vitro [49]. However, hydrogen is unlikely

to scavenge hydroxyl radicals in our cells, because the reaction rate constant between hydrogen

and hydroxyl radical (4.2 x 107 L•mol-1•s-1) and the concentration of hydrogen in our bodies

(0.005–0.020 mM) [42] are two to three orders of magnitude lower than those of physiological

biomolecules (e.g. amino acids [50], glucose [51], and chloride [52]) that can reduce hydroxyl

radicals with the reaction rate constants of 2–10 x 109 L•mol-1•s-1 and at concentrations of

5–60 mM. Another possible mechanism is that hydrogen induces hormetic responses. First,

hydrogen induces mitochondrial unfolded protein response in C. elegans [53]. Second, multi-

ple reports point to the notion that hydrogen activates the Nrf2 signaling pathway [54–62]. In

addition, the effect of hydrogen is not observed in Nrf2-knockout mice [55]. Third, we recently

reported by meta-analysis of expression arrays that hydrogen induces the heat shock response

[63]. The hormetic mechanisms are also inferred from increased reaction oxygen species

(ROS) by hydrogen in human [64], rodents [65, 66], and cultured cells [62]. Further studies

are required to prove the underlying mechanisms of the effects of hydrogen on PD in mouse

[20], rat [19], human [21], and on other diseases [48, 67].
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lated with 16S rRNA amplicon-seq [9, 13]. Geometric distributions normalized to the mean of

controls are plotted with mean and SD. P value was calculated with Student’s t-test.
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