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Abstract
Background: Discovering that drug entities already approved for one disease are effective
treatments for other distinct diseases can be highly beneficial and cost effective. To do this
predictively, our conjecture is that a semantic infrastructure linking mechanistic relationships
between pharmacologic entities and multidimensional knowledge of biological systems and disease
processes will be highly enabling.

Results: To develop a knowledge framework capable of modeling and interconnecting drug
actions and disease mechanisms across diverse biological systems contexts, we designed a Disease-
Drug Correlation Ontology (DDCO), formalized in OWL, that integrates multiple ontologies,
controlled vocabularies, and data schemas and interlinks these with diverse datasets extracted from
pharmacological and biological domains. Using the complex disease Systemic Lupus Erythematosus
(SLE) as an example, a high-dimensional pharmacome-diseasome graph network was generated as
RDF XML, and subjected to graph-theoretic proximity and connectivity analytic approaches to rank
drugs versus the compendium of SLE-associated genes, pathways, and clinical features. Tamoxifen,
a current candidate therapeutic for SLE, was the highest ranked drug.

Conclusion: This early stage demonstration highlights critical directions to follow that will enable
translational pharmacotherapeutic research. The uniform application of Semantic Web
methodology to problems in data integration, knowledge representation, and analysis provides an
efficient and potentially powerful means to allow mining of drug action and disease mechanism
relationships. Further improvements in semantic representation of mechanistic relationships will
provide a fertile basis for accelerated drug repositioning, reasoning, and discovery across the
spectrum of human disease.
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Background
Drug repositioning – the use of established drugs for new
indications – represents a promising avenue for the devel-
opment of therapeutics based on its relatively low cost
and ready availability of extensive data and knowledge
from prior research and development efforts [1]. Despite
impressive successes shown by repositioned drugs, most
of these are the result of "serendipity", i.e. based on unex-
pected findings made during or after late phases of clinical
study. Improved ability to identify likely of these candi-
date new disease indications is attractive for the potential
to expedite drug development process and to minimize
costly clinical trials. One of the reasons that linking drug
candidates and potential new applications is difficult is
that mechanisms of drug action are at best only partly
understood, are subject to context and individual specific
variation, and importantly, tend to be poorly represented
with current knowledge modeling and data representa-
tion methodologies. In biomedical literature, underlying
mechanisms associated with drug action are usually bur-
ied within drug- and disease-associated narratives. Thus,
the establishment of an informatics model using in silico
approaches that could improve data capture, integration,
and interpretation pertinent for the prediction of poten-
tial new therapeutic indications for drugs based on inte-
grated biomedical knowledge around drug and disease
mechanisms is highly desirable. The requirements for
such an approach are to generate a comprehensive knowl-
edge base that must both broadly and deeply represent
factual knowledge and correlated phenomena from across
pharmacological and biological domains. Doing this
would, ideally, allow researchers, and subsequently, care
providers, to distill insightful hypotheses and derive the
best decisions. Computational approaches exist to allow
the integration of heterogeneous data, such as by schema
merging, federating databases, or by unifying data mod-
els. Notably, while great efforts have been made in con-
necting the biological and chemical domains, including
PharmGKB [2], KEGG [3], and DrugBank [4], these data-
bases were not designed to enable mechanism-based rep-
resentation of relationships between therapeutic drugs
and phenotypic features associated with health and dis-
ease. While clearly a fuzzy area, the lack of phenotypic fea-
ture relationships impedes our ability to elucidate and
leverage embedded mechanistic associations. Recently,
Lamb et al group designed a promising "connectivity map"
approach which associates small molecules, genes, and
diseases through genomics profiling connections [5]. This
approach represents a significant advancement in linking
drugs to underlying diseases. However, since these func-
tional connections are purely based on one-dimensional
data (i.e. gene expression profiling as a sole surrogate for
phenotype, with limited diversity of tested cell lines and
lack biological contexts), the approach is likely to require

much greater depth of knowledge dimensionality and
data connectivity.

Advancements in the development of Semantic Web (SW)
[6] standards and technologies, including Web Ontology
Language (OWL) http://www.w3.org/2004/owl and
Resource Description Framework (RDF) http://
www.w3.org/rdf, as well as progress in corresponding
database and knowledge representation technologies pro-
vide promising platforms for comprehensively integrat-
ing, analyzing, and visualizing heterogeneous high
dimensional data using semantics and complexity of
knowledge interoperability. The information layer of
OWL defines domain knowledge using structured vocab-
ulary and provides a mechanism for formalizing compo-
nents for an ontology, such as classes, instances, and their
relationships, therefore provides a computationally proc-
essable conceptual representation of our understanding of
the domain knowledge. Based on the semantic definition
in OWL, information resources can be denoted in RDF, a
language represented in a simple statement form of triples
(<subject verb object>). A set of RDF statements can be rep-
resented in directed acyclic graph-like data network. We
argue that by associating comprehensive biomedical
information and prior knowledge around pharmacologi-
cal entities (i.e. biological, chemical, and clinical proc-
esses) systematically and semantically using Semantic
Web principles and technologies can facilitate knowledge
discovery such as novel indications for known or novel
drugs. To achieve this, a knowledge framework with ade-
quate formalism that encapsulates broad and interdisci-
plinary range of concepts across pharmacological,
biological, and clinical domains is needed. Conceivably,
any single domain-specific ontology will not serve this
purpose. The existing multi-domain ontologies or termi-
nologies, such as UMLS [7], though providing decent
framework for federating some biomedical databases, do
not have sufficient coverage for the pharmacological-cen-
tric drug development area.

In this work, we devised a knowledge framework, Disease-
Drug Correlation Ontology (DDCO), using OWL represen-
tation formalism. The DDCO is a result of manual cura-
tion and integration of relevant components from
multiple existing ontologies, vocabularies, and database
schemas. We used the constructed DDCO framework to
support the integrated data representation needs of a set
of prior knowledge sources, including data from Drug-
Bank, EntrezGene, GO, OMIM, KEGG, BioCarta, Reac-
tome, UMLS, and GEO. The data was semantically
integrated into an RDF network as a pharmacome-diseas-
ome knowledge base containing instance data repre-
sented as a web-like structure. Thereafter, we demonstrate
how this integrated Semantic Web infrastructure supports
knowledge mining and inference by presenting an appli-
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cation scenario that requires finding implicit associations
between a compendium of drugs and the disease Systemic
Lupus Erythematosus (SLE). Our goal in constructing and
analyzing such a knowledge base is to learn essential ele-
ments that would provide critical power to the entire spec-
trum of drug R&D applications: to support new
hypothesis generation, particularly for drug repositioning;
as well as for novel target identification by establishing
mechanism-based connectivity of drugs, diseases, genes,
pathways, and continuously emerging biological systems
knowledge.

Results
Construction of a unified disease-drug correlation 
ontology (DDCO)
Our goal is to devise a drug- and disease-centric knowl-
edge framework that could serve both data integration
and knowledge exploration and exploitation needs. The
ontology was designed with high-level of granularity and
aims to reuse knowledge components whenever possible.
Therefore, the first step for our ontology development
effort was to construct the upper level ontology that
included the basic hierarchical relations required for con-
necting pharmacological, clinical, and biological
domains. As much as possible we used UMLS Semantic
Network elements [8] to construct a scaffold for DDCO.
Although UMLS Semantic Network contain a set of broad
semantic types and permissible relationships among these
types, with respect to disease mechanism and therapeutic
agent modeling, the UMLS Semantic Network can some-
times seem to have knowledge "gaps" and difficult to fol-
low organization [9]. For example, pertaining to
therapeutic agents, the semantic type of
"Pharmacologic_Substance" has only a single child term
(e.g. "Antibiotic") whereas "Molecular Mechanisms of Phar-
macologic Action", "Pharmacologic Actions", and "Chemical
Actions and Uses", are concept instances that are not repre-
sented as semantic types. They belong to a semantic type
called "Natural Phenomenon or Process" which is not how-
ever semantically related to either the semantic type of
"Clinical_Drug" or "Pharmacologic_Substance". Thus, at
least one of the challenges in linking these terms in an
ontology to enable reasoning is to provide connector rela-
tionships that facilitates domain representation, in this
case principles of drug action. In this work, we have
designed three key subdomains in the DDCO and created
relevant knowledge components in each subdomain: 1)
Pharmacological subdomain: focusing on defining con-
cepts around drug and compound with classes such as
Mechanism_of_Action, Chemical_Substance,
Manufactured_Object, Therapeutic_Category, Structure_
Classification, Pharmacologic_Property, etc. 2) Phenomical
subdomain: focusing on defining concepts and relations
for disease and its associated clinical features and includ-
ing classes such as Disease_or_Syndrome, Clinical_Property,

Clinical_Finding, Phenotype_Trait, Diagnosis, Etiology, etc. 3)
Biological subdomain: focusing on defining biological
entities, events, and mechanisms, including key compo-
nents such as BioEntity, Molecular_Basis, BioProcess,
Molecular_Interaction, and BioEvent, etc. Among these
domains, components from biological subdomain, such
as pathway, gene, molecular phenotype and function,
serve as key bridge for connecting components from other
two subdomains (see Figure 1).

Next, we examined existing resources and selected bio-
medical knowledge components required to formally rep-
resent concepts in the DDCO architecture. The knowledge
resources used for DDCO construction included the fol-
lowing major ontologies, vocabularies, and terminolo-
gies:

• MeSH (medical subject headings) [10]: the National
Library of Medicine's controlled vocabulary thesaurus,
consisting of terms and headings in biomedical fields

• NCI Thesaurus [11]: an ontology-like vocabulary that
has broad coverage in cancer-centric disease areas

• ATC System [12]: The Anatomical Therapeutic Chemical
Classification is a WHO (world health organization) rec-
ommended classification system for internationally appli-
cable methods for drug utilization research

• KEGG Drug Category: A chemical structure based infor-
mation resource for approved therapeutics with classifica-
tions for drugs

• Common Terminology Criteria for Adverse Event
(CTCAE) [13]: A descriptive terminology and grade scales
adopted by NCI for drug adverse event

• Gene Ontology [14]: Controlled vocabulary published
by Gene Ontology (GO) Consortium to describe gene and
gene product attributes

• SNOMED CT [15]: clinical health care terminology and
infrastructure

Some of these ontologies or vocabularies are independent
and ready for direct integration (such as Gene Ontology),
yet many resources contain overlapping and intertwining
classes. For example, MeSH, KEGG Drug Category, and
NCI Thesaurus all contain hierarchical and categorized
terminologies which may represent Drug class. The
"Chemicals and Drugs" in MeSH covers a mixture of infor-
mation in a loosely-structured manner for drugs ranging
from chemical structure, pharmaceutical preparation, and
pharmacological actions. The "Pharmacological Substance"
in NCI Thesaurus, however, is focused on therapeutic clas-
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sifications of cancer drugs. KEGG Drug Category is also
focused on therapeutic classification but is better organ-
ized to cover both application- and target-driven catego-
ries which fit general class of drug concepts including
non-cancer drugs. To maximize the value of these relevant
components, we chose to extract the
"Pharmacological_Action" from MeSH and mapped it as a
subclass of Drug class in the DDCO. By using ontology-
merging and aligning techniques (see Methods), we pop-
ulated "Therapeutic_Category" using knowledge compo-
nents from both NCI Thesaurus and KEGG Drug
Category. The target-based and structural-based categoriza-
tions from KEGG and NCI Thesaurus were also extracted
and created as subclasses to represent Drug entity from
respective aspect. In addition, we also integrated the ATC
classification, a broadly accepted system for annotating
approved drugs with classifications at main anatomy
group, pharmacological property, chemical, and sub-
stance levels. To establish the relations between different
drug classifications in the DDCO and adopted ATC sys-
tem, explicit OWL class definitions were created to for-
mally record the equivalence (or difference) among these
classes.

In order to comprehensively represent key entities and
relations in DDCO, we defined classes that attempted to
fill in knowledge gaps (e.g. areas lacking high quality knowl-
edge representation or missing standards) that could serve
data integration needs. For example, we created hierarchi-
cal classes of Pharmacokinetics with descriptions of both
ADME and toxicity features. We also generated classes to
unify drug administration properties, such as preparation,
drug type, and dosing and regimen (i.e. administration
route, dosing interval, etc). Figure 2 presents an example
of top-level view of Drug class as well as the key entities
associated with it by defined relations. While efforts to
expand and refine the conceptualization are continuing,
the current DDCO contains 2046 classes (excluding GO
which was imported directly), with average sibling
number of 17 (maximum 35 and minimum 1) per class.

One key to realize the inference power of semantic infra-
structure is to have accurate and meticulous definitions of
properties as well as proper restrictions (e.g. domain and
range definition). We have thoroughly examined the class
relationships and defined detailed properties for the
classes required for our project purpose. The DDCO con-

Disease-Drug Correlation Ontology (DDCO) modelFigure 1
Disease-Drug Correlation Ontology (DDCO) model. This figure shows the schematic view of DDCO model making 
connections between drug and disease. The oval text denotes the major ontology or terminology sources used in constructing 
DDCO.
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tains total of 221 properties, with 99 properties domain-
specified, 69 range-specified and 36 inverse-specified.
Among these, 106 properties were mapped to the UMLS
semantic network relations, 40 mapped to SNOMED
attributes, and 75 were custom-defined properties for con-
straint specification. In addition, we developed 67 restric-
tions related to data to be integrated in the semantic
knowledge base, including 7 existential, 36 universal, and
25 cardinality constraints. Figure 3 illustrates the semantic
model for the Clinical_Drug entity (i.e. clinically approved
drug) with our curation of concept restrictions including
necessary and sufficient restrictions. OWL-DL was used to
define each relevant class and their associations. As shown
in Figure 3, the OWL syntax expresses that the class of
Clinical_Drug is a subclass of Manufactured_Object. As an
instance of the Clinical_Drug class, a drug may treat Dis-
eases or Syndromes. It can be categorized into Therapeutic
Category which includes custom defined classification or
ATC_Classification system. In addition, one of the obliga-
tory criteria to define a Clinical_Drug entity is that it needs
to have at least one active ingredient. With the robust
expression power of OWL, the complex relationships for
such ontological descriptions were defined in an explicit
and self-descriptive manner.

An integrated pharmacome-diseasome RDF network
A key benefit of the Semantic Web is the ability to inte-
grate relevant data from different origins and in incompat-
ible formats. We have used the DDCO as the knowledge
framework to integrate a diverse collection of data sources
across multiple domains to create an integrated pharma-
come- and diseasome- network.

Drug-associated information was compiled from Drug-
Bank, a database containing drug data with comprehen-
sive target information. The dataset contains 4,763 drug
entries. We parsed the information of over 1,400 FDA-
approved drugs for integration in our knowledge base.
Besides the information of pharmacological entity, we
parsed the drug annotation and mapped the drug and
drug target to associated pathways, which would allow for
semantic integration with other data sources such as
KEGG pathway (via mapped drug ID) and NCBI Entrez-
Gene (via mapped gene ID). In addition, we have
extracted the mapping associations between FDA-
approved drugs and their indications using data from
UMLS metathesaurus (see Methods). These associations,
along with other entities, such as gene, pathway, drug, dis-
ease, and other molecular connectivity, were used as key
linkage points to connect pharmacome and diseasome

Conceptual frames and domain/range relationships in DDCOFigure 2
Conceptual frames and domain/range relationships in DDCO. This figure shows the top-level abstraction view of the 
major classes relevant to drug and disease classes as well as their associations defined by restrictions using property attributes.
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subnetworks. To generate the pharmacome network, RDF
models were created in compliance with the logic and
semantic definitions in the DDCO and the pharmacome
data instances extracted were converted into RDF triples
with designated unique name spaces. Figure 4 illustrates
the relations using a schematic view of the RDF data
model referenced via links to the DDCO OWL ontology.
The converted RDF triples were further converted into N-
Triple format using Oracle RDF loaders before loading to
the Oracle 10g release 2 RDF store [16].

The diseasome network was constructed using Online
Mendelian Inheritance in Man (OMIM) [17] records. Uni-
form Resource Identifiers (URI) derived from OMIM ID
and the corresponding gene associations were used for
network integration. In addition, we parsed the annota-
tion of human genes and interactome data including an
aggregation of external data sources, such as BIND [18],
BioGRID [19] and HPRD [20] from NCBI EntrezGene and
compiled gene-pathway annotations from KEGG, Bio-

Carta [21], BioCyc [22] and Reactome [23] databases. The
total data set contains 15,068 human genes annotated
with 7,124 unique GO terms, and 14,899 gene-pathway
associations. URIs derived from NIH authoritative identi-
fiers, such as EntrezGene ID, OMIM ID, and UMLS CUI,
were created for semantic integration. Similarly to the
pharmacome RDF subnetwork, DDCO-compliant RDF
models were created for each individual knowledge base
(e.g. Gene Ontology Association, OMIM, Pathway) and
RDF triples were generated using the data extracted from
these knowledge sources. With the designated unique
name space, the entities sharing the uniform resource
identifier were collapsed and integrated when loading
into the triple store.

Topological properties of the RDF network
To further understand the topological features of our inte-
grated RDF network, we performed degree centrality anal-
ysis on the drug-centric and gene-interaction
subnetworks. Degree centrality is a network centrality

Partial view of Clinical_Drug class modeling in DDCOFigure 3
Partial view of Clinical_Drug class modeling in DDCO. Left panel: conceptual view of definition and restriction for the 
class of "Clinical_Drug"; Right panel: syntax expression of modeling in OWL
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measure that takes account of the degree of a node, which
is the number of nodes that a given node is connected to
[24]. To construct the drug-centric subnetworks, we issued
RDF queries to retrieve and construct RDF graph with
statements associated by "has_target" and "has_indication"
properties. Similarly, we constructed the gene-interaction
RDF graph for all human genes associated with their inter-
acting genes in the integrated RDF store. The resulting
interactome network consists of over 44,000 associations
for 21,143 human genes. By refining pattern matching cri-
teria in the RDF query, we further extracted and con-
structed two gene-interaction subnetworks for disease
genes (consisting of 1,190 human disease genes) and drug
target genes (consisting of 749 drug target genes in the cur-
rent knowledge base).

We observed a general scale-free degree distribution in
both drug-centric and gene-interaction subnetworks. In
scale-free network, the degree distribution follows power
laws, denoted as P(k) ∞ K-r, with P(k) denotes the degree
distribution of nodes with degree k. Specifically, the
degree distributions of the drug-target and drug-indica-
tion subnetworks are power law with exponents of 1.32 ±

0.05 and 1.20 ± 0.03, respectively. The interactome sub-
networks for disease genes and drug target genes have sim-
ilar exponent values of 2.64 ± 0.10 and 2.76 ± 0.12,
respectively. These values are much greater than the expo-
nent for the overall human interactome network (1.23 ±
0.09) (see Figure 5), suggesting a stronger preferential
attachment model for both drug target genes and disease
genes compared with average human genes. That is, a
stronger "hub" effect may exist in drug target genes and
disease genes regards to their interactions with other
genes.

A motivating scenario from Tamoxifen to SLE
Using a real world use case, we investigated whether we
can leverage on our semantically integrated comprehen-
sive knowledge base to find complex associations sup-
porting drug repositioning for Systemic Lupus
Erythematosus (SLE), a chronic immuno-inflammatory
disease that exhibits strong gender bias and the tendency
to affect multiple organ systems including heart, skin,
joints, kidney and nervous systems. At the current stage,
there is no cure for SLE and treatments are largely limited
to the relief of symptoms and limited ability to protect

Example of RDF data model referenced via link to DDCO in the semantic knowledge baseFigure 4
Example of RDF data model referenced via link to DDCO in the semantic knowledge base.
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organs from inflammation or autoimmune activities in
the body by using drugs such as nonsteroidal anti-inflam-
matory agents or corticosteroids.

Ranking drug candidates for SLE using centrality analysis
We issued RDF query to constructed SLE-centric RDF sub-
network which consisted of two level of information: 1)
the primary genes associated with SLE as well as all the
associated annotations for these primary genes including
pathway, gene ontology association, interacting entity,
and drug targeting on these genes; 2) the secondary genes
interacting with or participating in the sharing pathway
and biological process with above primary genes as well as
associated annotations (GO, pathway, interacting gene,
disease, drug) for these secondary genes. With the seman-
tic representation of multi-source biomedical data in our
knowledge base, the entities are encoded according to S-
V-O (subject-verb-object) triples with Subjects and Objects
as nodes (e.g., genes, pathways, diseases, symptoms) and
lines labeled with Verbs. This readily allowed us to per-
form systemic network analyses using centrality algo-

rithms and graph-based approaches. By applying
betweenness and closeness centrality ranking metrics on
the resultant subnetwork, we found Tamoxifen was con-
sistently ranked 1st using both ranking approaches (See
Additional file 1: Supplement Table), suggesting its candi-
dacy as a modifier and attenuator of SLE disease processes.
Tamoxifen, one of the selective estrogen receptor modula-
tors with tissue-specific activities, is an FDA approved-
drug for breast cancer treatment and prevention. It acts as
both anti-estrogen (i.e. in the mammary tissue) and estro-
gen-stimulating effects (i.e. in cholesterol metabolism,
bone density, and cell proliferation in the endometrium).
By manually searching for evidence of this identified asso-
ciation, studies demonstrating the beneficial effects of
Tamoxifen on SLE have been observed in animal studies
[25], excluded from our data sets. Preliminary clinical
studies have also demonstrated that there are subsets of
lupus patients with an estrogen-exacerbated disease and
one proposed hypothesis is that selective estrogen recep-
tor modulators such as Tamoxifen may have therapeutic
potential in SLE patient management [26,27].

Scale-Free topological properties of gene interactome RDF subnetworksFigure 5
Scale-free topological properties of gene interactome RDF subnetworks. Log-Log plot of degree distribution for 
subgraphs of: a) Drug target genes (linear fit: LogP(K) = 12.89 - 2.64* LogK(degree)). b) Human disease genes (linear fit: LogP(K) = 
13.47 - 2.76*LogK(degree)). c) All human genes (linear fit: LogP(K) = 9.98 - 1.23* LogK(degree)).
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Identifying biological entities of importance underlying SLE-
Tamoxifen association
Undoubtedly, solid validation of specific drug-disease
associations predicted using in silico approach would
await results from extensive animal model testing and
human clinical studies. However, by extending the
semantic mining and ranking techniques, possible mech-
anisms with supporting evidences can be inferred to facil-
itate hypothesis generation and guide further study
design. While the pathogenesis of SLE is very complex and
remains unclear, we attempted to test whether our inte-
grated RDF semantic knowledge base would be able to
uncover the implicit links between Tamoxifen and SLE.
First, we issued RDF queries to retrieve Tamoxifen and SLE
RDF subgraph respectively:

• For Tamoxifen: Retrieve all genes and their annotation
(interacting gene, pathway, and gene ontology) that are associ-
ated with Tamoxifen by acting as its drug target(s) or indica-
tion(s)

• For SLE: Retrieve disease genes, or genes interacting with or
sharing pathways with SLE disease gene as well as their anno-
tation

Each query set returned a collection of variable bindings
matching to the query parameters and each unique result
produced a graph formed from the triples matching the
criteria. The components of the resultant RDF subgraph

are summarized in Table 1 and the actual graph is shown
in Figure 6a. As expected, since the connection between
"Tamoxifen" and "SLE" is non-trivial, no association was
detected in each individual RDF subgraph. However, by
combining the extracted subgraphs and applying infer-
ence rules using subsumption relationships as described
in Methods section, we were able to extract the implicit
connections between the two entities of interest. Figure 6b
shows the embedded relations associating Tamoxifen and
SLE, which consists of 45 entity nodes with the minimal
geodesics of 6 traversing the two entities extracted from
the combined SLE-Tamoxifen RDF graph. For example,
one of the associations with shortest path between
Tamoxifen and SLE is via a common biological process of
apoptosis (GO_0006915) and T cell receptor signaling
pathway (KEGG: hsa04660) that are traversed by two
genes: PDCD1 (Gene_5133, programmed cell death 1) that
is associated with SLE via property of "associates_with",
and gene AKT1 (Gene_207, v-akt murine thymoma viral
oncogene homolog 1) that is found to be associated with

Table 1: Number of entities and associations for the resultant 
RDF subgraphs derived from RDF queries for SLE, Tamoxifen, 
and Combined

RDF Graph SLE Tamoxifen Combined

Entities 114 695 768
Associations 121 947 1050

Graphic view of Tamoxifen-SLE RDF triple networkFigure 6
Graphic view of Tamoxifen-SLE RDF triple network. (a): Combined RDF graph of all biological entities (e.g. genes and 
interacting genes, pathways, diseases, and gene ontology terms and inferred annotations) associated with Tamoxifen or SLE. 
(b): All shortest paths connecting "Tamoxifen" and "SLE". The shortest paths between entities of Tamoxifen and SLE consist of 
45 nodes, with minimal distance of 6 measured in geodesic distance. The entities of "Tamoxifen" and "SLE" are highlighted with 
block arrows.
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known indication of Tamoxifen (Figure 7a). Notably,
gene PDCD1 is annotated with GO term "apoptosis", yet
gene AKT1 is not explicitly annotated with the same GO
term. Instead, AKT1 has GO annotation of "activation of
pro-apoptotic gene products", which is a child and grand-
child term of the biological process "apoptosis" (Figure
7b). With transitive inference, the association between
PDCD1 and AKT1 via biological process was able to be
identified and returned to relate Tamoxifen to SLE.

As described above, since RDF triples are naturally repre-
sented in graph, we sought to use applied graph centrality
analysis algorithm and approach [28] to identify the key
biological entities within the extracted RDF graphs. As a
result, two critical genes were identified with highest rank-
ing impact in both closeness and betweenness measures
of the Tamoxifen-SLE RDF graph: ESR1 (estrogen receptor
1) and AR (androgen receptor). In fact, accumulating evi-
dence from prior studies has suggested a functional cross-
talk between immune and endocrine mechanisms in
modulating immunity responses [29,30]. Recent studies
have reported that estrogen intervention can differentially
affect immune cell development via ER (estrogen recep-
tor) signaling under autoimmune or inflammation envi-
ronment such as inhibits cell survival [31,32]. Rider et al
has shown that estrogen level alteration in SLE patients
appears to affect the development and severity of SLE
[33,34]. ESR1, a primary receptor for estrogen, is also a

well-understood primary target for Tamoxifen. Tamoxifen
binds to ESR1 and causes conformational changes in the
receptor which may induce context specific agonist or
antagonist activity and thus has the potential to modify
estrogen signaling effects on immunity-related disease
progression. Contrary to estrogen, androgen deficiency
has been shown to be associated with the development of
SLE yet the mechanism remains unclear [35-37]. Based on
literature mining, both genes identified as well as their
dependent genes are found to be differentially expressed
in SLE patients and may thus play a role that can alter SLE
pathogenesis, disease course, and offer opportunities for
improved patient management and therapeutic
approaches [26,34,38-40].

Discussion
Next-generation decision support to optimize the yield of
discoveries and benefits from biomedical research, trans-
lational medicine, and clinical care will critically depend
on our intelligent use of assembled information from
multiple sources of facts, knowledge and data. An out-
standing opportunity to refine approaches to this next-
generation challenge for computational medicine is repre-
sented by the search to find drug repositioning opportuni-
ties and to develop new understanding of mechanisms
that underlie disease. In this study, we have created a com-
prehensive pharmacome-diseasome infrastructure using
Semantic Web-based technology to integrate multiple

Example of one shortest path associating Tamoxifen and SLE exploited from SLE-Tamoxifen networkFigure 7
Example of one shortest path associating Tamoxifen and SLE exploited from SLE-Tamoxifen network. (a): An 
association between drug Tamoxifen and disease SLE derived from using DDCO-guided RDF query and inferencing. Arrowed 
line denotes the connection path between data instances. Red dotted line shows the transitive association inferred from using 
rulebases in the model. (b): Schematic view showing the graphic relations between GO terms: GO_0006915 (annotation for 
Gene_5133) and GO_0000008633 (annotation for Gene_207). Using the transitive inference rules created in the rulebases, 
the association between Gene_5133 and Gene_207 is inferred.
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knowledge sources. By using a specific scenario involved
in drug development, we have provided anecdotal evi-
dence for the benefit of such semantic knowledge integra-
tion and representation in identifying and ranking drug
candidates associated with SLE based on their centrality in
the RDF graph. There have been multiple prior efforts to
build semantically integrated databases, such as YeastHub
[41], FungalWeb [42], and the RDF databases constructed
by Sahoo et al [43,44] and Stephen et al [45]. Our
approach differs from these previous efforts in several
aspects. First, we have created an integrative RDF data net-
work extending from high dimensional biological-centric
data, which most prior work was focused on, to an inte-
grative representation of the pharmacological domain by
integrating all FDA-approved drugs and their relation-
ships to the broad spectrum of human disease and their
associated clinical features. The integrated data spans bio-
logical, genomic, phenotypic, and pharmacologic topolo-
gies. Importantly, the resulting RDF is fully anchored by
an ontology, the Disease-Drug Correlation Ontology
(DDCO), a first draft of a formal and systemic OWL
ontology framework we constructed to enable inference
and accommodate most current data sources in bioinfor-
matics and chemoinformatics. Second, we used graph-
theoretic analyses to examine the topological and rela-
tionship properties of drug-disease associations to rank
candidate drugs in subgraphs derived from RDF queries.
Following this approach, at this stage of our analysis,
appears to allow inference of the key entities and proc-
esses associated with the resulting semantic network. Even
at this early stage, we believe this type of system has the
potential to facilitate better understanding of disease
mechanism the mechanistic connections for the identi-
fied association. To our knowledge, this is the first effort
in applying network centrality on the semantically inte-
grated pharmacome-diseasome knowledge base to predict
drug-disease associations on the RDF network.

Our hypothesis is that the drugs or genes that are central
in the disease-specific RDF subnetwork are likely to be
related to the disease. Our results provide supporting evi-
dence for the hypothesis. As shown in the result, ESR1 has
been identified as one of the key genes in the SLE-
Tamoxifen data network based on the centrality measure-
ments. Estrogen receptor signaling has been shown to reg-
ulate differentiation and maturation of immunity cells
and impact the immunity modulation by cross talking
other pathways [46]. At molecular level, estrogen is found
to activate lupus T cells in vitro and estrogen level is ele-
vated during peak time of SLE onset in human studies
[33,34]. Our finding has strengthened the hypothesis that
estrogen receptor signaling could play a role in autoim-
mune disease such as SLE. By modulating this pathway
using SERM molecules may present novel opportunities
for prevention and treatment for SLE. Notably, a very

recent clinical study has evaluated Fulvestrant (Faslodex,
AstraZeneca Pharmaceutical), also a SERM drug, in ther-
apy of women with SLE and the results demonstrate sig-
nificant improvement of SLE disease activity and
reduction of T cell activation marker [47]. Being a non-
patent SERM drug, Tamoxifen confers significant advan-
tage over newer drugs in repositioning to SLE in being
inexpensive and well-tolerated with known side effect
profile. Another interesting gene with high importance
based on centrality analysis in this work is androgen
receptor (AR). It has been recognized that androgen defi-
ciency can predispose to and accelerate lupus progression
[36], suggesting androgen alone may have therapy utility
in SLE. Intriguingly, though AR has not yet been shown to
be a direct target for Tamoxifen, positive binding of
Tamoxifen to AR has been shown in the receptor binding
assay [48]. Furthermore, some studies have suggested that
Tamoxifen not only binds to AR but also inhibits AR activ-
ity [49,50]. In addition, recent findings using rhesus mon-
key model have demonstrated Tamoxifen has androgen-
like effects on primate mammary sex steroid receptor sug-
gesting the protective action of Tamoxifen may also
involve androgenic effect [51]. The interactions between
the hormonal signaling pathways and their interacting
pathways as well as the effect of pharmacological modu-
lation remain inadequately understood. We have
attempted to retrieve the complex and implicit associa-
tions between Tamoxifen and SLE using ontology-guided
RDF queries, demonstrating the capability of using our
semantic infrastructure in inferencing non-trivial relation-
ships. The associations identified, such as apoptosis proc-
ess (Figure 7), would provide basis for hypothesis
generation in suggesting and elucidating connections
underlying pharmacological action of therapeutic options
in SLE.

The knowledge model and approach in data mining and
ranking demonstrated in this study can be generalized to
more complex diseases and to additional information
sources. The DDCO constructed in this work has provided
a formalized ontology for integrating biological and phar-
macological knowledge domains. It is designed with flex-
ibility and extendability in mind by providing well-
structured upper-level schema scaffold readily for inte-
grating additional knowledge components to accommo-
date new type of data instances. Further, the equivalence
specifications defined in the DDCO can assist with unit-
ing data if different identifiers were initially used. With the
continuous enrichment of functional annotations in bio-
medical areas including disease, gene, pathway, and mol-
ecule properties, we envisage a proportional increase of
the usefulness and performance of such semantic infra-
structure. Nevertheless, how the platform efficiently col-
lects and transforms large amount of new data from
heterogeneous biological sources and appropriately map-
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ping ontology content in an efficient manner remains an
issue to be solved. While some of the major data sources
become available in RDF/XML format, such as UniProt,
GO, NCBI Taxonomy, an improved and consistent data
conversion/distribution mechanism and system, such as
Bio2RDF project under development for making biologi-
cal data available in RDF document [52], will be benefi-
cial to the scientific community in constructing and
expanding semantic knowledge repositories.

Our approach however has some limitations. First, in this
work, the centrality measures of closeness and between-
ness were chosen to rank the biologically significant enti-
ties since they don't require to pre-assign weight values to
entities (i.e. to reflect the usefulness of nodes) like many
other centrality measures. We recognized other centrality
measures, such as eigenvector-based centrality, may pro-
vide additional power in refining entity ranking. Indeed,
we have applied PageRank, a modified eigenvector cen-
trality algorithm underlying the popular search engine
Google [53] in disease gene ranking against our semantic
knowledge base which has led to very promising findings
[54,55]. At the current stage when we only have sparse
understanding in the disease-drug mechanisms to define
the optimal eigenvalues, we consider the approach of
using closeness and betweenness algorithms helps avoid
arbitrary bias in ranking. It's no doubt that comparing
these different graph theory-based centrality algorithms in
ranking biomedical entities, including disease causal
genes or drug candidates likely intervening disease proc-
ess, would be valuable in improving and refining hypoth-
esis generation for biomedical researchers. Second, we
have relied on traversal algorithms on in-memory graph
representations for subgraph extraction in detecting the
key associations underlying entities such as between SLE
and Tamoxifen. The performance may be impeded when
handling massive graphs. The research advancement in
developing extended RDF path query language that sup-
ports not only pattern matching but also subgraph extrac-
tion by introducing path variable parameters, such as
SPARQ2L [56], provides a promising avenue to overcome
such limitation.

Conclusion
We have presented a novel OWL-formalized ontology
framework for use in biomedical and pharmacological
domain applications. We show that by implementing an
integrated pharmacome-diseasome RDF network based
on this framework that the DDCO, a goal-driven architec-
ture, is effective in knowledge acquisition, integration,
and inconsistency resolution, and data interrogation. The
application scenario we presented in this paper illustrates
that the DDCO framework and its supported RDF graph
data model, in combination with ontology-guided min-
ing and network analysis, could play an important role in

an exploratory context in forming or validating hypothe-
ses. Our results strongly suggest that a knowledge frame-
work capable of traversing the spectra of therapeutic agent
mechanisms and disease pathophysiological processes
can provide a powerful tool for both drug development
(see our prior work [54,57]) and support the identifica-
tion of new disease applications for existing therapeutics.

Methods
Ontology development
We used a manual construction and import approach to
provide broad coverage across the breadth of disease and
drug knowledge. The ontology editor Protégé [58] was
used as the primary tool for implementing an OWL frame-
work. Previously existing ontologies were thoroughly
examined to select relevant reusable knowledge resources
to allow efficient knowledge mapping and sharing among
independent data sources. Ontology alignment, i.e. map-
ping between concepts from two or more ontologies or
vocabularies, were carried by using PROMPT tool [59]. In
addition, manual modifications, such as pruning irrele-
vant or duplicate branches or adding new concepts/rela-
tionships, were performed to accommodate integration
needs and minimize incompatibility.

For knowledge domains lacking high quality ontology or
mature standards, we sought to build our own ontology
by applying approach analogous to CRISP-DM methodol-
ogy [60] and as described by [61]. One of the key steps of
ontology development is to comprehensively and accu-
rately define the relationships between entities. This
remains a challenging task since most of the entities in
DDCO are extracted from numerous knowledge resources
whose relationships are poorly defined. We chose to man-
ually curate the relationships and define domain and
range constraints for concepts and properties to support
the inference capability of the infrastructure. We used
RACER [62], a description logic reasoning system with
support for T-Box and A-box reasoning, to pose DL que-
ries for the ontology evaluation. On average, the sub-
sumption computations were completed within seconds
and we sought to solve any inconsistencies to assure the
integrity of the DDCO.

Knowledge and data sources
DrugBank is a freely available public resource and the data
used for this work was downloaded in flat file format from
http://www.drugbank.ca/downloads. Data from UMLS
knowledge source was downloaded from http://uml
sks.nlm.nih.gov/. Gene Ontology was downloaded from
Gene Ontology website http://geneontology.org/ontol
ogy/gene_ontology_edit.obo.

Corresponding human gene and GO annotation were
downloaded from NCBI Entrez site ftp://ftp.ncbi.nih.gov.
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Pathway annotation was compiled from KEGG http://
www.genome.jp/kegg/pathway.html, BioCarta http://
www.biocarta.com, BioCyc http://biocyc.org, and Reac-
tome download site http://www.reactome.org/download/
index.html. Online Mendelian Inheritance in Man
(OMIM) records in XML format and the corresponding
gene associations to OMIM disease were extracted from
"mim2gene" file in NCBI ftp site.

Mapping associations between pharmacome-diseasome
To explore the implicit associations between drug and dis-
ease, we need to understand the "explicit" relationships
between them, i.e. known or approved indications for the
drugs of interest. For FDA-approved drugs, the most accu-
rate and comprehensive resource for such information
would be the drug labeling system adapted by FDA. How-
ever, such label information is commonly embedded in
the product document in a free-text or semi-structured
manner. Instead of using natural language processing
approach to extract such label information, which is error-
prone and requires significant manual revision, we chose
to extract the drug-indication associations from UMLS
Knowledge Server. We used the table MRCONSO.RRF
(version UMLS 2007 AC), which is the primary Metathe-
saurus relationship file defining intra-source relationships
in UMLS, to map FDA-approved drugs to the UMLS con-
cepts, each with a unique Concept Unique Identifier
(CUI). The table MRREL.RRF, the primary file providing
the intra-source relationships of non-synonymous con-
cepts, was used to extract the associated indications for
these drug CUI concepts. There are total of 266 distinct
relations represented in the MRREL.RRF table, with one
row for each relationship between concepts or atoms of
UMLS. To extract the drug-indication relationship pairs,
we used the relations of "may_treat" and
"may_be_treated_by", which represent both directions for a
relationship (i.e. Concept_1"may_treat" Concept_2;
Concept_2 "may_be_treated_by" Concept_1). To further
refine the extraction and eliminate false positive mapping,
the semantic type "Chemicals & Drugs" and "Disorders"
were used to constrain the returned association concepts
(see Figure 8). As a result, a total of 230,114 drug-indica-
tion associations were extracted. The set was further
refined to 4,413 indications (i.e. "Disorders") for the
1,421 FDA-approved drugs of interest, with both diseases
and drugs mapped to the concept unique identifiers
(CUI).

Constructing RDF network
JENA API http://www.jena.sourceforge.net, a java-based
framework for building semantic web applications and
supporting RDF(S)/OWL, was used to generate triples
required for RDF in compliance with the definitions by
the DDCO model. The data includes drug information
(drug, target gene/protein, dosing, ingredient, formula,

and pharmacological features), genomic data (gene, path-
way, gene ontology association) and disease information
(disease and associated genes, therapeutic options). The
RDF triples from extracting above mentioned pharma-
come and diseasome data sources were further converted
into N-Triple format using Oracle RDF loader and then
loaded to the Oracle 10g release 2 RDF data store [16].

Data mining and construct subnetwork using RDF query 
and inference
We used SPARQL and SPARQL-like RDF query syntax
such as SDO_RDF_MATCH table function that is required
by the Oracle RDF data model to query the data in our
RDF data network. The query attributes consists of given
RDF graph to be searched, i.e. SDO_RDF_MODELS cre-
ated in Oracle database, and query which is a SPARQL-
like graph pattern containing a set of variables. Each query
returns a set of variable bindings matching to the query
parameters and the results produces a graph formed from
the triples meeting query criteria. To construct RDF sub-
network for each query result, for example, SLE-centric
data, the query form of "CONSTRUCT" from SPARQL was
used to extract the associated graph for each query result.
We generated the inference rules in our rulebase to sup-
port RDF inferencing query following below definitions
[44]:

• IF <A is_a B> AND <B is_a C>, THEN <A is_a C>

• IF <A is_a B> AND <B part_of C>, THEN <A part_of C>

• IF <A part_of B> AND <B is_a C>, THEN <A part_of C>

• IF <A part_of B> AND <B part_of C>, THEN <A part_of C>

Oracle 10g store supports RDFS and custom developed
inference rules. We implemented the rulebases for infer-
encing and created rule indexes enabling pre-computed
triples to be inferred from the models built in Oracle 10g.

Network centrality analysis
Degree centrality was used to examine the general topo-
logical properties of the integrated RDF network. In a net-
work, the degree of a node is one of the measurements of
the centrality of a node. It's defined as the number of lines
connecting to the nodes [24]. The degree Ki of node i is
calculated as follow:

where Aij = 1 if there is an edge between node i and j and
Aij = 0 if there is not edge connecting i and j.

Ki =
=

∑ Aij

j

n

1
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The mean degree (K) of nodes in a network is computed
by:

where ki(Gn) is the degree of node i in graph G consisting
of n nodes.

The degree centrality of a network is associated measure of
centralization for the entire network, which expresses the
extent to which a network has a center. It is calculated by
the variation in the degrees of nodes divided by the maxi-
mum degree variation which is possible in a network of
the same size [63].

The importance of the entities in the network is evaluated
using closeness and betweenness centrality algorithms
and analyses. Closeness evaluation emphasizes the dis-
tance of one entity to all others in the network, i.e. the
smaller the total distance of a node to other nodes, the
higher its closeness is. Betweenness centrality calculation
balances the importance ranking by weighing in the glo-
bal importance of an entity that assesses the proportion of
the shortest paths between all entity pairs in the network
that pass through the entity of interest, i.e., an entity is

ranked high of importance if more entity pairs in the net-
work are connected dependent on this entity. The average
of the two calculations is used for final ranking. For a
graph G = (V, L), where V is the set of nodes and L is the set
of lines (links, edges), the two parameters is computed as
below. [24]

- dist(v, w) denotes the length of a shortest path between
the nodes v and w in the set of nodes V [64]

-σst is the number of shortest paths from node s to t and
σst(v) is the number of shortest paths from s to t that pass
through the node v.
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Schematic diagram workflow for extracting indications for FDA-approved drugsFigure 8
Schematic diagram workflow for extracting indications for FDA-approved drugs. MRREL: the primary Metathesau-
rus file defining intra-source relationships in UMLS; STY: semantic type; CUI: concept unique identifier for concepts in UMLS; 
"may_treat" and "may_be_treated_by" are UMLS semantic relations used to refine the drug-indication extraction.
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