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Abstract: Endotracheal tubes (ETTs) provide a vital connection between the ventilator and patient;
however, improper placement can hinder ventilation efficiency or injure the patient. Chest X-ray
(CXR) is the most common approach to confirming ETT placement; however, technicians require
considerable expertise in the interpretation of CXRs, and formal reports are often delayed. In this
study, we developed an artificial intelligence-based triage system to enable the automated assessment
of ETT placement in CXRs. Three intensivists performed a review of 4293 CXRs obtained from
2568 ICU patients. The CXRs were labeled “CORRECT” or “INCORRECT” in accordance with
ETT placement. A region of interest (ROI) was also cropped out, including the bilateral head of
the clavicle, the carina, and the tip of the ETT. Transfer learning was used to train four pre-trained
models (VGG16, INCEPTION_V3, RESNET, and DENSENET169) and two models developed in the
current study (VGG16_Tensor Projection Layer and CNN_Tensor Projection Layer) with the aim
of differentiating the placement of ETTs. Only VGG16 based on ROI images presented acceptable
performance (AUROC = 92%, F1 score = 0.87). The results obtained in this study demonstrate the
feasibility of using the transfer learning method in the development of AI models by which to assess
the placement of ETTs in CXRs.

Keywords: artificial intelligence; endotracheal tube; chest X-ray; transfer learning

1. Introduction

Mechanical ventilation is a life support modality commonly used in intensive care
units (ICUs) for a wide range of situations, from scheduled surgical procedures to acute
organ failure [1]. Suitable management of mechanical ventilation based on individual
pathophysiology and responses to therapy can greatly improve outcomes [2]. Mechanical
ventilation requires an artificial connection between the ventilator and the patient’s airway,
involving tracheostomy, a jet needle, or most commonly an endotracheal tube (ETT) [3]. The
suitability of tube placement must be confirmed as soon as possible after ETT intubation
in order to minimize the risk of adverse events, such as tube dislodgement, aspiration
pneumonia, tracheal injury, sinusitis, injury to vocal cords, stenosis of the trachea, or cuff
over inflation. A number of methods have been developed to confirm ETT placement using
a stethoscope, end-tidal CO2 levels, or portable chest X-rays (CXRs). Portable CXRs are
currently the gold standard to confirm ETT placement, due to the fact that they are highly
informative, inexpensive, and immediately available at the patient’s bedside in any location
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of the hospital [4]. Unfortunately, many clinicians lack expertise in CXR interpretation
and are therefore unable to evaluate tube placement or identify situations indicative of
potential ETT complications. Furthermore, the overwhelming workload of experienced
radiologists often delays the preparation of formal reports. This situation has led to the
development of various point-of-care methods to facilitate the timely assessment of tube
placement [5].

The term artificial intelligence (AI) refers to data processing software that interacts
with the world via feedback. AI is widely used to facilitate the interpretation of medical im-
ages [6,7], process biomedical signals (e.g., heart dysrhythmia from wearable sensors) [8,9],
and facilitate disease prediction [10,11]. AI makes it possible to apply logical reasoning
to data at scales that are too vast for the human mind to comprehend. The scaling-up of
logical reasoning enables clinicians to leverage an enormous volume of medical knowl-
edge in real-time and extends our knowledge by bringing together research in diverse
disciplines [12]. Deep learning is a form of AI that has proven particularly effective in
the processing of medical images of the chest, breast, brain, musculoskeletal system, and
abdomen and pelvis [13]. AI can also be used to support clinical decisions, thanks to the
availability of data from electronic health records and advancements in computation. For
example, AI has been applied to CXRs to enable the early diagnosis of pneumonia, facilitate
the selection of proper antibiotics, and estimate the likelihood of recovery. The ability of
machine learning and neural networks to handle enormous volumes of data has also led to
changes in clinical decision-making processes [14], such as the automated interpretation of
medical images.

Deep learning is increasingly being used to automate the detection of thoracic disease
in CXRs [15]. One such approach is the convolutional neural network (CNN), in which
computational models are used to extract features from image data at various levels of
abstraction using multiple processing layers. Note that CNNs establish models primarily
from raw data, i.e., without the need for the manual extraction of features. In one previous
study, deep learning proved at least as effective as senior radiologists in the detection
of lung nodules in CXRs and computed tomography scans [16]. Deep learning has also
proven effective when applied to other clinical conditions, such as the differentiation of
interstitial lung disease, the segmentation of lung lesions, and the prediction of patient
outcomes [16].

In the current study, we established a transfer learning-based AI system by which
to assess the placement of ETTs for mechanical ventilation, with the aim of reducing the
workload of medical staff and improving patient safety.

2. Materials and Methods
2.1. Data Sources

The development of the AI model in this study was based on the retrospective analy-
sis of CXR images obtained from ICU patients at the Taipei Medical University Hospital
(TMUH) during the period from January 2019 to June 2020. A total of 4293 CXRs were ob-
tained from 2868 patients. Note that many ICU patients are subjected to CXR examinations
several times during a single ICU stay. The CXRs labeled “CORRECT” or “INCORRECT”
by three board-certificated intensivists in accordance with the placement of the ETT were
considered ground truth observations. All CXRs in this study were saved in Joint Photo-
graphic Experts Group (JPEG) format (initial image size: 2800 × 1810–4238 × 3480 pixels).
The study was approved (17 July 2020) by the TMUH-Joint Institutional Review Board of
Taipei Medical University (TMU-JIRB No.: N202007011), and the need for written informed
consent was waived due to the retrospective monocentric design of the study.

2.2. Image Preprocessing and Data Augmentation

After labeling, the CXRs underwent manual cropping by intensivists to create region
of interest (ROI) images, including four landmarks: the right clavicle head, the left clavicle
head, the carina, and the tip of the ETT (Figure 1). We also performed data augmentation
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during image cropping with a slight left or right deviation of the cropped image to increase
the number of ROI images (1.5% more than the original FULL images). The two groups
of images (FULL and ROI) were further split into training (TRAIN), validation (VAL),
and test (TEST) datasets, respectively (Table 1). The training dataset was used to develop
the algorithm, the validation dataset was used for model selection, and the test dataset
was used to assess model accuracy when encountering images for which it had not been
previously trained.
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Table 1. Total number of CXR images and distribution of data in this study.

CXR Type FULL ROI

ETT position CO INCO CO INCO

Image NO. 2580 (60.1%) 1713 (39.9%) 2678 (61.7%) 1667 (38.3%)

Splitting

TRAIN 1800 (60.04%) 1198 (39.96%) 2148 (61.72%) 1332 (38.28%)

VAL 500 (60.24%) 330 (39.76%) 405 (61.83%) 250 (38.17%)

TEST 280 (60.22%) 158 (39.78%) 134 (61.19%) 85 (38.81)
CO: correct position of endotracheal tube; INCO: incorrect position of endotracheal tube.

2.3. Transfer Learning

Image classification was achieved via transfer learning using the Tensorflow frame-
work (Tensorflow 1.4, Google LLC, Mountain View, CA, USA) and the Keras library (Keras
v 2.12, https://keras.io, accessed on 25 July 2020) to train the networks. We employed pre-
trained deep learning models, including VGG16, Inception V3, ResNet50, and DenseNet169.
In addition, VGG16 with Tensor Projection Layer (TPL) as well as a proprietary three-block
CNN with TPL was also applied. Training a CNN from the beginning can be difficult
when there is a lack of computing power and/or when using a dataset of limited size
(no training dataset can be large enough). Transfer learning is meant to overcome these
shortcomings. Two types of transfer learning are commonly used to deal with problems
related to imaging processing. The first uses a pre-trained model for feature extraction to
train a linear classifier for the new task. The second retrains a fully-connected layer atop a
CNN, while fine-tuning the weights of the pre-trained network via back propagation. Due
to the limited computing power and small dataset in the current study, we opted for the
first approach.

2.4. Coding

The proposed Python code structure included three modules for sequential implemen-
tation: (1) algorithm-related, (2) image processing, and (3) model fitting and performance
evaluation. A flowchart detailing the Python code structure and implementation can
be found in Supplementary Materials (Supplementary Figure S1). When a pre-trained
model is first loaded, the top argument can be set to “False” to prevent the loading of
fully-connected output layers used to make predictions. This makes it possible to add
and train a new output layer capable of providing binary classification results. The input
tensor argument must be specified in accordance with the expected fixed size of the model
input. A pre-trained model will not perform prediction without atop outputs activations
directly from the previous convolution or pooling layer. A global pooling layer (e.g., max-
global-pooling or average-global-pooling) can be used to summarize activations for use in
a classifier task or as an input feature vector. The result is a vector used as an input feature
descriptor [17]. The class argument specifies binary classes configured specifically for the
output layer of our model. Note that we used the default settings for the pre-trained model
and the Adam optimizer with the epoch number set at 20. Each algorithm was trained
using FULL as well as ROI images.

Image file processing was first performed with the aim of ensuring that each image
conformed to the requirements of the pre-trained model(s) to which it was applied. Keras’
ImageDataGenerator Class was used for pixel scaling prior to modeling. Under this
scheme, the image dataset is wrapped, and images are returned to the algorithm in batches
throughout the training, validation, and evaluation stages, after performing appropriate
scaling operations. The ImageDataGenerator class provides a variety of pixel scaling
methods as well as a range of data augmentation techniques. In the current study, we
employed pixel standardization, in which scale pixel values have a zero mean and unit
variance. Pixel standardization can be implemented at two levels: per-image (sample-

https://keras.io
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wise) or per-dataset (feature-wise). Note that only the mean or the mean and standard
deviation are required to standardize pixel values, regardless of whether the process is
implemented sample-wise or feature-wise. The choice of pixel scaling scheme is determined
by specifying arguments to the ImageDataGenerator class at the time when an instance is
constructed [18].

The performance of the trained classifiers was evaluated using various combinations
of features extracted using the pre-trained models. Note that each algorithm was trained
using FULL and ROI images through 20 epochs. After model fitting, model performance
was evaluated using the [model.evaluate] code in order to plot learning curves indicating
loss and accuracy. After the model was established, predictions were performed using the
TEST image set, the results of which were evaluated using the TEST annotation set as a
reference. The metric “Test accuracy” refers to the performance of the model when using
CXR images in the TEST Set (i.e., statistical defined accuracy). We plotted a confusion matrix
comprising the prediction results and TEST annotation set to reveal the difference between
the prediction result and the TEST set. We also evaluated the prediction performance of
the trained models in terms of accuracy, recall, precision, F1 score, and area under receiver
operating characteristic curve (AUC).

2.5. CXR Shape Profiles

CXR shape profiles were used to express the structural information extracted from each
CXR image and to perform comparisons. CXR shape profiles have previously been used
to obtain rough estimates of lung regions using histograms peak analysis and additional
features regarding frontal/lateral CXR classification [19]. CXR shape profiles respectively
illustrate (in the horizontal and vertical directions) the distribution of intensity values
obtained by summing up pixel intensities in each column and row. Despite their simplicity,
CXR shape profiles provide clear features representative of the image content, such that
variations in the histogram are strongly correlated with the characteristics observed in the
images.

2.6. Statistical Analysis

All statistical analysis was performed using the pROC package (version 1.7.3) in the
R programming language (version 3.3.1; R Foundation, Vienna, Austria). The receiver
operating characteristic (ROC), the area under the curves (AUC), and 95% confidence
intervals were obtained where indicated. The DeLong non-parametric method was used
to assess statistical differences among AUCs. A p-value of less than 0.05 was considered
statistically significant.

3. Results

The FULL group included 4,293 image files and the ROI group included 4,354 files,
after manual cropping. The FULL group included 2,580 “CORRECT” (CO) images (60.1%)
and 1,713 “INCORRECT” (INCO) images (39.9%). In the ROI group, the CO ratio and
INCO ratio was 61.7 and 38.3% (Figure 2). In terms of image size, the ROI group was
significantly more heterogenous than was the FULL group. We created boxplots and
distribution histograms to visualize patterns in the distribution of image file sizes in the
three subsets (TRAIN, VAL, and TEST) of the FULL and ROI groups. Statistically significant
differences were observed between the CO and INCO regarding image file size distribution
in all three subsets of the ROI group but not of the FULL group (Figure 3). This may
be attributed to the manual cropping used to create the ROI files. Images in the FULL
group were retrieved from the PACS system (uniform image size). Despite establishing
a protocol by which to implement manual cropping, there was considerable variation
between cropped images in the ROI group.
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Figure 2. Manual cropping to produce ROI images, including the four landmarks (right clavicle head,
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Figure 3. Boxplot and distribution histograms of CXR file size in the three subgroups of the FULL and ROI groups.

Table 2 lists the performance of all 12 models. Note that 6 models were applied to
the FULL image dataset and 6 were applied to the ROI image dataset. Overall, all of
the algorithms performed better when applied to ROI images. We also plotted a per-
formance dashboard for each model containing all statistic metrics, model structures,
learning curves (accuracy and loss), confusion matrices, and ROC curves. The VGG16
algorithm trained using ROI images achieved the best performance (AUC = 92%), followed
by VGG16 with TPL (AUC = 82%). A summary and diagram showing the architecture
of the VGG16 used in this study (best performance) is included in the Supplementary
Materials (Supplementary Figures S2 and S3). Figure 4 presents a complete performance
report of VGG16 using ROI images. When applied to ROI images, VGG16 achieved val-
idation accuracy (VAL_ACCURACY) of 0.82 and a validation loss (VAL_LOSS) of 0.49
during model fitting (Figure 4A). The learning curve is another model evaluation method
used to detect problems, such as underfit or overfit, by plotting a given dataset (training,
validation/evaluation) against a performance metric (loss, accuracy). The curve calculated
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from the training dataset (training learning curve) was used to evaluate how well the model
learns (blue line in Figure 4B,C), whereas the curve plotted by a hold-out validation dataset
(validation learning curve) was used to evaluate the model in terms of generalizability
(orange line in Figure 4B,C). The Loss curves are calculated on the metrics by which the
model is being optimized (Figure 4B), while the Accuracy curve is composed of the metric
by which the model is evaluated and selected (Figure 4C). The learning curve of VGG16,
when applied to ROI images, presented a good fit, as indicated by the gradual decrease in
training loss and validation loss to the point of stability, with only a small gap between the
two (Figure 4B). The accuracy curve presented a steady improvement throughout training
(Figure 4C). After model fitting, we applied the trained VGG16 model to the TEST set plot
and plotted a confusion matrix by which to estimate the precision, recall, and F1_score
and accuracy (Figure 4A). Using the predictions generated by the trained VGG16 model in
conjunction with the corresponding TEST dataset, we plotted the ROC and calculated the
AUC. The trained VGG16 model achieved a high AUC of 0.92 (Figure 4D), indicating good
model performance.
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Figure 4. Performance details of VGG16 using ROI images: (A) performance metrics used to assess
VGG16 using the VAL and TEST datasets; (B) loss learning curve of VGG16 indicating that the
training data and validation data (VAL) both decreased to a point of stability with a small gap
between the two, indicating good model fit; (C) accuracy learning curve of VGG16 revealing steady
improvement in accuracy in each epoch using the training set during model fitting; (D) receiver
operating characteristic (ROC) curve and the area under the curve (AUC) plotted using prediction
data generated by the trained VGG16 model paired with the corresponding TEST set data, where an
AUC of 0.92 indicates good model performance.

The three other pre-trained models failed to provide satisfactory performance, with
AUROC values in the range of 46–57%. All four of the pre-trained models presented severe
overfitting. We also implemented the pre-trained models using various numbers of epochs
(3, 5, 10, and 20). The optimal numbers of epochs were as follows: DenseNet121 and
ResNet50 (3 epochs), Inception V3 (5 epochs), and VGG16 (10 epochs).
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Table 2. Performance metrics used to assess the algorithms.

MODEL NAME IMAGE FILE ALGORITHM VAL_LOSS VAL_ACCURACY TEST_ACCURACY RECALL PRECISION F1 Score AUC

FCNN_TPL20 FULL CNN_TPL 1.05 0.57 0.53 0.63 0.61 0.62 0.49
RCNN_TPL20 ROI CNN_TPL 1.04 0.75 0.55 0.66 0.63 0.64 0.54
FVG16TPL20 FULL VGG16_TPL 0.60 0.59 0.61 0.77 0.65 0.70 0.55
RVG16TPL20 ROI VGG16_TPL 0.62 0.60 0.72 0.96 0.70 0.81 0.82

FVG16_20 FULL VGG16 0.81 0.63 0.61 1.00 0.86 0.76 0.56
RVG16_20 ROI VGG16 0.49 0.82 0.82 0.97 0.93 0.87 0.92

FTLINCEPV3_20 FULL Inception_V3 1.68 0.58 0.52 0.67 0.59 0.63 0.49
RTLINCEPV3_20 ROI Inception_V3 0.70 0.61 0.61 1.00 0.61 0.76 0.50

FTLRESNT_20 FULL ResNet50 2.56 0.60 0.56 0.79 0.60 0.68 0.47
RTLRESNT_20 ROI ResNet50 2.24 0.68 0.48 0.55 0.58 0.56 0.46

FTLDENSENET_20 FULL DenseNet169 2.77 0.48 0.48 0.57 0.59 0.49 0.50
RTLDENSENET_20 ROI DenseNe169 1.44 0.78 0.58 0.82 0.62 0.70 0.57

Note: FULL: FULL group image; ROI: ROI group image; CNN: convolutional neural network; TPL: tensor projection layer; VGG16_TPL: VGG16 with tensor projection layer; VAL_LOSS: model loss using the
validation (VAL) set; VAL_ACCURACY: model accuracy using the validation (VAL) set; TEST_ACCURACY: model accuracy using the TEST set; AUC: area under receiver operating characteristics curve.
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4. Discussion

In this study, we developed an AI-based triage system to assess the placement of ETTs
in CXRs. Four pre-trained frameworks (VGG16, Inception V3, ResNet50, and DenseNet169)
were selected for model development. We also developed a novel CNN with a tensor
projection layer (CNN_TPL) and VGG16 with a tensor projection layer (VGG16_TPL).
Analysis was performed on original CXR images (FULL) and manually cropped CXR
images (ROI). Model fitting was performed using 20 epochs.

The development of AI systems for object detection and recognition in X-rays is
an emerging field, and many such studies have used transfer learning. Unlike disease
diagnosis, the use of AI for object detection focuses mainly on the therapeutic tube
and catheter [20–22]. In a similar study on the placement of feeding tubes, pre-trained
deep CNN models (Inception V3, ResNet50, and DenseNet121) achieved AUC values of
0.82–0.87, which is far lower than that of the models developed for disease diagnosis [22].
Another study achieved 99.6% accuracy (95% confidence interval (CI): 97.5 to 100.0%) in
identifying the manufacturer of a device from a radiograph and 96.4% (95% CI: 93.1 to
98.5%) accuracy in identifying the model group [20]. Overall, the ability of the network to
identify the device manufacturer significantly exceeded that of any cardiologist (p < 0.0001
compared with the median human identification; p < 0.0001 compared with the best human
identification).

The performance of the pre-trained models in detecting and evaluating the placement
of ETTs did not meet our expectations. In particular, the carina and tip of the ETT can be
difficult to identify in CXRs generated from the portable anteroposterior devices used in this
study, which are prone to noise interference and tend to be lower in contrast resolution than
standard posterior-anterior CXR devices. In the current study, image noise was classified
into three distinct types. The first form of image noise was related to the constituent
material of the ETT. In our facility, it is not uncommon to use non-kinking ETTs with a wire
embedded within the tube to enhance rigidity, which tends to generate image noise. Note
that we observed a considerable difference between plastic tubes and non-kinking tubes
(Figure 5A). The second type of image noise was related to patient characteristics, including
neck length, jaw location, clavicle orientation, and lung field condition. The patients in this
study varied considerably in terms of age, size, weight, position, and disease; however,
the image frame was not adjusted (one size fits all). These discrepancies greatly hindered
the model’s development (Figure 5B). The third type of image noise was associated with
the imaging environment, which often included other tube/catheters and heart-associated
devices, many of which generated signals similar to those of the ETT. For example, many
patients undergoing heart surgery have a wire over the sternum and/or prostheses, such
as metallic valves, located very close to the ETT and causes noise (Figure 5C).

Note that the pre-trained models in this study were implemented using default settings
with a new output layer to output binary results. It is very likely that performance could
be improved through the tuning of hyperparameters, such as the learning rate (i.e., the
degree to which the model changes in response to the estimated error associated with
updates to model weights). Stochastic gradient descent is an optimization algorithm used to
estimate the error gradient for the current state of a model using examples from the training
dataset [23]. The weights of the model are then updated through the back propagation
of errors, where the learning rate indicates the degree to which the weights are updated
during training. The learning rate is a configurable hyperparameter presented as a small
number between 0.0–1.023. In a previous study in which a deep CNN was used to detect
body parts in CXR images, identification performance was improved by tuning the learning
rate [21]. In that study, validation accuracy was only 50% when the learning rate was 0.01;
however, it increased to 99% when the learning rate was adjusted to 0.001. Optimizing the
learning rate is not a trivial matter, as an excessively small value could result in a lengthy
training process, whereas an excessively large value could interfere with the learning of
weights or destabilize the training process [23]. In the current study, we opted not to
tune the learning rate because our initial objective was to employ only default settings.
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For all of the pre-trained models in this study, we employed the Adam optimization
algorithm, which is an extension to stochastic gradient descent broadly adaptable to
deep learning applications in computer vision and natural language processing [24]. The
Adam optimizer combines the advantages of two other extensions of stochastic gradient
descent: (1) the adaptive gradient algorithm (AdaGrad), which maintains a per-parameter
learning rate to improve performance when using sparse gradients; and (2) root mean
square propagation (RMSProp), which maintains per-parameter learning rates based on the
average recent magnitudes of the gradients for a given weight [24]. The Adam optimizer is
easily configurable, and the default configuration is well suited to most problems without
any tuning. Nonetheless, TensorFlow documentation recommends a certain amount of
tuning [24].
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In this study, the VGG16 with a TPL achieved the second-best result (AORUC = 82%).
In a regular CNN model, pooling layers are used to summarize features extracted from con-
volutional layers, which means that its main role is to reduce feature dimensionality. Note
that the TPL is a more sophisticated dimension reduction layer (i.e., using tensor decom-
position) [25], which considers subsequent multilinear mapping to a lower-dimensional
feature space with output tensors. Note also that this is similar to multilinear principal
component analysis (MPCA). Moreover, the TPL preserves the tensor structure while pro-
viding supervised dimension reduction. TPL uses label information (supervised) whereas
MPCA does not (unsupervised) [25]. We believe that the good performance of VGG16 with
TPL can be attributed to the effects of dimensionality reduction provided by TPL, which
helped to alleviate interference associated with image noise.

Transfer learning using pre-trained models based on non-medical images (ImageNet)
tends to outperform untrained models [26–28]. The first layer in most pre-trained networks
is used to detect general features (e.g., edges and lines), as seen in architectures employing
multiple neural networks, regardless of the type of training data [29]. The last layer in
most pre-trained networks is specific to the training data. It should be possible to improve
accuracy by leveraging the use of pre-trained weights for the initial layers in a well-formed
neural network while reserving training mainly for the last layer (set to the initialization
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of random weights). Rajkomar et al. demonstrated that pre-training using grayscale
images from ImageNet could improve accuracy beyond that achieved via pre-training
with color images, as long as transfer learning is used for training [26]. Note however that
this assertion is valid only if all of the layers except for the last layer are frozen. Another
study demonstrated that high accuracy could be achieved using models pre-trained on
color images at a reduced learning rate, even if the layers are not frozen (fine-tuning of all
layers) [22]. In the current study, none of the layers were frozen; however, the algorithm
was set to learn more slowly.

This study faced a number of limitations that should be considered in the interpretation
of results. First, the dataset was inherently imbalanced, with a CO:INCO ratio of roughly
6:4. The lack of improperly placed ETTs in this study may be explained by the fact that
a number of practical protocols had already been established for intubation. Clinicians
are required to check the placement of the ETT using a stethoscope immediately after
intubation and adjust the tube immediately if mispositioning is suspected. The second
limitation is related to the transfer learning method. We used pre-trained models based
on ImageNet, which should be satisfactory as long as the target images match those in
the database. Unfortunately, most of the 14 million images in ImageNet are from daily
life, with very few medical images and almost no CXRs. The noise and high degree of
similarity among CXRs make it very difficult to find a well-designed pre-trained model
appropriate to this application. Most of the pre-trained models in the current study
achieved better performance when applied to ROI images; however, even the current
ROI image is still too noisy. A new method for image cropping including only the carina
and ETT tip, could further reduce image noise. We found that the image cropped with
this new method contained only 0.87% of the FULL image, but still provided sufficient
information to differentiate correct and incorrect positioning of the ETT. Further research
will be conducted to assess the feasibility of using the narrow-cropping method to create
source images.

5. Conclusions

This study demonstrates the feasibility of using pre-trained models in developing a
transfer learning-based AI system by which to automate the assessment of ETT placement
in CXRs. Most of the pre-trained models performed better when using ROI images. The
best performance was achieved using VGG16 in conjunction with ROI images (AUC = 92%,
F1 score = 0.87). Excessive image noise and inadequate hyperparameter tuning were the
major causes of unsatisfactory performance. In such cases, TPL dimensionality reduction
was shown to improve performance. Overall, these preliminary results demonstrate the
feasibility of using transfer learning-based AI for the assessment of ETT placement in CXRs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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