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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging RNA virus causing COVID-19 
disease, across the globe. SARS-CoV-2 infected patients may exhibit acute respiratory distress syndrome which 
can be compounded by endemic respiratory viruses and thus highlighting the need to understand the genetic 
bases of clinical outcome under multiple respiratory infections. In this study, 42 individual datasets and a multi- 
parametric based selected list of over 12,000 genes against five medically important respiratory viruses (SARS- 
CoV-2, SARS-CoV-1, influenza A, respiratory syncytial virus (RSV) and rhinovirus were collected and analysed in 
an attempt to understand differentially regulated gene patterns and to cast genetic markers of individual and 
multiple co-infections. While a certain cohort of virus-specific genes were regulated (negatively and positively), 
notably results revealed a greatest correlation among genes regulation by SARS-CoV-2 and RSV. Furthermore, 
out of analysed genes, the MAP2K5 and NFKBIL1 were specifically and highly upregulated in SARS-CoV-2 
infection both in vivo or in vitro. The most conserved genetic signature was JAK2 gene as well as the consti
tutively downregulated ZNF219 gene. In contrast, several genes including GPBAR1 and SC5DL were specifically 
downregulated in SARS-CoV-2 datasets. Finally, we catalogued a set of genes that were conserved or differen
tially regulated across studied respiratory viruses. These finding provide foundational and genome-wide data to 
gauge the markers of respiratory viral infections individually and under co-infection. This work compares the 
virogenomic signatures among human respiratory viruses and provides valid targets for potential antiviral 
therapy.   

1. Background 

Since its first appearance in Wuhan, severe acute respiratory syn
drome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world 
in a way unlike any other respiratory viruses. Coronavirus disease 2019 
(COVID-19), caused by SARS-CoV-2, is considered the third highly 
pathogenic coronavirus following SARS-CoV-1 and Middle East respi
ratory syndrome coronavirus (MERS-CoV) [1]. The most striking feature 
of the incidences and epidemiology of SARS-CoV-2 is its high ability for 
transmission among people [2]. The clinical outcome and incidence vary 
that most COVID-19 patients show mild and moderate symptoms, and 
the elderly show serious symptoms [3]. Additionally, severely affected 
patients had shown respiratory complications such as moderate to se
vere pneumonia, acute respiratory distress syndrome (ARDS), sepsis, 
acute lung injury (ALI), and multiple organ dysfunction (MOD) [4]. 

ARDS in COVID-19 patients is thought to be the main cause of death 
because of the cytokine storm caused by an over-activation of the human 
innate immune response [5]. However, there are multiple immune 
regulators and host genetic and epigenetic factors that are capable of 
significant contributions to the disease manifestation [5]. 
Host-pathogen interactions can act as a double-edged sword in different 
coronavirus infections as they might be useful not just for hosts, but also 
for viruses [6]. Similar tug-of-war host-viruses can also be present in 
COVID-19, which could lead to overcomplicated outcomes of the disease 
[7]. 

Although recent studies have shown the transcriptomic analysis of 
host responses to SARS-CoV-2 infection at different time points within 
multiple cell lines [8,9], the transcriptional dynamics of host response to 
multiple virus infection remained largely unknown. In general, the host 
innate immune responses play an essential role in suppressing the 
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replication of the virus once the virus enters the host, such as 
antiviral-mediated interferons and cytokines, which could lead to the 
virus pathogenesis. Increased cytokine levels are also observed in pa
tients hospitalised with COVID-19 in the same way as both SARS-CoV-1 
and MERS-CoV, which induce high levels of cytokine [10,11]. Accord
ingly, understanding the magnitude and dynamics of human tran
scriptome in response to medically important respiratory viruses will 
help in understanding their pathogenesis, molecular genetic markers 
and in repurposing existing antivirals to combat respiratory viral 
infections. 

The current study aims to compare a large cohort of transcriptomic 
dataset map the gene regulation (up or down regulated) by SARS-CoV-2 
infection and the compounding impact of other respiratory viruses such 
as influenza, SARS-CoV-1, respiratory syncytial virus (RSV) and rhino
virus. This parallel comparison showcases common and unique genetic 
signatures of respiratory viruses under individual and co-infection sce
narios to guide future investigational studies and designing therapies. 

2. Materials and methods 

2.1. Data collection, inclusion and exclusion criteria 

Gene Expression Omnibus (GEO) and PubMed datasets were used to 
search for literature that contained data relating to upregulated and 
downregulated genes in response to infection with respiratory viruses 
(SARS-CoV-2, influenza, SARS-CoV-1, RSV and rhinovirus). The collec
tion began with searching for datasets for the more recent COVID-19 
pandemic. On GEO, the terms “(“Severe acute respiratory syndrome 
coronavirus 2"[Organism] OR SARS-CoV-2[All Fields]) AND “Homo sapi
ens"” were used whereas when searching on PubMed, the terms “(SARS- 
CoV-2) AND (Transcriptome)” were used. Once datasets were identified, 
inclusion and exclusion criteria were carried out as outlined in Table 1 to 
ensure parallel comparison of gene signatures. 

2.2. Included datasets and data synchronisation 

The collected datasets from various sources were compiled into one 
set of data using Microsoft Excel program. The studied viruses and their 
respective analysed datasets are provided in a spreadsheet (Table 2). An 
overview of each dataset is provided in the Supplementary dataset 1. 
Each dataset carried genes found in a specific study mentioned in the 
category, and the corresponding level of gene expression is displayed 
next units originally used by the datasets. To ensure that all the included 
datasets for each virus could be compared, these were converted to the 
same units. The raw data was often listed in three units; Fold Change, 
Log Fold Change and Log 2-Fold Change, and all the data was converted 
into the Log 2-Fold Change format. Log 2-Fold Change was used as it 
allows easier visualisation of the data, as the range of the values of the 
data becomes narrower, allowing for easier comparison of the up/down 
regulated genes (Supplementary dataset 2). 

2.3. Ranking system 

Owing to large diversity among datasets in areas such as cell types 
and media in which the experiments were carried out, it could introduce 
biasness to compare genes specifically by their Log 2-Fold Change 
values, which is calculated to the baseline gene expression. To introduce 
a novel method of comparing each gene up or down regulated in a 
dataset compared to datasets from another virus or different cell types, a 
ranking system next to each Log 2-Fold Change column was proposed. 
This system ranked the genes based on which percentage group they 
were in, depending on whether they were up or down-regulated. Then, a 
mean score was taken across datasets within the same studied viruses 
and these means were used to compare between the viruses. For 
avoidance of confusion, this system synchronizes the dataset such that at 
the top 10% of upregulated genes for one virus while only at the top 80% 
of genes for another virus. 

Using the GraphPad Prism 9.0.0 software, a scatter bar graph was 
generated using the overall ranking score for each gene of each virus. 
Two versions were created; first had the uncut data taken directly from 
the ranking system, containing roughly 24,000 genes, and secondly a cut 
down version of the data where non-significant genes were removed. 
Additionally, the non-coding gene loci and non-annotated genes were 
removed, as these often yielded zero values for up or down regulated 
genes reducing 6200 genes. Furthermore, other genes were removed 
which contained more than three or more zero values for up or down
regulation across the five viruses removing a further 200 genes. Finally, 
using influenza virus as a model virus, all genes were removed that lied 
within the ranking scores of +20 (bottom 20% upregulated) and − 20 
(bottom 20% downregulated genes), unless a gene had a ranking score 
of above +50 or below − 50 in any other of the viruses. This removed a 
further 5005 genes leaving a total of just over 12,000 genes in the cut 
down version, which removed the large proportion of genes containing 
zero values for clearer view for the spread of gene ranking scores. 

Table 1 
Inclusion and Exclusion criteria used to select datasets to be included within this 
study.  

Inclusion Criteria Exclusion Criteria 

Transcriptomic Study Sample is taken from another species 
other than human 

Sample has been collected from infected 
humans with either SARS-CoV-2, 
Influenza A, SARS-CoV-1, RSV or 
Rhinovirus 

Studies that include less than 10 up 
or down regulated genes 

Sample is taken from humans Studies that have modified genes 
In vivo or in vitro study Studies where subjects had been 

given a preventative drug or 
treatment  

Table 2 
Complete list of all datasets selected to be used within this study. The virus, type 
of sample and analysis method are also shown.  

Virus Sample Type Dataset ID Analysis Method 

SARS-CoV-2 Nasopharyngeal swabs GSE152075 RNA sequencing 
SARS-CoV-2 PBMCs GSE150728 RNA sequencing 
SARS-CoV-2 Intestinal Organoids GSE149312 RNA sequencing 
SARS-CoV-2 NHBE GSE147507 RNA sequencing 
SARS-CoV-2 Autopsy samples GSE150316 RNA sequencing 
SARS-CoV-2 PBMCs and BALF CRA002390 RNA sequencing 
SARS-CoV-2 BALF HRA000143 RNA sequencing 
SARS-CoV-2 Upper Airway Samples GSE156063 RNA sequencing 
SARS-CoV-2 PBMCs GSE152418 RNA sequencing 
SARS-CoV-2 pHAE GSE153970 RNA sequencing 
SARS-CoV-2 Nasopharyngeal swabs GSE154770 RNA sequencing 
SARS-CoV-2 FFPE samples GSE159787 RNA sequencing 
SARS-CoV-2 Human Lung-only mice GSE155286 RNA sequencing 
SARS-CoV-2 nHTBE GSE157526 RNA sequencing 
Influenza PBMCs GSE34205 Microarray 
Influenza PBMCs GSE6269 Microarray 
Influenza Nasal Wash Samples GSE68310 Microarray 
Influenza Whole Blood GSE38900 Microarray 
Influenza Whole Blood GSE90732 Microarray 
Influenza Whole Blood GSE61754 Microarray 
Influenza NHBE GSE147507 RNA Sequencing 
Influenza Whole Blood GSE21802 Microarray 
SARS-CoV-1 PBMCs GSE1739 Microarray 
SARS-CoV-1 Intestinal Organoids GSE149312 RNA Sequencing 
SARS-CoV-1 NHBE GSE147507 RNA Sequencing 
RSV Whole Blood GSE38900 Microarray 
RSV PBMCs GSE34205 Microarray 
RSV NHBE GSE147507 RNA Sequencing 
Rhinovirus PBMCs GSE53543 Microarray 
Rhinovirus Whole Blood GSE38900 Microarray  
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2.4. Log2 fold change 

The collected dataset was converted into Log2 Fold Change for the 
gene expression. The datasets that were unconvertable into Log2 were 
removed for Log2 Fold Change analysis. In addition, only datasets that 
compared infected and non-infected patients were used while high vs 
low viral load datasets were removed. Finally, Log2 Fold Change values 
for each gene and for each dataset were inputted into the software and 
the graphing tool was used to generate scatter bar charts for each virus- 

specific dataset. These include the top five upregulated and/or down
regulated genes for each dataset taken from the original data. 

2.5. iDEP.91 software 

Once all the data had been converted into the ranking score format, it 
was exported into a separate Excel File to be compiled into one concise 
table (Supplementary dataset 3), then saved as a text document and 
uploaded to the iDEP web application for expression and pathway 

Fig. 1. Scatter bar graphs of the Log-2-Fold Change of each gene for each dataset for A) SARS-CoV-2, B) Influenza, C) SARS-CoV-1, D) RSV and E) Rhinovirus. A 
horizontal line is also shown on each bar, which marks the average Log-2 fold change (Log-2FC) of the selected genes. 

Table 3 
Top five up regulated genes shared across SARS-CoV-2, Influenza, SARS-CoV-1, RSV and Rhinovirus.  

Gene Function Location  Virus 

SARS- 
CoV-2 

Influenza SARS- 
CoV-1 

RSV Rhinovirus 

DDX60L This gene encodes a member of the DExD/H-box helicase family of proteins, a subset 
of the super family 2 helicases. In addition to functions in RNA metabolism, members 
of this family are involved in anti-viral immunity and act as cytosolic sensors of viral 
nucleic acids 

chr4 76.89471 81.07511 88.881 98.23783 98.44945 

JAK2 This gene encodes a non-receptor tyrosine kinase that plays a central role in cytokine 
and growth factor signalling. This gene and the IL6/JAK2/STAT3 signalling pathway 
is a therapeutic target for the treatment of excessive inflammatory responses to viral 
infections. 

chr9 65.71339 81.63137 94.10571 87.08943 97.70603 

IFI44 Predicted to be involved in immune response. chr1 75.19402 88.06365 68.81404 96.18025 97.14861 
FOXN2 This gene encodes a forkhead domain binding protein and may function in the 

transcriptional regulation of the human T-cell leukemia virus long terminal repeat. 
chr2 66.57874 89.72695 99.19854 82.8818 85.6627 

DDX60 DX60 (DExD/H-Box Helicase 60) is a Protein Coding gene that functions as an 
antiviral factor and promotes RIG-I-like receptor-mediated signaling. 

chr4 60.44368 69.17354 92.75642 99.07696 99.12914 

Means of the total ranking score of every gene were used to calculate the top five up regulated genes. 
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analysis as described earlier [12]. 

3. Results 

3.1. Overview of the differences in the Log-2 fold change values and 
ranking scores across multiple respiratory viruses 

The scatter bar graphs for each of the individual datasets within each 
of the five viruses were drawn to provide an overview of the differences 
in the Log-2 Fold Change values obtained from each dataset (Fig. 1). The 
scatter bar graph for the datasets collected for the SARS-CoV-2 uses the 
original Fold change values given by each study where each bar repre
sents a separate dataset that showed the up and down regulated genes in 
response to viral infection (Fig. 1A). A vast majority of top five upre
gulated genes were summarized (Table 3) while the top five down 
regulated genes involved in the innate immune response to SARS-CoV-2, 
SARS-CoV-1, influenza, RSV and rhinovirus infection were concluded 
(Table 4). Interestingly, each dataset shown was distinctive showing a 
varying pattern where host genes are mildly up or down regulated and 
only a few that are highly differentially up or down regulated. This 
highlights selective genes of the innate immune response are affected in 
response to a specific virus infection. Collectively, dataset GSE155286 
has the widest spread of data while dataset GSE147507 has the lowest 
(Table 2). In addition, all the datasets arried both downregulated and 
upregulated genes except GSE153790, which has only upregulated 
genes. Amongst the top five up-regulated genes, five genes including 
IFI27 and C-X-C motif chemokine ligand (CXCL) group of cytokine- 
producing genes, specifically CXCL10 showed a virus-specific trend. 

Using the same approach, we used the data collected for innate im
mune genes in response to influenza virus infection that contains nine 
datasets. The data was presented for better visualising to gauge the 
innate immune genes play critical roles in the virus infection. Consis
tently, amongst all datasets, the up regulated genes for the influenza 
virus were interferon alpha-inducible protein 27 (IFI27) and interferon 
induced protein 44 producing gene IFI44/IFI44L, which involves in 
type-1 interferon signalling process leading to apoptosis and the for
mation of tubular structures, respectively. 

The scatter bar graphs for SARS-CoV-1, RSV and rhinovirus indicate 
a unique set of genes up or down regulated during infection (Fig. 1C, D 
and 1E), respectively. While limited datasets were available against 
some viruses, minimum eight datasets provided approximately 12,000 
different genes. Datasets that have gaps around the zero value for Log-2 
fold change are the datasets that only include genes that were signifi
cantly up or down regulated. All datasets shown in Fig. 1C, D and 1E 
show a clear abundance of genes that are mildly differentially regulated 
with significantly less genes at the high fold change values, highlighted 

by the shape of the GSE53543 dataset. Interestingly, there was marked 
variation between the highest and lowest values obtained for log-2-fold 
change for different datasets within SARS-CoV-1. In addition, most of 
innate immune genes fall within +10 or − 10 log-2 fold change for these 
viruses. However, SARS-CoV-1 appears to have a unique set of top five 
up regulated genes compared to the other viruses whereas both RSV and 
rhinovirus datasets showed IFI44 gene and the CXCL family. OASL 
remained a consistently upregulated gene in RSV datasets. 

The log-2 fold change values of each gene for each dataset was 
changed into a ranking score due to the high variation of experimental 
method used to collect data for each dataset, which meant that log-2 fold 
change values were rarely consistent between datasets for differential 
gene regulation of patients/cells infected with the same respiratory 
virus. Thus, the ranking score removed this issue by assigning each gene 
a value based on its position among other differentially regulated genes 
within the same dataset (i.e., a gene placing as the 5th highest upre
gulated gene in a list of 100 genes would receive a score of 95). These 
synchronized values were averaged across all datasets within each virus 
that enabled the data collected from different experimental approaches 
to be compared more effectively between datasets within the same virus 
and a combination of datasets to be compared between different viruses 
(Tables 5 and 6). 

3.2. iDEP.91 statistical analysis 

The application of ranking scores facilitated the generation of a 
dataset consisting of 12,000 genes across all viruses by removing many 
non-significant low expressed genes (Fig. 2A). This newly and reduced 
set of genes and the data provided a higher resolution of genes distri
bution across multiple respiratory viruses (Fig. 2B). Thereafter, all an
alyses were conducted using dataset generated through ranking system. 
The iDEP (an integrated web application for differential expression and 
pathway analysis), helped to remove low expressed genes, convert gene 
IDs, fold change calculation and gene clustering. 

The scatter plots generated based on 12,000 genes highlighted the 
distribution patterns of genes for SARS-CoV-2 and other respiratory vi
ruses (Fig. 2C to F). The relationship between SARS-CoV-2 and influenza 
virus gene regulation revealed a uniform scatter data (Fig. 2C), while the 
relationship between SARS-CoV-2 and SARS-CoV-1 gene regulation 
contains more spread of data points except towards the centre of the 
graph due to the removal of less important data towards zero values 
(Fig. 2D). A slightly different patterns was observed where a linear 
relationship between SARS-CoV-2 and RSV (Fig. 2E) was noticed. An 
overall less uniform spread of data points with a skew to the right to
wards the top of the graph, and additional upregulated genes were 
observed in SARS-CoV-2 and rhinovirus comparison (Fig. 2F). 

Table 4 
Top five down regulated genes shared across all SARS-CoV-2, Influenza, SARS-CoV-1, RSV and Rhinovirus.  

Gene Function Location SARS- 
CoV-2 

Influenza SARS- 
CoV-1 

RSV Rhinovirus 

FCGRT This gene encodes a receptor that binds the Fc region of monomeric 
immunoglobulin G. This protein also binds immunoglobulin G to protect the 
antibody from degradation. Alternative splicing results in multiple transcript 
variants. 

chr19 − 39.6042 − 82.1815 − 90.1054 − 93.0122 − 99.3856 

MFSD3 MFSD3 (Major Facilitator Superfamily Domain Containing 3) is a Protein Coding 
gene. redicted to be involved in proton transmembrane transport. Predicted to be 
integral component of membrane. 

chr8 − 42.4523 − 76.7588 − 93.4394 − 97.8397 − 94.4382 

IMPA2 IMPA2 (Inositol Monophosphatase 2) is a Protein Coding gene. The encoded protein 
catalyzes the dephosphoylration of inositol monophosphate and plays an important 
role in phosphatidylinositol signaling. 

chr18 − 42.7931 − 77.4724 − 97.8705 − 92.2407 − 97.9466 

CCDC106 CCDC106 (Coiled-Coil Domain Containing 106) is a Protein Coding gene. romotes 
the degradation of p53/TP53 protein and inhibits its transactivity. 

chr19 − 39.2854 − 89.8161 − 88.2233 − 98.4019 − 93.7914 

ZNF219 ZNF219 (Zinc Finger Protein 219) is a Protein Coding gene. The encoded protein 
functions as a transcriptional repressor of the high mobility group nucleosome 
binding domain 1 protein, which is associated with transcriptionally active 
chromatin. 

chr14 − 75.3585 − 85.8418 − 83.4911 − 72.589 − 98.0437 

Means of the total ranking score of every gene were used to calculate the top five down regulated genes. 
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3.3. Heatmap analyses and gene differences between respiratory viruses 

The heatmap were generated to provide an insight into pathways 
that are differently regulated by each of the five studied respiratory 
viruses (Fig. 3). SARS-CoV-2 appeared unique in eliciting a separate 
viral response compared to the other respiratory viruses. Notably, there 
was a region at the bottom of the heatmap between genes DDX21 and 
GBP3 where other viruses have no effect or a slight upregulation of the 
genes, however, SARS-CoV-2 causes a downregulation (Fig. 3). Perhaps 
the most unique out of all the respiratory viruses is SARS-CoV-1 which 
showed large areas of each heatmap where it is causing a down
regulation of genes where all other respiratory viruses were eliciting 
upregulation. 

The heatmap results highlighted the differences between each of the 
respiratory viruses, even though they are in the same group based on 

their target within the host; the genes that being affected are substan
tially different. Each virus shown in the heatmap carried different and 
distinct green and red areas, with very few coloured areas shared be
tween more than two viruses. The most substantial difference was 
noticed between SARS-CoV-2 and SARS-CoV-1, whereas almost no col
ours in common. However, SARS-CoV-1 appeared to be the only virus 
that has both up and down regulated genes in two specific groups. 

3.4. Standard deviation calculation and T-SNE plot analyses 

The SD graph highlights the extremely high standard deviation 
across all the regulated genes in response to different viruses (Fig. 4A). A 
standard deviation above 1 was considered high unless the standard 
deviation in this case was between 25 and 75 indicating that there are 
high differences in the differentially regulated genes in response to each 

Table 5 
Ranking scores of up regulated genes related to SARS-CoV-2 compared to down regulated genes correlated with other respiratory viruses (Influenza, SARS-CoV-1, RSV 
and Rhinovirus).  

Gene Fucntion Location  Virus 

SARS-CoV- 
2 

Influenza SARS-CoV- 
1 

RSV Rhinovirus 

RGS11 RGS11 (Regulator Of G Protein Signaling 11) is a Protein Coding gene. This 
protein inhibits signal transduction by increasing the GTPase activity of G 
protein alpha subunits, thereby driving them into their inactive GDP-bound 
form. 

chr16 65.1003246 − 96.6809 − 93.256614 − 94.2356 0 

MAP2K5 MAP2K5 (Mitogen-Activated Protein Kinase Kinase 5) is a Protein Coding 
gene. The protein encoded by this gene is a dual specificity protein kinase that 
belongs to the MAP kinase kinase family. This kinase specifically interacts 
with and activates MAPK7/ERK5. This kinase itself can be phosphorylated 
and activated by MAP3K3/MEKK3, as well as by atypical protein kinase C 
isoforms (aPKCs). The signal cascade mediated by this kinase is involved in 
growth factor stimulated cell proliferation and muscle cell differentiation. 

chr15 47.014237 − 58.371 − 65.336632 − 55.5825 − 78.04365 

GPR162 GPR162 (G Protein-Coupled Receptor 162) is a Protein Coding gene. This 
gene was identified upon genomic analysis of a gene-dense region at human 
chromosome 12p13. It appears to be mainly expressed in the brain; however, 
its function is not known. 

chr12 17.8299687 − 96.1071 − 82.211228 − 99.2836 − 97.15441 

MSC MSC (Musculin) is a Protein Coding gene. This protein is capable of inhibiting 
the transactivation capability of E47, an E2A protein, in mammalian cells. 
This gene is a downstream target of the B-cell receptor signal transduction 
pathway. 

chr8 47.471529 − 72.2297 − 91.707894 − 20.3681 − 93.69442 

ZNF581 ZNF581 (Zinc Finger Protein 581) is a Protein Coding gene. Predicted to 
enable DNA-binding transcription factor activity and RNA polymerase II cis- 
regulatory region sequence-specific DNA binding activity. Predicted to be 
involved in regulation of transcription by RNA polymerase II. 

chr19 58.2545732 − 44.4351 − 86.534739 − 68.4118 − 73.32255 

RINL RINL (Ras And Rab Interactor Like) is a Protein Coding gene. Predicted to 
enable guanyl-nucleotide exchange factor activity. Predicted to be involved in 
endocytosis. 

chr19 42.9596735 − 57.4864 − 21.907937 − 96.4069 − 75.6831 

CENPBD1 Predicted to enable DNA binding activity. chr16 55.3289963 − 67.2357 − 42.449989 − 55.814 − 93.1447 
THBS3 THBS3 (Thrombospondin 3) is a Protein Coding gene. The protein encoded by 

this gene belongs to the thrombospondin family. Thrombospondin family 
members are adhesive glycoproteins that mediate cell-to-cell and cell-to- 
matrix interactions. This protein forms a pentameric molecule linked by a 
single disulfide bond. This gene shares a common promoter with metaxin 1. 

chr1 62.2955312 − 84.3552 − 29.791353 − 78.6179 − 56.05497 

CDA CDA (Cytidine Deaminase) is a Protein Coding gene. This gene encodes an 
enzyme involved in pyrimidine salvaging. The encoded protein forms a 
homotetramer that catalyzes the irreversible hydrolytic deamination of 
cytidine and deoxycytidine to uridine and deoxyuridine, respectively. It is one 
of several deaminases responsible for maintaining the cellular pyrimidine 
pool. 

chr1 45.317302 − 79.2657 − 51.989675 − 8.71817 − 99.35327 

LIMS2 LIMS2 (LIM Zinc Finger Domain Containing 2) is a Protein Coding gene. This 
gene encodes a member of a small family of focal adhesion proteins which 
interacts with ILK (integrin-linked kinase), a protein which effects protein- 
protein interactions with the extraceullar matrix. The encoded protein has 
five LIM domains, each domain forming two zinc fingers, which permit 
interactions which regulate cell shape and migration. 

chr2 46.6092978 − 76.5029 − 81.910088 − 75.113 0 

NFKBIL1 NFKBIL1 (NFKB Inhibitor Like 1) is a Protein Coding gene. Involved in the 
regulation of innate immune response. Acts as negative regulator of Toll-like 
receptor and interferon-regulatory factor (IRF) signaling pathways. 
Contributes to the negative regulation of transcriptional activation of NF- 
kappa-B target genes in response to endogenous proinflammatory stimuli. 

chr6 53.4792011 − 80.9981 − 78.780383 − 80.205 0 

DTX3 DTX3 (Deltex E3 Ubiquitin Ligase 3) is a Protein Coding gene. Regulator of 
Notch signaling, a signaling pathway involved in cell-cell communications 
that regulates a broad spectrum of cell-fate determinations. 

chr12 58.4436487 − 79.989 − 64.132071 − 46.0818 − 43.75101  

T. Smith et al.                                                                                                                                                                                                                                   



Molecular and Cellular Probes 64 (2022) 101820

6

Table 6 
Ranking scores of down regulated genes related to SARS-CoV-2 compared to up regulated genes correlated with other respiratory viruses (Influenza, SARS-CoV-1, RSV 
and Rhinovirus).  

Gene Fucntion Location  

SARS-CoV- 
2 

Influenza SARS-CoV- 
1 

RSV Rhinovirus 

GPBAR1 GPBAR1 (G Protein-Coupled Bile Acid Receptor 1) is a Protein Coding gene. 
This gene encodes a member of the G protein-coupled receptor (GPCR) 
superfamily. This enzyme functions as a cell surface receptor for bile acids. 
Treatment of cells expressing this GPCR with bile acids induces the 
production of intracellular cAMP, activation of a MAP kinase signaling 
pathway, and internalization of the receptor. The receptor is implicated in the 
suppression of macrophage functions and regulation of energy homeostasis 
by bile acids. 

chr2 − 44.515674 82.44926 41.1585675 83.27739 98.47069 

IDI1 IDI1 encodes a peroxisomally-localized enzyme that catalyzes the 
interconversion of isopentenyl diphosphate (IPP) to its highly electrophilic 
isomer, dimethylallyl diphosphate (DMAPP), which are the substrates for the 
successive reaction that results in the synthesis of farnesyl diphosphate and, 
ultimately, cholesterol. 

chr10 − 40.808037 93.10592 60.5356599 76.79214 63.57264 

SC5DL This gene encodes an enzyme of cholesterol biosynthesis. The encoded 
protein catalyzes the conversion of lathosterol into 7-dehydrocholesterol. 

chr11 − 71.53255 60.62026 74.15035 88.31216 77.25149 

FAM49B Enables small GTPase binding activity. Involved in several processes, 
including cellular response to molecule of bacterial origin; negative 
regulation of small GTPase mediated signal transduction; and regulation of 
organelle organization. 

chr8 − 44.603995 74.26559 59.9066653 58.04363 63.74257 

MYH15 MYH15 (Myosin Heavy Chain 15) is a Protein Coding gene. Predicted to 
enable several functions, including ATP binding activity; actin filament 
binding activity; and calmodulin binding activity. Predicted to be involved in 
extraocular skeletal muscle development. 

chr3 − 60.985801 96.50129 79.5576747 86.08247 0 

INA INA (Internexin Neuronal Intermediate Filament Protein Alpha) is a Protein 
Coding gene. They may also play a role in intracellular transport to axons and 
dendrites. This gene is a member of the intermediate filament family and is 
involved in the morphogenesis of neurons. 

chr10 − 62.020737 95.6463 74.2010754 77.4994 0 

KIAA1009 CEP162 (Centrosomal Protein 162) is a Protein Coding gene. Involved in 
cilium assembly. 

chr6 − 50.576886 63.53921 96.7637212 13.33014 58.41121 

SGOL2 SGO2 (Shugoshin 2) is a Protein Coding gene. Predicted to be involved in 
homologous chromosome segregation; meiotic sister chromatid cohesion; 
and mitotic sister chromatid segregation. Predicted to act upstream of or 
within meiotic nuclear division; positive regulation of maintenance of 
meiotic sister chromatid cohesion, centromeric; and protein localization. 
Located in chromosome, centromeric region and nuclear body. 

chr2 − 59.393092 88.30258 99.9289845 − 4.27642 52.46389 

BCAS2 BCAS2 (BCAS2 Pre-MRNA Processing Factor) is a Protein Coding gene. 
Involved in mRNA splicing, via spliceosome. Located in centrosome and 
nuclear speck. Part of U2-type catalytic step 2 spliceosome. Colocalizes with 
DNA replication factor A complex. Implicated in breast cancer. 

chr1 − 42.301185 44.86425 69.5343411 42.43587 35.70518 

PKD2 PKD2 (Polycystin 2, Transient Receptor Potential Cation Channel) is a Protein 
Coding gene. The encoded protein is a multi-pass membrane protein that 
functions as a calcium permeable cation channel, and is involved in calcium 
transport and calcium signaling in renal epithelial cells. This protein interacts 
with polycystin 1, and they may be partners in a common signaling cascade 
involved in tubular morphogenesis. 

chr4 − 45.37472 46.51688 62.7675763 29.76504 53.48343  
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Fig. 2. Uncut (A) and Cut (B) ranking scores for each gene combining all datasets for each respiratory virus. Also, in this figure are scatter plots of ranking scores of 
all genes collected for each respiratory virus, using SARS-CoV-2 as the comparison. (C) Shows a comparison of Influenza and SARS-CoV-2, (D) between SARS-CoV-1 
and SARS-CoV-2, (E) between RSV and SARS-CoV-2 and (F) between Rhinovirus and SARS-CoV-2. 
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virus. On the other hand, a correlation matrix that shows the correlation 
between each of the viruses revealed that the most similar virus to SARS- 
CoV-2 was RSV with a Pearson’s correlation coefficient of 0.48 (Fig. 4B) 
while the least similar one was SARS-CoV-1 with a Pearson’s correlation 
coefficient of 0.15 (Fig. 4B). A correlation value of 1 implies that there is 
a perfectly linear distribution of data between the two variables and a 
value of 0.48 generated for RSV compared to SARS-CoV-2 is relatively 
high that highlight how close the two viruses are in comparison to other 
viruses. 

Differentially regulated genes were classified into 20 clusters based 
on their K means (Fig. 4C) where we used them to break down for better 
understanding whereabouts the differences between these emerged vi
ruses. Each cluster contains genes involved in specific pathways that 
allows for the comparison of gene regulation in a variety of pathways 
depending on the virus (Supplementary dataset 4). After K-means 
clustering, cluster O appeared to contain the most pathways involved in 
the innate immune response, such as the JAK-STAT signalling pathway, 
TNF signalling pathway and IL-17 signalling pathway indicating that 
cluster O could be used as a sign of a virus’s regulation for the overall 
innate immune response signalling. Both influenza and SARS-CoV-2 
showed both up and down regulated genes within the cluster with 
specific areas either being highly up- or down-regulated, suggesting that 
these viruses target specific areas within this cluster. While SARS-CoV-1 
and RSV upregulated and down regulated this region, respectively. 

The T-SNE plot analyses for all the data was coloured based on their 
belonging cluster. The T-SNE allowed multi-dimensional data to visu
alise in a low dimension space such as the 2D graph (Fig. 4D). The 
distance between each of the points reflected the similarity of each data 
point. Whilst T-SNE should not always be used for gene expression data 
analysis, due to its high intrinsic dimensionality. Therefore, it has been 

used to highlight that even though there are a high number of clusters 
present, they are still very much distinguishable, despite there being 
some clusters that exhibit more separation of data points compared to 
others. In addition, there was a slight problem with crowding towards 
the centre of the dataset; however, this was observed in most SNE forms. 

3.5. Comparison between differentially regulated genes among multiple 
respiratory viruses 

Generally, the number of upregulated genes is relatively even with 
the number of downregulated genes, however, there are more down
regulated genes than upregulated genes for each of the five tested vi
ruses. The standouts are substantially downregulated than upregulated 
genes in case of rhinovirus infection in (Fig. 5A). Moreover, rhinovirus 
showed less differentially regulated genes in total compared to the other 
respiratory viruses. 

The Venn diagrams showed a comparison between each of the vi
ruses by how many differentially regulated genes they have in common, 
regardless of whether they are up or down regulated. This highlighted 
genes that are differently regulated within only one virus compared to 
others within the same diagram (Fig. 5B). Vast majority of genes are 
found to be differentially expressed across all viruses; however, there 
were some exceptions mainly found within RSV that has the highest 
number of genes unique to itself while rhinovirus rarely had any 
uniquely expressed genes. 

3.6. Impact of SARS-CoV-2 on cellular DNA replication 

A visual representation for the impact of SARS-CoV-2 on the DNA 
replication within infected cells was outlined (Fig. 6). The upregulated 

Fig. 3. Heatmap of DEGs for all respiratory viruses studied in this analysis.  
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Fig. 4. (A) Standard deviation of all genes across all viruses. (B) Correlation matrix using data taken from the top 75% of genes. (C) KEGG pathway analysis by 
cluster. (D) T-SNE plot of all 12,000 genes. 
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genes (2/32) were shown in red while the downregulated (27/32) were 
shown in green (Fig. 6). Genes responsible to produce DNA ligase and 
helicase were notably down regulated, which are important in the DNA 
replication and being used by the virus as a means of slowing down the 
cell cycle to enhance viral replication. 

3.7. Regulation of JAK-STAT immune signalling pathway in response to 
SARS CoV-2 infection 

There are more upregulated genes in JAK-STAT immune signalling 
(Fig. 7A) and the cytokine-cytokine receptor interaction pathways 
(Fig. 7B) than downregulation, highlighted by the prominence of the red 
colouring over the green colouring. While there were several upregu
lated genes as GFAP and Ras, which are involved in cell differentiation 
and MAPK signalling pathway, respectively. 

The genes that are up or down regulated in realtion to the immune 
signalling pathways and are affected in response to SARS-CoV-2 infec
tion were analysed using KEGG pathway database (Fig. 7A and B and 
Supplementary Fig. 1). These results revealed that SARS-CoV-2 does not 
affect every pathway in a simple manner by either upregulating or 
downregulating all genes involved in that pathway, but instead having 
multiple effects. 

Using the ranking scores, C8orf4 was the second most highly upre
gulated gene in cells/patients infected with SARS-CoV-2. The C8orf4 
(also known as TCIM) is responsible for producing the c8orf4 protein 
(also known as TC1) which is involved in the enhancement of NF- 
kappaB activity and leading to up-regulating several cytokines 
involved in the process of inflammation [13]. This is the main factor 
attributed to the cytokine storm exhibited in patients following 
SARS-CoV-2 infection. In addition, our analyses show that each virus has 
a different effect on the regulation of C8orf4 and its regulation could 
therefore be used as a biomarker to differentiate between aetiology of 

infection, with extremely high levels of TC1 protein pointing towards a 
SARS-CoV-2 infection (Fig. 7C). Of course, many other genes could be 
used as markers for SARS-CoV-2 infection but also genes that are 
conserved between all viruses. Previous study, based on transcriptome 
overlapping analysis induced on bronchial epithelium cells infected with 
SARS-CoV-2, SARS-CoV, MERS-CoV, and H1N1, has revealed that 
c8orf4 gene was commonly regulated in NHBE and HAE under the 
infection of the four different viruses [14]. In addition, c8orf4 gene 
enhances the proliferation of follicular dendritic cells [15]. 

After individual identification of the upregulated or downregulated 
genes and their respective pathways, we aim to visualise where those 
genes are located within the human chromosome (Fig. 7D). Human 
genome map analyses show each chromosome with its own line with 
genes where the upregulated genes appear above the line in red colour 
while genes that are downregulated appear below the line in blue colour 
(Fig. 7D). This genomic map shows the regulation in response to SARS- 
CoV-2 infection and revealed that every chromosome in the human 
genome has been affected whereas the mostly affected chromosome was 
chromosome 19. However, the least affected chromosomes were X and Y 
sex chromosomes. In addition, chromosome 17 also shows a notable 
pattern. There are many areas across many chromosomes that showed 
notable gaps where SARS-CoV-2 appears to have no effect on gene 
regulation (Fig. 7D). 

There is a large amount of consistency between all the genome maps 
within the most affected chromosome, in all cases, being chromosome 
19. In case of rhinovirus, there is a lack of altered genes regulation on the 
X and Y chromosomes. Furthermore, a much blander overall picture on 
fewer data points (Supplementary Fig. 2D) because there were less genes 
recorded to have been up or downregulated in the rhinovirus dataset. 

Fig. 5. Nature of differentially regulated genes. (A) Total number of upregulated and down regulated genes for each virus. (B) Venn diagrams representing the 
differentially regulated genes that are in common between each of the respiratory viruses. 
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Fig. 6. Heatmaps specific to different pathways compiled by GAGE pathway analysis. (A) For Defence response to virus, (B) for cytokine response, (C) for regulation 
of cytokine production and (D) for positive regulation of innate immune response. 

Fig. 7. Regulation of different pathways by studied respiratory viruses. (A) Regulation of genes associated with the JAK-STAT signalling pathway. (B) Regulation of 
genes associated with cytokine-cytokine receptor interaction. (C) Ranking scores of the C8orf4 gene for each respiratory virus. (D) Genome map showing SARS-CoV-2 
upregulated genes in red and downregulated genes in blue. 
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4. Discussion 

Despite majority of the human respiratory viruses show similar pa
thology by infecting the same respiratory system, they all showed clear 
and substantial differences, which have highlighted unique markers 
related to differential gene regulation. The scatter plots showed the 
correlation between the effects of each virus on human gene expression, 
and a specific removal of genes was evident in this analysis which are 
less dramatically differentially regulated and therefore of less impor
tance to this study. These results indicated that SARS-CoV-2 is like RSV 
compared to other respiratory viruses because of the high correlation 
between the data points within the scatter graphs showing a rising di
agonal line suggesting a positive correlation between the upregulated 
and downregulated genes. These results are supported by the correlation 
matrix, where the Pearson’s correlation coefficient between SARS-CoV- 
2 and RSV was 0.48, much higher than the 0.22, 0.2 and 0.15 for 
influenza, rhinovirus, and SARS-CoV-1, respectively. The SARS-CoV-2 
and RSV showed high similarity in differentially regulated genes. This 
aligns with the fact that affected patients exhibit similar symptoms when 
infected with any of SARS-CoV-2 or RSV, mainly upper respiratory tract 
symptoms and often lower respiratory tract symptoms such as a dry 
cough [16]. Interestingly, both viruses appear to cause damage to the 
respiratory tract that result in persistent problems long after infection 
such as persistent airway obstruction as well as hyper-responsiveness 
can be seen in patients 30 years after infection with RSV [17]. These 
symptoms are like the long-term lung dysfunction reported after 
SARS-CoV-2 infection [18]. However, the main difference between these 
two viruses is the age of the patients that are more susceptible for 
infection, with RSV commonly causing respiratory tract infection in 
young infants and children [16], whereas SARS-CoV-2 is known for 
more severe cases being present in the elderly albeit infection potential 
among all ages. Further research in this area could be useful to compare 
influenza, RSV, SARS-CoV-1 and rhinovirus against SARS-CoV-2 but 
specifically for each pathway/area such as the innate immune response 
or the cytokine activation pathway. 

Insights into the human chromosomes in response to SARS-CoV-2 
infection revealed that the mostly affected chromosome was chromo
some 19 suggesting a high number of genes involved in the immune 
response to viral infection could be present within chromosome 19 and 
severe cases of infection could be attributed to the genetic mutations 
within this chromosome. Another interesting point is the presence of 
differential gene expression on the X chromosome for patients suffering 
from COVID-19. Altered genes on the X-chromosome could lead to a 
difference in the clinical outcome between men and women infected 
with SARS-CoV-2. Previous studies reported that the immune regulatory 
genes encoded by the X chromosome in women could cause lower viral 
load levels resulting in a reduction in the inflammatory response 
compared to men [19]. 

The top and bottom five consistently up and down-regulated genes 
across all five viruses could potentially be used as markers for specific 
respiratory viral infection. JAK2 is one of the genes, which is consis
tently, and highly upregulated among all the studied viruses and it en
codes for the Janus Kinase 2 protein (JAK2). JAK2 plays a crucial role in 
the cytokine signalling where it associates with type II cytokine re
ceptors, hormone-like cytokine receptors and being activated by IFN- 
gamma [20]. Additional four-upregulated genes were DDX60L, IFI44, 
FOXN2 and DDX60, which may be a target for drugs. 

The upregulated genes in response to SARS-CoV-2 infection have 
been identified while those were downregulated in the other respiratory 
viruses. These genes could be used as markers for a SARS-CoV-2 infec
tion and to distinguish SARS-CoV-2 from other respiratory viruses. The 
most important gene was the NFKBIL1 gene that encodes for the NF- 
kappa-B inhibitor-like protein 1 and it is involved in the NF-kappa-B 
signalling, which plays a major role in the inflammatory response by 
increasing the cytokine expression [21]. On the other hand, the down
regulated genes in response to SARS-CoV-2 could possibly be used as a 

marker to distinguish SARS-CoV-2 infection in case of suspicion with a 
respiratory virus infection associated with respiratory symptoms. One of 
these genes is GPBAR1, which encodes for the G-protein acid receptor 1. 
Previously, it has been reported that GPBAR1 was able to regulate and 
increase the expression of IL-10 [22] suggesting that levels of IL-10 in 
patients suffering with COVID-19 would be lower, however, recent 
studies contradict that as IL-10 levels are found to be unexpectedly 
increased in severe cases [23]. 

5. Conclusions and limitations 

The aim of this study was to determine the influence of SARS-COV-2 
on the immune regulation and gene induction in comparison to other 
respiratory viruses. It appeared that SARS-CoV-2 was unique in its 
impact on gene regulation and matches none of the other respiratory 
viruses except RSV. Genes such as MAP2K5 and NFKBIL1 have been 
found to be greatly upregulated in SARS-CoV-2 whilst being down
regulated in the compared viruses. MAP2K5 is a dual specificity protein 
kinase that belongs to the MAP kinase family that specifically interacts 
with and activates MAPK7/ERK5. The signal cascade mediated by this 
kinase is involved in growth factor stimulated cell proliferation and 
muscle cell differentiation. The expression of these kinases inhibited the 
virus at post-entry stages. Specifically, it can inhibit the viral RNA 
replication. NFKBIL1 gene lies within the major histocompatibility 
complex (MHC) class I region on chromosome 6 that involved in the 
regulation of innate immune response by acting as negative regulator of 
Toll-like receptor and interferon-regulatory factor (IRF) signalling 
pathways. 

Whereas genes such as GPBAR1 and SC5DL were contrastingly found 
to be significantly downregulated in SARS-CoV-2 but upregulated in 
influenza, SARS-CoV-1, RSV and rhinovirus. The GPBAR1 gene encodes 
a member of the G protein-coupled receptor (GPCR) superfamily. This 
enzyme functions as a cell surface receptor for bile acids, which is 
implicated in the suppression of macrophage functions and regulation of 
energy homeostasis by bile acids. SC5DL gene encodes an enzyme of 
cholesterol biosynthesis pathway and it catalyzes the conversion of 
lathosterol into 7-dehydrocholesterol. Despite all the reported differ
ences, the most conserved genetic signature was JAK2 gene as well as 
the constitutively downregulated ZNF219 gene. While the resolution of 
analysis provides foundational finding, further research is warranted to 
validate the impact of these molecular signature against individual or 
multiple infections. This study might open the way for further in
vestigations aimed at elucidating the molecular mechanisms that un
derlay these observations. This study also suggests that it may be 
possible to identify a signature, which could be useful to identify early 
patients at risk of adverse outcome. Our analysis identified several key 
aspects of the host response among human respiratory viruses’ infection 
where essential immunity genes and biological pathways could be used 
for understanding the pathogenesis of SARS-CoV-2 infection. 

We observed a limitation of the study that the gene regulation may 
be affected by the experimental characteristics such as time length post 
infection, the culturing conditions, phenotypes of the cells, and the na
ture of the virus stimulation (in vivo or in vitro studies). Finally, 
different cell types (A549, BALF or PBMC cells) were used for virus 
infection, which may respond differently to different viral infections. 
Nevertheless, the provided analysis provides a foundation for the impact 
of respiratory viruses on the gene regulation. 

In addition, like other transcriptomic studies, this work has several 
limitations. The number of patients included in the different groups was 
limited, a factor that may have restricted the number of DEG reported. 
Samples were taken from different organs, whole blood or saliva do not 
necessarily reflect the gene expression patterns in clinically affected 
organs and/or individual cells and depict sample heterogenicity. The 
sequencing depth may have restricted differential detection of less 
abundantly expressed genes. Finally, the samples were issued from a 
single cohort of patients, and thus validation from other cohorts would 
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be useful. 
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