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Abstract

Background. Mood and anxiety disorders are ubiquitous but current treatment options are
ineffective for many sufferers. Moreover, a number of promising pre-clinical interventions
have failed to translate into clinical efficacy in humans. Improved treatments are unlikely
without better animal–human translational pipelines. Here, we translate a rodent measure
of negative affective bias into humans, exploring its relationship with (1) pathological
mood and anxiety symptoms and (2) transient induced anxiety.
Methods. Adult participants (age = 29 ± 11) who met criteria for mood or anxiety disorder
symptomatology according to a face-to-face neuropsychiatric interview were included in the
symptomatic group. Study 1 included N = 77 (47 = asymptomatic [female = 21]; 30 = symp-
tomatic [female = 25]), study 2 included N = 47 asymptomatic participants (25 = female).
Outcome measures were choice ratios, reaction times and parameters recovered from a com-
putational model of reaction time – the drift diffusion model (DDM) – from a two-alterna-
tive-forced-choice task in which ambiguous and unambiguous auditory stimuli were paired
with high and low rewards.
Results. Both groups showed over 93% accuracy on unambiguous tones indicating intact dis-
crimination, but symptomatic individuals demonstrated increased negative affective bias on
ambiguous tones [proportion high reward = 0.42 (S.D. = 0.14)] relative to asymptomatic indi-
viduals [0.53 (S.D. = 0.17)] as well as a significantly reduced DDM drift rate. No significant
effects were observed for the within-subjects anxiety-induction.
Conclusions. Humans with pathological anxiety symptoms directly mimic rodents undergo-
ing anxiogenic manipulation. The lack of sensitivity to transient anxiety suggests the paradigm
might be more sensitive to clinically relevant symptoms. Our results establish a direct trans-
lational pipeline (and candidate therapeutics screen) from negative affective bias in rodents to
pathological mood and anxiety symptoms in humans.

Introduction

Mood and anxiety disorders are extremely prevalent worldwide, with huge psychological,
economical and social costs (Beddington et al., 2008). ‘Affective biases’, which span many
domains of cognition, are core features of these disorders (MacLeod et al., 1986). For example,
anxious and depressed individuals demonstrate increased sensitivity to aversive stimuli (Mogg
and Bradley, 2006), an attentional bias towards threatening information (MacLeod et al.,
1986), and biased interpretation of ambiguous information (Hirsch and Mathews, 1997)
[for a review see Roiser et al. (2012)]. These biases both precipitate the onset of disorders
and contribute to their maintenance (Kendler et al., 2004; Harmer et al., 2009; Roiser et al.,
2012). Targeting these biases is therefore a key goal of treatment development.

Unfortunately, for a sizeable number of individuals, current treatments do not lead to
clinical improvement (Joffe et al., 1996; Psychological Therapies: Annual report on the use
of IAPT services Psychological Therapies: Annual Report on the use of IAPT services,
England, 2015–16, 2016). Recent years have moreover seen a number of high-profile failures
in drug development (Choi et al., 2014; Scannell et al., 2016). Among the reasons for this, is
that some pre-clinical animal tests do not adequately translate the human behaviour they are
designed to model (Choi et al., 2014; Badre et al., 2015; Scannell et al., 2016). Indeed there are
no tasks that are identical across species; some prominent examples – the forced swim test
(Porsolt et al., 1977), or tail suspension test (Steru et al., 1985) – do not have clear human
analogues. We argue, therefore, that developing identical paradigms across humans and animal
models will help reduce pre-clinical to clinical translation failure. Instead of scaling-back para-
digms developed in humans into animals, the present paper takes a paradigm developed
within the constraints of an animal model, and directly translates it for human use.
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Specifically, we translate a rodent model of affective bias into
humans. In the animal task (Hales et al., 2016), rats learn to
correctly respond to high- or low-frequency tones, which are
associated (100%) with high or low rewards (food pellets). In
the test-phase they also respond to an ambiguous mid-tone
randomly reinforced with both high/low reward outcomes. The
optimal response to this ambiguous stimulus, which is exactly
equidistant between the unambiguous stimuli, and is reinforced
with 50% of each outcome, is to press the high reward button
with a probability of 0.5. However, a ‘pessimistic’ response is to
more frequently assume that this ambiguous stimulus will lead
to the less good outcome, and hence press the low reward button
more than 50% of the time. This would result in a probability
pressing the high reward button of less than 0.5, and hence
represent negative affective bias. Rats administered an anxiogenic
drug or subjected to chronic stress (repeated restraint stress and
social isolation) (Hales et al., 2016) display increased negative
affective bias in choice behaviour. No significant behavioural
effect is observed for rats undergoing acute stress (restraint)
manipulation.

Here, we explored the impact of two types of anxiety on a
human version of this task: (a) pathological anxiety in mood
and anxiety disorders, and (b) acute stress induced using threat
of unpredictable shock. The latter stress induction is a well-
validated and reliable technique, also translated from animal
models (Robinson et al., 2011; Aylward and Robinson, 2017).
Critically, it allows the interaction between cognition and anxiety
to be explored within-subjects. It elicits ‘adaptive anxiety’
responses such as response inhibition and harm avoidance
(Boureau and Dayan, 2011; Robinson et al., 2013a; Aylward
and Robinson, 2017) as well as ‘negative bias’ (Robinson et al.,
2011, 2012, 2013b) in healthy individuals. A related, albeit more
complex, version of the present task has previously been tested
in healthy participants. Participants responded to a tone paired
with reward (to obtain money) and a tone paired with punish-
ment (to avoid punishment). In a test phase participants made
more avoidance responses to an ambiguous tone, demonstrating
a bias towards avoiding punishment – i.e. an avoidance bias
(Anderson et al., 2012). Notably, this avoidance bias in respond-
ing was correlated negatively with a self-reported state anxiety
level. As such, we predicted that on our novel, directly translated
rodent task, induced and pathological anxiety would be associated
with a negative affective bias.

Computational models can make specific predictions about
the underlying mechanisms that drive behaviour and enable a
more fine-grained view of decision-making and how it changes
in pathological states (Robinson and Chase, 2017). One such
model – the drift diffusion model (DDM) – has been applied to
rodent data on this task (Hales et al., 2016). This model parame-
terises decision-making as a process of noisy accumulation of
evidence (Ratcliff et al., 2016) and is able to accurately model
the reaction times to stimuli on two-alternative forced choice
tasks. Negative bias following acute pharmacological manipula-
tion and chronic stress in rats was accompanied by increased
‘boundary separation’ parameters (more information required in
order to reach a decision), whereas reduced ‘drift rate’ (rate of
information accumulation) parameters were seen following the
pharmacological manipulation. In this paper we applied both
the EZ drift model (Wagenmakers et al., 2007) – a pared down
version of the DDM (van Ravenzwaaij et al., 2016) as well as a
full Bayesian hierarchical DDM (Wiecki et al., 2013) to our
human data.

We therefore tested two predictions. Firstly, considering the
well-documented biases in pathological anxiety (MacLeod and
Mathews, 2012) and prior work with related tasks (Anderson
et al., 2012), we predicted that individuals with mood and anxiety
disorders, relative to the asymptomatic group, would demonstrate
increased negative affective bias in this task. Secondly, as induced
anxiety instantiates biases across cognition (Robinson et al.,
2013b), we predicted that in asymptomatic individuals, threat of
shock would also instantiate a negative affective bias. In both
cases, we predicted that negative bias in choice behaviour would
be associated with alterations to drift diffusion parameters.

Method

Participants

Participants were recruited using internet advertisements and via
subject databases held at University College London. The only
group difference in recruitment was the wording of the advertise-
ments; asymptomatic healthy participants replied to advertise-
ments asking for participants with no psychiatric symptoms;
whilst participants with low mood and/or anxiety symptoms
replied to advertisements asking for participants who self-defined
as experiencing persistent low mood/anxiety symptoms.

A total of 77 participants were included in study 1: 47 asymp-
tomatic participants (mean age = 28.83, S.D. = 10.52; 25 female)
and 30 (N = 31 originally, but one excluded as they failed to follow
task instructions), unmedicated participants with low mood and/
or anxiety symptoms (mean age = 28.93, S.D. = 10.92; 21 female).
A total of 47 asymptomatic participants were included in study
2 (mean age = 28.96, S.D. = 10.45; 25 female; 46 overlap with
study 1). The neutral version of the task (study 1) was always
completed first to ensure consistency with the symptomatic
group (who did not complete the stress version). Participants
could be aged between 18 and 65 years.

Symptomatic group details

The symptomatic group comprised individuals who met criteria
for mood and anxiety disorders. As depressive and anxiety symp-
toms are highly comorbid and may not have distinct underlying
causes, we include a mixed sample in our symptomatic group
(see Table 1 and online Supplement). Following an initial screening
process, participants who met criteria for mood or anxiety disorder
symptomatology according to a face-to-face Mini International
Neuropsychiatric Interview [M.I.N.I. (Lecrubier et al., 1997)] were
included in the symptomatic group, those who did not meet any
(past/present) criteria according to the M.I.N.I. were included in
the asymptomatic group. The State-Trait Anxiety Inventory [STAI
(Spielberger et al., 1983)] was also collected, as well as additional
measures (see Table 1 for full details). Exclusion criteria are listed
in the online Supplement.

Procedure

Participants provided written informed consent to take part (eth-
ical approval from UCL ethics reference: 6198/001 and 1764/001).
They completed a task coded using the Cogent (Wellcome Trust
Centre for Neuroimaging and Institute of Cognitive Neuroscience,
UCL, London, UK) toolbox for Matlab (2014b, The MathWorks,
Inc., Natick, MA, United States). Scripts are available at: 10.6084/
m9.figshare.4868303.
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Acquisition Phase

A task schematic is presented in Fig. 1. During the acquisition
block, participants heard high (1000 Hz) and low tones
(500 Hz), these frequencies were lower than the rat task to
account for cross-species differences in hearing. The two tones
were associated with different reward values (tone/reward pairings
were counterbalanced across participants). They were instructed to
learn to make correct key presses following each tone (‘z’ or ‘m’
key on a laptop keyboard) and informed that correct responses
would be rewarded. They were told that they should try and maxi-
mise earnings. Ten low and ten high tones, randomly presented,
were played during the practice block. A tone was played for
1000 ms followed by an inter stimulus interval of 750 ms. A
white fixation cross appeared in the middle of the screen during
this time. Participants could make their response from the onset
of the tone presentation. Following the key press feedback was
provided. ‘Correct, Win £1’ appeared for 750 ms following a cor-
rect response to the low reward tone (low/high frequency, coun-
terbalanced). ‘Correct, Win £4’ appeared for 750 ms following a
correct response to the high reward tone (low/high frequency,
counterbalanced). ‘Timeout for incorrect response’ appeared for
3250 ms following an incorrect or slow response. This delay was
provided to match directly with the rodent version of the task
(Hales et al., 2016). The acquisition block enabled participants
to understand the key/tone pairings (counterbalanced across par-
ticipants). The practice block could last between 50 and 100 s.

Testing phase

The tone/reward pairings remained the same as in acquisition but
the participants were also presented with a mid-point, ambiguous
tone (750 Hz) which fell directly in between the low and high
tones. Participants were informed that they might hear other
tones and that if the tone was unclear, that they should make a
key press that corresponded to the closest tone. For half of the
trials this mid-tone was associated with a high reward outcome,
and for the other half of the trials it was associated with a low
reward outcome (with feedback contingent on whether partici-
pants happened to select this random outcome). The sequence
of mid-tone outcomes was created uniquely for each individual
(a list of alternating outcomes was sorted using the MATLAB
randperm function). As in the practice block, a tone was played

for 1000 ms, followed by an interstimulus interval of 750 ms.
Participants made their response as quickly as possible following
the tone presentation. Following correct responses the feedback
was presented on the screen for 750 ms, whilst following incorrect
or slow responses ‘Timeout for incorrect response’ was presented
on the screen for 3250 ms.

Study 1: symptomatic group v. asymptomatic controls

Stimuli Details
The main task consisted of 120 trials (40 low/mid/high tones, ran-
domly presented). The main task could therefore last between 300
and 600 s.

Study 2: induced anxiety version

Shock work-up
A Digitimer DS5 Constant Current Stimulator (Digitimer Ltd.,
Welwyn Garden City, UK) delivered the shocks, via two electro-
des attached to the participant’s non-dominant wrist. The shock
intensity was increased until the subjective rating was ‘unpleasant,
but not painful’ (Schmitz and Grillon, 2012).

Stimuli details
A task schematic is presented in Fig. 2. The task was performed
under instructed threat and safe conditions in the same manner
as Aylward and Robinson (2017). Participants were told that
they would be at risk of an unpredictable shock (independent
of their behavioural response), during a threat block (red back-
ground). Participants were told that they would be free from
shock during a safe block (blue background). The order of the
conditions (threat or safe first) was counterbalanced across parti-
cipants. Colours were not counterbalanced as prior work has
shown this effect to be independent of background colour
(Grillon et al., 1993, 2006). Each block (total = 4) consisted of
60 randomly presented trials (20 low/mid/high tones; total =
240). The maintenance task could therefore last between 600
and 1200 s. Participants either received a shock in the first threat
block (post-threat-trial = 45), in the second threat block
(post-threat-trial = 96) or at both of these times (randomised
across participants). As a manipulation check, participants retro-
spectively rated their anxiety (out of 10) under threat and safe
conditions.

Statistical analyses

Reaction time (RT) and bias measures (data available at: 10.6084/
m9.figshare.4868303) were analysed using SPSS Version 22 (IBM
Crop, Armonk, NY). For all analyses, p = 0.05, was considered sig-
nificant. Affective bias (percentage of ambiguous tones classified
as high reward) was calculated by dividing the number of ‘high
reward’ responses made to the mid-tone by the total number of
key presses made to the mid-tone (note that the pairing of the
high/low frequencies with high/low reward was counterbalanced
across participants, so this refers to the probability of selecting
the button associated with high reward, not high frequency)
and compared across groups or conditions using paired sample
t tests and Bayesian equivalents. RT to respond to the mid-tone
was normally distributed and was analysed using independent
and paired sample t tests for studies 1 and 2 respectively.

Bayesian statistics were run [JASP, version 0.7 (JASP, 2016)],
employing the default prior. The Bayesian approach considers

Table 1. Demographic and Clinical information

Demographic HC ANX

Age 28.83 (10.52) 28.93 (10.92)

Female 55.32% 70%

Caucasian 48% 56.67%

Education 16.68 (2.23) 14.37 (5.42)

STAI state 29.94 (8.06) 51.83 (9.82)

STAI trait 33.72 (10.12) 59.43 (10.05)

BDI 3.30 (3.78) 25.10 (10.36)

Ham-D – 16.14 (5.52)

Raven’s 8.96 (2.13) 8.21 (2.74)

HC, asymptomatic healthy control; ANX, symptomatic individual; STAI, State-Trait Anxiety
Inventory; BDI, Beck depression Inventory; Ham-D, Hamilton depression inventory; Ravens’s,
Raven’s progressive matrices.
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the likelihood of the data if the alternative hypothesis is true ver-
sus if the null hypothesis is true, allowing for inferences to be
made about which model best explains the data. Bayesian analysis
of variances and t tests were used to generate BF10 factors which
provided evidence for a model of interest relative to a null model.
A model with a BF10 > 1 signifies that model is better at explaining
the data relative to the null model, and vice versa for BF10 < 1. To
interpret the magnitude differences between models the following
labels were assigned to BF10: anecdotal (1–3), substantial (3–10),
strong (10–30) decisive (>100) (Jeffreys, 1998).

Mean RT, variance and proportion of positive responses to the
mid-tone were also fed into the EZ-DM (script available at:
10.6084/m9.figshare.4868303). The parameters of interest were:
boundary separation (a), drift rate (v) and non-decision time
(t). These refer to the amount of information required before a
response can be made (a), the rate at which this information is
accumulated (v) and the proportion of the RT that is not
accounted for by evidence accumulation (t).

Finally, EZ-DM analyses were supplemented by full hierarchical
Bayesian model comparison using the Hierarchical Bayesian

Fig. 1. Participants were required to make a key press (‘z’ or ‘m’
key) following a tone played for 1000 ms. After making their
response, participants received feedback on their performance.
Correct responses saw feedback appear on the screen for 750 ms,
whilst incorrect responses, or responses made outside the 750 ms
window, saw feedback appear on the screen for 3250 ms. The
task consisted of 120 trials, during which 40 low (500 Hz), mid-tone
(750 Hz) and high (1000 Hz) tones were presented. High-/low-
frequency tones were 100% associated with wins of £1 or £4 (con-
tingency counterbalanced across participants). Note the order of
trials and outcomes is for illustration purposes only.

Fig. 2. Participants were required to make a key
press (‘z’/’m’) following a tone played for 1000 ms.
After making their response, participants received
feedback on their performance. Feedback for cor-
rect responses lasted 750 ms, whilst feedback for
incorrect (or slower than 750 ms) responses lasted
3250 ms. During the safe condition, in which the
background was blue, participants were not at risk
of shock. During the threat condition, in which the
background was red, participants were at risk of
unpredictable electric shock. Low (500 Hz), mid-
tone (750 Hz) and high (1000 Hz) tones were pre-
sented. High/low tones were 100% associated with
wins of £1 or £4 (contingency counterbalanced
across participants).
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estimation of the Drift-Diffusion Model in Python (HDDM) tool-
box (Wiecki et al., 2013). The modelled parameters were identical
to the above, but this approach also enabled the inclusion of a bias
parameter (z), which denotes the starting point between the
boundaries. The data for all trials were included in this analysis
(stratified into ambiguous mid tone and unambiguous high/low
reward trial types) and parameters fit using an Markov Chain
Monte Carlo (MCMC) sampling approach implemented using
PyMC (Patil et al., 2010) (2000 MCMC samples with a burn-in
of 20 samples; all winning models obtained Gelman-Rubin statis-
tics ∼1). The influence of adding and subtracting parameters was
examined by comparing deviance information criterion (DIC)
scores across models. The most extreme 5% of RTs was automat-
ically excluded from all model fitting by the toolbox [assuming that
outliers come from a uniform distribution; see Wiecki et al. (2013)
for more details] to account for lapses and facilitate model fitting.
Follow-up analysis on recovered parameters was run in a compar-
able manner to the EZ diffusion analysis and supplemented with a
full Bayesian model comparison approach in which the impact of
including group or condition in the hierarchical model was tested,
and the posteriors of parameters that depended on additional hier-
archy plotted for models achieving or exceeding parity of model
fits with the basic model. The winning models showed good par-
ameter recovery on posterior predictive checks.

Correlation analyses were also run to investigate correlations
between STAI trait anxiety scores, affective bias and drift rate.

Results

Study 1

Choice behaviour
High reward and low reward tone accuracy was high (Table 2) and
comparable across groups (t(75) = 0.96, p = 0.338, d = 0.22, and
t(75) = 0.28, p = 0.78, d =−0.06, respectively; no trial × group inter-
action in accuracy F(1,75) = 1.7, p = 0.2 or RT F(1,75) = 0.2, p = 0.8).
However, there was a significant effect of group on mid-tone
choice (t(75) = 3.08, p = 0.003, d = 0.732, see Fig. 3). The symptom-
atic group was less likely to associate the mid-tone with high
reward compared to the asymptomatic group. Bayesian analysis
provided strong evidence for a significant difference in affective
bias between groups (BF10 = 12.51). Subjects were also signifi-
cantly slower on these mid-tone trials than both high (t(76) =
11.8, p < 0.001) and low (t(76) = 15.1, p = 0.003) reward trials.

Reaction time
See Table 2 for average RT to all tone types across group. Time to
respond to the mid-tone did not differ across groups (t(75) = 1.08,
p = 0.29, d = 0.248). Bayesian analysis favoured the null model
(BF10 = 0.40).

DDM
EZ-DM. Despite comparable overall RTs there was a significant
difference in drift rate between groups (t(75) = 2.70, p = 0.008);
but not boundary separation (t(75) =−0.79, p = 0.43) or non-
decision time (t(75) = 1.3, p = 0.96). The symptomatic group had
a slower drift rate towards making a positive choice to the mid-
tone (asymptomatic mean = 0.013, S.D. = 0.075, symptomatic
mean =−0.032, S.D. = 0.066; see Fig. 3). Bayesian analysis provided
substantial evidence for a difference between groups in drift rate
(BF10 = 5.22; all other BF10 < 0.31).

HDDM. A wide model search was completed (see online
Supplement) across a range of parameters and within-subject fac-
tors. The three best models are presented in Fig. 4a. The winning
model comprised a model with drift rate, boundary separation,
bias and non-decision time parameters (fitted separately across
ambiguous mid tone and unambiguous trial types). As with the
EZ-DM model, parameters extracted from this winning model
demonstrated significant difference in ambiguous mid-tone drift
rate between groups (t(75) = 3.0, p = 0.004); but not boundary separ-
ation (t(75) =−1.2, p = 0.22), non-decision time (t(75) = 1.4, p = 0.15)
or bias (t(75) =−1.4, p = 0.89). The winning model parameters
showed a tight correspondence (all r > 0.8, p < 0.001) with the
EZ-DM parameters (see drift rate; Fig. 4b). However, one advantage
of the full hierarchical approach is that we can include group in the
model fitting procedure. This approach revealed a winning model
(of equivalent fit to the model fit across groups) where the drift
rate parameter alone is separated by group. Posterior distributions
demonstrate that this is because v on mid tones is lower in patients
relative to controls (Fig. 4d). In short, the full hierarchical model is
consistent with the basic EZ-DM model.

Correlations

There was a strong positive correlation between affective bias and
both drift rate measures (r > 0.98, p < 0.001), those who had a bias
away from choosing high rewards had a slower drift rate towards
high rewards.

There was weak evidence for a correlation between affective
bias and STAI trait scores (r = −0.207, p(two-tailed) = 0.07, p(one-
tailed) = 0.035) as well as weak evidence for a correlation between
drift rate and STAI trait scores (EZ-DM r =−0.21, p(two-tailed) =
0.066, p(one-tailed) = 0.033; HDDM r =−0.22, p(two-tailed) =
0.053, p(one-tailed) = 0.027). In other words higher anxiety was
associated with a reduced drift rate to the high reward choice.

Table 2. Average choice, accuracy and reaction time (ms) to all tones in study 1

Asymptomatic Accuracy (S.D.)

Low reward tone 0.98 (0.05)

High reward tone 0.93 (0.083)

Symptomatic Accuracy

Low reward tone 0.97 (0.039)

High reward tone 0.95 (0.069)

Group Proportion high reward responses to mid-tone

Asymptomatic 0.53 (0.17)

Symptomatic 0.42 (0.14)

Asymptomatic Reaction time

Low reward tone 819.51 (212.00)

Mid-tone 942.41 (181.78)

High reward tone 757.33 (228.47)

Symptomatic Reaction time

Low reward tone 763.17 (197.78)

Mid-tone 894.54 (203.57)

High reward tone 694.56 (194.32)
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Fig. 3. The impact of pathological and induced anxiety on ambiguous mid-tone predictions. Violin plots of the proportion of positive responses made to ambiguous
tone and EZDM ‘drift rate’ – the rate of accumulation of evidence to classify a tone as high reward (shaded area represents a smoothed histogram; yellow cross
represents the mean; each circle represents an individual). (a) Symptomatic individuals had more negative bias ( p = 0.003, BF10 = 12.51) and (b) a more negative
drift rate towards classifying the mid-tone as high reward ( p = 0.008, BF10 = 5.22). However, there was (c) no significant difference in affective bias following induced
anxiety ( p = 0.06, BF10 = 0.863) and (d) no significant difference in drift rate across conditions ( p > 0.125, BF10 < 1). EZDM, ‘easy’ diffusion model; BF, Bayes factor.

Fig. 4. Hierarchical drift diffusion modelling of pathological anxiety reveals (a) a winning model (*) that includes separate drift rate (v), boundary separation (a)
non-decision time (t) and bias (z) parameters for unambiguous (u) and ambiguous mid-tone (m) trial types based on lowest DIC scores. The v parameters recovered
using this approach (HDDM) (b) correlate tightly with those recovered from the EZ-DM model. Including group in the model fitting procedure (c) demonstrates that
the best model (*) fits the v parameter alone separately across groups. This is because, as can be seen on the posterior recovered samples, the (d) v parameter was
more negative in patients than controls. HC, asymptomatic healthy control; ANX, symptomatic individual.
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Additional exploratory correlations can be found in the online
Supplement.

Study 2

Threat of shock manipulation check
Participant anxiety ratings were significantly higher during the
threat condition relative to the safe condition t(44) = 8.92, p <
0.001, d = 1.88 (safe mean = 1.64, S.D. = 1.05; threat mean = 4.93,
S.D. = 2.21). Bayesian analysis provided decisive evidence that a
model with a main effect of threat was the winning model
(BF10 = 4.68 × 108).

Choice behaviour
Accuracy for the high reward and low reward tones were high
(Table 3) and comparable across conditions (t(46) = 0.975, p =
0.335, d = 0.02, and t(46) = 1.597, p = 0.117, d = 0.33, respectively).
During the threat condition the proportion of mid-tones associated
with high reward was smaller relative to the safe condition but did
not achieve significance (t(46) = 1.93, p = 0.06, d =−0.28; see Fig. 3).
Bayesian analysis anecdotally favoured a model with a main effect
of condition (BF10 = 1.019). Subjects were also significantly slower
on mid-tone trials than both high (t(46) = 10.3, p < 0.001) and low
(t(46) = 11.3, p < 0.001) reward trials. There was no interaction in
mid-tone choice behaviour between the condition and number of
shocks (F(1,45) < 0.001, p = 0.98) nor between condition and the
time of the first shock (F(3,43) = 0.34, p = 0.80).

Reaction time
See Table 3 for RT to different tone types across conditions. There
was no difference between conditions in time taken to respond to
the mid-tone (t(46) = 1.24, p = 0.221, d = 0.26). Bayesian analysis
confirmed that the null model was the winning model (BF10 =
0.325).

DDM
EZ-DM. There was no significant difference between conditions
in drift rate, non-decision time or boundary separation in
decision-making to the mid-tones ( ps > 0.125). Bayesian analysis
confirmed that the null model was the winning model in all cases
(BF10 < 1).

HDDM. The winning model comprised drift rate, boundary sep-
aration, non-decision time and bias parameter all fitted separately
across ambiguous and unambiguous trials (Fig. 5a). This was the
same model as study 1; however, this time, adding condition
(Fig. 5b) into the hierarchy in this winning model resulted in sub-
stantially worse fits, thereby providing no justification for dividing
trials by condition. In other words, the full hierarchical procedure
again agreed with the EZ-DM procedure.

Conclusion

In this study we directly translate a rodent measure of affective
bias. We demonstrate that pathological mood and anxiety disor-
ders, but not transient-induced anxiety in asymptomatic indivi-
duals, are associated with increased negative affective bias in
task performance. This bias can, moreover, be attributed to
reduced ‘drift rate’ on a computational model of reaction times.

Our results demonstrate that individuals with mood and anx-
iety disorders are more likely to interpret an ambiguous stimulus
in a pessimistic light; i.e. assume that it is more likely to lead to

the worse of two potential outcomes. As such they align with evi-
dence documenting negative affective bias in mood and anxiety
disorders (Hirsch and Mathews, 1997; Anderson et al., 2012;
Mathews, 2012) as well as two prior (conceptually different) stud-
ies (White et al., 2010; Dillon et al., 2015) linking mood disorder
symptomatology to drift rates on the DDM. Critically, the
anxiety-negative bias interaction translates the impact of (a)
acute anxiogenic pharmacological manipulation and (b) chronic
stress in the rodent task (Hales et al., 2016) (Fig. 6) into humans,
suggesting that these rodent manipulations may be suitable pre-
clinical screens for candidate therapeutics.

Threat of shock instantiates negative affective biases across
many areas of cognition (Robinson et al., 2013b), but counter
to predictions, induced anxiety in asymptomatic individuals did
not reliably shift performance on this task. One potential explan-
ation is that, in the asymptomatic group, the induced anxiety task
was always completed following the neutral version of the task.
This may have increased familiarity with the task and counter-
acted any biases. However, it is also worth noting that the obser-
vation that decision-making is more sensitive to pathological than
transient anxiety is also consistent with chronic v. acute restraint
stress in rats (Hales et al., 2016). Perhaps, therefore, acute envir-
onmental anxiety promotes adaptive harm-avoidance (Robinson
et al., 2013b), by increasing attentional and perceptual biases
towards threats, without influencing higher-order decision-
making processes. Supporting this is evidence demonstrating
that, whilst encoding of values in ‘lower-level’ brain valuation
structures changes as a function of threat-induced anxiety,
decision-making behaviour remains unperturbed (Engelmann
et al., 2015; Robinson et al., 2015; Charpentier et al., 2016) by
threat of shock. It could therefore be that lower-level learning
and memory are immediately influenced by transient states, but
that the impact upon higher order processes builds up over
time (Anderson et al., 2013). If correct, this suggests that, at
least on the present measure, there is something quantifiably dif-
ferent between transient anxiety in healthy humans and

Table 3. Average choice, accuracy, and reaction time (ms) to respond to tones
in each condition in study 2

Tone/condition Accuracy (S.D.)

Low reward tone (safe) 0.99 (0.030)

High reward tone (safe) 0.96 (0.047)

Low reward tone (threat) 0.98 (0.036)

High reward tone (threat) 0.95 (0.061)

Condition Proportion high reward responses
to mid-tone

Safe 0.53 (0.20)

Threat 0.49 (0.19)

Tone/condition Reaction time

Low reward tone (safe) 815.29 (192.09)

Mid-tone (safe) 954.36 (185.63)

High reward tone (safe) 830.46 (185.60)

Low reward tone (threat) 767.84 (206.84)

Mid-tone (threat) 970.05 (168.97)

High reward tone (threat) 787.37 (205.78)

Psychological Medicine 243



pathological anxiety. From a clinical perspective this is unsurpris-
ing, but it is notable because some effects do overlap across induced
and pathological anxiety (Robinson et al., 2013b, 2014; Robinson
and Chase, 2017). Finally, it is worth acknowledging that we may
simply be underpowered to detect an effect of threat, perhaps
because the manipulation was not strong enough. This is arguably
unlikely considering increased anxiety ratings under threat, and the
wide-ranging influence of induced anxiety on cognition (Robinson
et al., 2013b). However, if correct it would mean that the within-
subject effect of transient anxiety is considerably smaller than the
between-subject effect detected in the group study.

Modifying affective biases in mood and anxiety disorders is
crucial given their proposed role in the development and main-
tenance of symptoms (Kendler et al., 2004; Harmer et al., 2009;
Roiser et al., 2012). Both pharmacological and psychological treat-
ments (Dimidjian et al., 2006; Zarate et al., 2006; Fournier et al.,
2010), are thought to exert their effects via altering affective biases
(Roiser et al., 2012). In rodents, for instance, a similar task has
been shown to be sensitive to anxiolytic manipulations; a positive
bias is exhibited after treatment with the antidepressant venlafaxine
(Hinchcliffe et al., 2017). Confirming the same effect on this task in
a medicated human sample would therefore enhance the predictive

Fig. 5. Hierarchical drift diffusion modelling of induced anxiety reveals
(a) a winning model (*) that includes separate drift rate (v), boundary
separation (a) non-decision time (t) and bias (z) parameters unambigu-
ous (u) and ambiguous mid-tone (m) trial types based on lowest DIC
scores. Including condition in the model fitting procedure (b) provides
substantially worse fits, thereby providing no evidence for an effect of
condition.

Fig. 6. Cross-species performance comparison. Plots illus-
trating the overlap of human pathological anxiety and
rodent anxiety models on choice performance (*p < 0.05).
Data presented in (Hales et al., 2016). After acute pharmaco-
logical manipulation with FG7142 (3 or 5 mg; average dose
plotted), rats showed an increased negative affective bias
in choice behaviour on the ambiguous tone, relative to
vehicle. For the chronic stress manipulation between
weeks 3 and 4 (post-stress intervention average of 6
post-stress intervention weeks plotted), rats showed an
increased negative affective bias in choice behaviour on
the ambiguous tone, relative to control.
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validity of this task for drug testing new anxiolytics. It will also be
important to confirm that the bias effects we see in our symptom-
atic group extend to treatment-seeking samples recruited through
clinical services who may have more severe symptoms.

In addition to facilitating screening of novel anxiolytics, the
present translational pipeline provides a potential means of
understanding the mechanisms underpinning this negative bias
(Stuart et al., 2015). Running causal studies in rodents can help
us delineate the neurobiological processes underpinning biased
choices on this task (Badre et al., 2015). Moreover, linking task
performance to a formal model of decision-making (DDM) pro-
vides a step towards bridging the gap between brain and behav-
iour. Notably, in the rodent model that most closely mimics the
choice behaviour of anxious humans (Hales et al., 2016), as well
as in humans with anxiety disorders, the drift rate parameter
was reduced. This suggests that, in both cases, anxiety reduces
the rate of evidence accumulation (although it should be noted
that, unlike the rodent mode, in humans the bias parameter was
unaffected). Crucially, the parameters of this model are thought
to be biophysically plausible; they can be computed by popula-
tions of neurons (Ratcliff and McKoon, 2008); taking us closer
to being able to link underlying neural activity to psychiatric
symptoms. Such links are necessary for a full mechanistic account
of psychiatric symptoms and are the guiding principal of the bur-
geoning field of computational psychiatry (Huys et al., 2016).

It is worth noting, however, that the model in some ways
recapitulates the model free analysis, in that a drift rate of zero
indicates no bias and positive and negative drift rates indicate
a bias towards the larger or smaller reward respectively.
However, this affective bias could instead be driven by a change
in the starting point (z otherwise known, not uncoincidentally,
as the bias parameter), but inclusion of this parameter was not
favoured in the full hierarchical modelling. In practical terms
it is the specifics of the RT distributions (and their comparisons)
that allow us to discriminate between these two possibilities
(Ratcliff et al., 2016) so the modelling takes into account more
of the information obtained from each individual (i.e. RT as well
as choice probability), and ultimately enables us to make more pre-
cise predictions about the underlying mechanisms. Thus it is not
that, when an anxious participant decides to select the lower
reward button, they are a priori favoured to choose that option
(i.e. z/bias); rather it is during the subsequent decision making
phase that the ‘race’ to choose (i.e. accumulate evidence in favour
of) the less favoured option is won (i.e. a negative drift rate). This
also indicates that the effect is not due to learning – i.e. the parti-
cipants have not learnt a prior – although future work is needed to
clarify this.

Ultimately, we argue that improved treatments are unlikely
without a better understanding of the underlying biological
mechanisms that any putative treatments are attempting to target.
Given the huge costs of mood and anxiety disorders; as well as the
large number of individuals for whom none of our current treat-
ments work; new and improved treatments, and therefore better
methods of screening for such treatments, are long overdue. We
propose that the task presented here may hold promise as a
means of better screening for candidate treatments across humans
and animal models.
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be found at https://doi.org/10.1017/S0033291718004117.
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