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Background. Triple-negative breast cancer (TNBC) remains the most incurable subtype of breast cancer owing to high het-
erogeneity, aggressive nature, and lack of treatment options. It is generally acknowledged that epithelial-mesenchymal transition
(EMT) is the key step in tumormetastasis.Methods. With the application of TCGA andGEO databases, we identified EMT-related
lncRNAs by the Cox univariate regression analysis. Optimum risk scores were calculated and used to divide TNBC patients into
high-/low-risk subgroups by the median value using the Lasso regression analysis. ,e Kaplan–Meier and ROC curve analyses
were applied for model validation. ,en, we assessed the risk model from multi-omic aspects including immune infiltration, drug
sensitivity, mutability spectrum, signaling pathways, and clinical indicators. We also analyzed the expression pattern of lncRNAs
involved in the model using qRT-PCR in TNBC cell lines and constructed the ceRNA network. Results. ,e risk model was
composed of EMT-related long noncoding RNAs (lncRNAs), which seemed to be valuable in the prognostic prediction of TNBC
patients. ,e model could act as an independent prognostic factor of TNBC and showed a robust prognostic ability in the
stratification analysis. Further investigation demonstrated that the expression of lncRNAs was different between high aggressive
and low aggressive TNBC cell lines, as well as TNBC patients. Conclusions. Together, our study successfully established a risk
model with great accuracy and efficacy in the prognostic prediction of TNBC patients.

1. Introduction

Triple-negative breast cancer (TNBC) is defined as a highly
aggressive subtype of breast cancer, which lacks estrogen
receptor (ER), progesterone receptor (PR) expression, and
no amplification of human epidermal growth factor receptor
2 (HER2) [1]. TNBC represents almost 20% of all subtypes
and is more likely to be diagnosed in young females under 40
years [2, 3]. ,e pathological characteristics of TNBC, such
as high histological grade and central necrosis, make it more
likely to develop relapse and visceral metastasis than other
subtypes [4, 5]. Due to the absence of molecular therapeutic
targets, the standard management of TNBC remains che-
motherapy and radiotherapy [6]. Unfortunately, tumor

resistance arises rapidly, followed by patient relapse, or
metastasizes quickly, and results in poor prognosis [7]. Even
immunotherapy, i.e., immune checkpoint inhibition (ICI),
which has been effectively used in several types of solid
tumors, has shown little efficacy for TNBC patients [8–10].
Hence, there is an urgent need to explore novel biomarkers
and potential therapeutic approaches to improve the out-
come of TNBC.

It is widely acknowledged that the epithelial-mes-
enchymal transition (EMT) is the most important step
that leads to the metastasis of malignant tumors, in-
cluding TNBC [11]. EMT is the process of polar epithelia
transforming into the cells capable of free movement,
which enhances the invasiveness of tumor cells into
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peripheral circulation [12]. It is recently found that EMT
is closely related to multiple signaling pathways including
Notch, Hedgehog, PI3K/AKT, and Wnt/β-catenin
pathways, revealing its key position in TNBC develop-
ment and great potential in improving clinical outcome
of TNBC patients [13].

On the other side, long noncoding RNAs (lncRNAs) are
a class of noncoding RNAs (ncRNAs) with a length of more
than 200 nucleotides [14]. Dysregulation of lncRNAs had
been confirmed to be crucial in TNBC progression, in-
cluding cell proliferation, apoptosis, invasion, metastasis,
and regulation of drug resistance [15]. Although numerous
researches have focused on developing novel lncRNA-based
therapeutics, there is still a long way to apply it in clinical
practice.

In this study, using multi-omic analysis, we success-
fully identified several EMT-related lncRNAs and con-
structed a novel risk score prognostic model with strong
efficiency on prognostic prediction. Our aim in this in-
vestigation was to understand the potential clinical ap-
plication of EMT-related lncRNAs in prognostic
stratification and their potential significance as bio-
markers for targeted TNBC therapy. We systematically
analyzed the expression and prognosis of EMT-related
lncRNAs, conducted bioinformatic analyses to discuss the
molecular mechanisms, and established prognostic
markers for TNBC patients. ,ese findings could provide
great hope for individual treatment and prognostic pre-
diction in TNBC patients.

2. Materials and Methods

2.1. Datasets. ,e workflow of our study is shown in
Figure 1(a). ,e Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/), a landmark cancer genomic
program, molecularly characterized over 20,000 primary
cancer and matched normal samples spanning 33 cancer
types. In this study, the lncRNA and mRNA expression
profiles were extracted, respectively, from the TNBC data
(processed gene expression tables from the raw files),
which contained 159 TNBC and 113 non-tumor tissues,
and were downloaded from TCGA database. On the other
hand, the Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) represents the most extensive and
comprehensive public gene expression data resources,
which contain data of RNA expression, single nucleotide
polymorphisms (SNPs), methylation, protein binding,
and expression from almost all diseases. 83 TNBC cases
with complete expression profile and survival information
were extracted from the GSE135565 series matrix file, and
107 TNBC cases with complete expression profile and
survival information were extracted from the GSE103091
series matrix file. Both of them were downloaded from the
GEO database and annotated based on the Agilent
GPL570 platform (Affymetrix Human Genome U133 Plus
2.0 Array). ,e EMT gene set including 22 EMT-related
inducible factors, transcription factors, and signaling
pathway genes was obtained from published literatures
[16, 17].

2.2. Construction of Prognostic Model. ,e EMT genes with
differential expression between the tumor group and the
normal group were screened out (|logFC| > 1 and P< 0.05),
and lncRNAs related to EMTgenes (|r| > 0.3 and P< 0.001)
were screened by correlation analysis. TNBC cases were
randomly divided into training dataset and testing dataset
at the ratio of 4 : 1, and then, the “glmnet” package was used
on the training dataset to perform the Lasso regression
analysis to further construct the prognostic model. After
incorporating the expression value of each specific gene,
the risk score formula of each patient was constructed and
weighted with its estimated regression coefficient in the
Lasso regression analysis. ,e EMT-lncRNA risk model
formula is as follows: risk score � 􏽐(βf ∗Expf), where βf
represented the Lasso coefficient of f th gene and Expf
represented the expression value of f th gene. According to
the formula, the training dataset patients were divided into
low-risk group and high-risk group using the median risk
score as the cut-off point. In addition, the TCGA testing
dataset and the two GEO external testing datasets
(GSE135565 and GSE103091) calculated the score of each
patient through the risk score formula and grouped them
according to the median value. ,e survival differences
between the two groups were assessed by the Kaplan–Meier
survival curves using log-rank tests. ,e Lasso regression
analysis and the stratified analysis were applied for ex-
amining the role of the risk score in predicting clinical
outcomes. ,e “survivalROC” package was used to make
ROC curves to investigate the accuracy of model
prediction.

2.3. Immunocyte Infiltration Analysis. CIBERSORT is a way
to characterize cell composition from gene expression
profile, as well as the most commonly cited tool for esti-
mating and analyzing immune cell infiltration. CIBERSORT
algorithm was used to analyze RNA-seq data of different
TNBC subgroups to infer the relative proportion of 22
immune infiltrating cells. ,e sum of all estimated immune
cell types in each sample was equal to 1. Spearman’s cor-
relation analysis was performed based on gene expression
and immune cell content, and P< 0.05 was considered to be
statistically significant.

2.4. Drug Sensitivity Analysis. Based on the GDSC database
(https://www.cancerrxgene.org/), an R package “pRRophetic”
was employed in the chemosensitivity prediction of each
tumor sample. ,e IC50 of each specific chemotherapy drug
was estimated by the regression method, and the GDSC
training dataset was used for 10-fold cross-validation to test
the regression and prediction accuracy. Default values were
selected for all parameters, including “combat” to remove
batch effect and the average value of repeated gene expression.

2.5.Mutation Spectrum. SNP-related data were downloaded
from TNBC, and the mutant genes were obtained from the
SNP data of TNBC sample VarScan. We selected the genes
with the mutation frequency of top 30 as the display,
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compared the differences in the mutant genes between the
two groups, and drew the mutation landscape with R
package “ComplexHeatmap” to show the difference in the
proportion of gene mutations between the two groups. Gene
sequencing in the mutation map was based on the sum of
mutation frequencies of genes in all samples.

2.6. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA). ,e gene set enrichment
analysis (GSEA, http://www.broadinstitute.org/gsea) is an
effective method for genome-wide expression microarray
data, which uses predefined datasets to sort the genes based
on their expression in two kinds of samples, and tests their

enrichment in the sorting table. In this study, GSEA on
expression profiles of TNBC patients was applied for
identifying differentially expressed genes between the high-
risk and low-risk groups.,e maximum and minimum sizes
of 500 and 15 genes were used to filter the gene set. After 100
permutations, rich gene sets were obtained (P< 0.05, false
discovery rate (FDR)< 0.25).

,e gene set variation analysis (GSVA) is a nonpara-
metric and unsupervised method used to evaluate the en-
richment of transcriptome gene sets. Unlike GSEA, sample
grouping is not required in GSVA. It changes the gene level
into the pathway level by comprehensively scoring the gene
set of interest and then judges the biological function of
samples. To reduce the interference of redundant

Drug
sensitivity
analysis

Immune
infiltration

Clinical
correlation

analysis

GSEA
GSVA

Classification
constructed

Training dataset

Model validation

GEO datasets of
TNBC patients

Correlation analysis
(|r| > 0.3 & p <0.001)

Expression of
LncRNAs

GENCODE release V22

1. Unicox analysis
2.Lasso method

Expression of
EMT genes

RNA-seq data of TCGA TNBC patients

Multicox
analysis Nomogram

Cell
expression

analysis

ceRNA
network

(a)
Tissue Tissue

Direct
Up
Down

Normal
Tumour

1

0.5

0

–0.5

–1

BIRC5

CXCR4

SNAI1

TGFB1

HIF1A

CDH2

PDGFB

CXCL12

FZD4

FGF2

TWIST2

EGF

ZEB1

TWIST1

D
ire

ct

(b)

EM
T–

re
lat

ed
 G

en
e

ZEB1
TWIST2
TWIST1

TGFB1
SNAI1

PDGFFB
HIF1A

FZD4
FGF2
EGF

CXCR4
CXCL12

CDH2
BIRC5

*
*
*
**
*

*
*
*
*
*

****
*

****

*
*
*

****

*
*
*
**
**
*

*

*
*
*

**

*
*
*
*
*

****

****
**

*
*
*

**

*
*
*
**
*
*

*
**

****
****
****

*
****

****
****
****

*
*

****

****

****
****

*

****
****

*
****
****

*
****

*

****
****

*

*
*

*
****
****

*
****

*

****
****
****

**

*
****
****

*
****

****
*

****
*
*

*
*

**
****
****

*
*

****

****

****
****

*

*
****

*
****
****

*
**

****

*

****
****
****

*

*
****
****

*
****

****

****
****
****

*

*
****
****

*
****

*

****
****
****

*
****

*
****
****

*
****

****

****

****
****

*

**
****
****

*
****

****

****
*
*

*
*

**
* *

*
****

*
*

****

****

****
****

*

****

*
****
****

*
****

****

****

****
*
*

*
*

****
****

*
*

****

****

****
****
****

****
**

*
****
****

*
****

****

*
****
****

****

*
****

*

*
****

*

****
****

*

**
**

*
****
****

*
****

*
** ** * **** * ** * ****

A
D

IR
F–

A
S1

C6
or

f9
9

CH
L1

–A
S2

EN
TP

D
3–

A
S1

FG
F1

0–
A

S1

FG
F1

3–
A

S1

FG
F1

4–
A

S2

H
O

XB
–A

S1

LI
N

C0
06

41

LI
N

C0
06

67

LI
N

C0
06

71

LI
PE

–A
S1

M
AG

I2
–A

S3

M
IR

22
H

G

M
IR

99
A

H
G

M
RG

PR
F–

A
S1

O
IP

5–
A

S1

PG
M

5–
A

S1

TR
IM

52
–A

S1

TS
TD

3

Pearson
Correlation

IncRNA

1.0
0.5
0.0
–0.5
–1.0

(c)

Figure 1: Workflow of the study and EMT-related lncRNAs in TNBC. (a) Workflow of this study. (b) Identification of 14 differential EMT
genes in the expression profile between the tumor group and the normal group by differential analysis (|logFC|> 1 and P< 0.05), including 7
upregulated genes and 7 downregulated genes. (c) Correlation between 20 randomly selected lncRNAs and 14 EMT-related genes.
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information of pathways, duplicate genes and genes that
have appeared in two or more pathways were removed from
each gene set. In this study, we downloaded gene sets from
the Molecular Signatures Database (v7.0 version, 50 hall-
mark pathways) and scored each gene set comprehensively
to evaluate the potential biological function changes in
different samples using GSVA algorithm from “GSVA”
package.

2.7. Risk and Independent Prognostic Analysis. ,e survival
curves were generated by the Kaplan–Meier method and
analyzed by log-rank test. ,e Cox proportional hazards
model was used for multivariate analysis. ,e results of
logistic regression or Cox regression were visualized by
nomogrammodel through “rms” package, the incidence risk
or proportional risk was given, and the calibration curve was
generated for model verification. All statistical analyses were
performed in R language (version 4.0). All statistical tests
were bilateral (P< 0.05).

2.8. Cell Culture. Four TNBC cell lines (MDA-MB-231,
MDA-MB-468, Hs 578T, and BT-549) and one normal
breast epithelial cell line (MCF 10A) were purchased from
ZQXZBIO (Shanghai, China) and identified by STR au-
thentication. All the cell lines were maintained according to
the vendor’s instructions. In brief, MDA-MB-231, MDA-
MB-468, and Hs 578T were maintained in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco BRL, USA)
containing high glucose, with 10% fetal bovine serum (FBS;
Gibco, Grand Island, NY, USA) and penicillin-streptomy-
cin. BT-549 cell lines were cultured in RPMI 1640 medium
(Gibco BRL, USA) containing high glucose, with 10% FBS
and penicillin-streptomycin. MCF 10A cell lines were cul-
tured in special medium obtained from ZQXZBIO
(Shanghai, China; ZQ-1311: DMEM added with 5% horse
serum, 1% penicillin-streptomycin, and 2% growth sup-
plement). All cells were placed in 37°C, 5% CO2 incubator.

2.9. RNA Isolation and qRT-PCR. Total RNA was isolated
from tissues or cultured cells with TRIzol reagent (Life
Technologies, USA). One microgram of total RNA was used
for the reverse transcription reaction with random primers
under standard conditions using PrimeScript RT Reagent
Kit with gDNA Eraser (Takara, Dalian, China). ,e corre-
sponding cDNA was used for subsequent qRT-PCRs using
SYBR Premix Ex Taq (Takara, Dalian, China) by the
manufacturer’s instructions. ,e expression of GAPDH was
used to normalize the results. An ABI 7900 Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA) was
used to perform the data analysis. ,e data calculation was
based on the cycle threshold (CT) (2−ΔΔCT) method. ,e
assay was run in triplicate for each sample. ,e primer
sequences are summarized in Supplementary Table 1.

2.10. Construction of ceRNA Network. Using multi-database
analysis, we constructed the ceRNA network based on the
identified lncRNAs. Firstly, the lncRNA-mediated miRNAs

were investigated through NPInter database (http://bigdata.
ibp.ac.cn/npinter) [18]. A total of 165 lncRNA-miRNA
interactions were predicted, including 6 lncRNAs and 142
miRNAs. Next, the obtained miRNAs were used to predict
1758 miRNA-target gene interactions, which were inter-
sected with the 165 lncRNA-miRNA interactions to con-
struct a ceRNA network.

2.11. Statistical Analysis. Survival curves were generated by
the Kaplan–Meier method and compared by log-rank test.
,e Cox proportional hazards model was used for multi-
variate analysis. All statistical analyses were conducted with
the R language (version 3.6.1). All statistical tests were two-
tailed, if applicable, and P< 0.05 was considered to be
significant unless specified.

3. Results

3.1. Identification of EMT-Associated lncRNAs in TNBC
Cohort. Our study has downloaded the original mRNA
expression data of TNBC (FRKM raw files) from TCGA
database and extracted 22 EMT-related regulators. Firstly,
we screened a total of 14 EMTgenes in the expression profile
between the tumor group and the normal group by dif-
ferential expression analysis (|logFC|> 1 and P< 0.05), in-
cluding 7 upregulated genes and 7 downregulated genes
(Figure 1(b)). After that, the expression data of 3234
lncRNAs from TNBC, as well as data from EMTgenes, were
screened by correlation analysis to find the lncRNAs highly
correlated with EMT. It revealed that a total of 1033
lncRNAs were highly associated with EMT (Supplementary
Table 2). Finally, the significantly downregulated lncRNAs
were screened out (the expression level was 0 in more than
half of the samples, or the average expression level was less
than 0.3 in the samples), and ultimately, 536 lncRNAs were
used as candidate gene sets for further modeling and
analysis. Among them, 20 lncRNAs and 14 EMTgenes were
randomly selected to show the correlation in the form of heat
map (Figure 1(c)).

3.2. Gain of Prognostic Genes and Construction of Prognostic
Model. To further identify the key genes in the screened
lncRNAs set, we collected clinical information of TNBC
patients and screened out the feature genes in TNBC by the
Cox univariate regression and the Lasso regression feature
selection algorithm (Figure 2(a), Supplementary Figure 1). It
was demonstrated that 285 lncRNAs (shared genes of
candidate gene set) were screened by the Cox univariate
regression analysis to find the prognostic genes (Supple-
mentary Table 3), in which 22 prognostic genes with sig-
nificance (P value <0.05) were obtained as follows:
YTHDF3-AS1, UBE2E2-AS1, SOCS2-AS1, TINCR, A2M-
AS1, CYB561D2, TUG1, NIFK-AS1, LINC00667, NDUFB2-
AS1, CASC15, PINK1-AS, ZSCAN16-AS1, EPB41L4A-AS1,
TRIM52-AS1, LINC00839, ASB16-AS1, RGS5, LINC01023,
SLC16A1-AS1, MBNL1-AS1, and LINC01315. ,e patients
from TCGA were randomly divided into training dataset
and testing dataset at a ratio of 4 :1, and we used the Lasso
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Figure 2: Prognostic genes used for model construction. (a) Prognostic lncRNAs were screened out from TNBC data. ,e overall
survival (OS) of the high-risk group in both sets was significantly lower than that of the low-risk group analyzed by the Kaplan–Meier
curve ((b) TCGA training dataset; (c) TCGA testing dataset). ,e model’s efficiency is evaluated by ROC curve ((d) TCGA training
dataset; (e) TCGA testing dataset).
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regression analysis to get the best risk score value for further
analysis (risk score�NIFK-AS1× (−0.3368) + LINC01315×

(−0.3223) + LINC00667× (−0.2887) +ASB16-AS1× (−0.161
4) + PINK1-AS× (−0.0799) +RGS5× 0.1696 +UBE2E2-AS1
× 0.2653 +YTHDF3-AS1 × 0.2685 +ZSCAN16-AS1 × 0.27
17 + SOCS2-AS1× 0.3714 +TINCR × 0.3981 +NDUFB2-AS
1× 0.4845). According to the median of risk score, patients
were divided into high-risk group and low-risk group
(median value of TCGA training dataset: −0.2096; median
value of TCGA testing dataset: −0.2946) and analyzed by the
Kaplan–Meier curve. ,e overall survival (OS) of the high-
risk group in both sets was significantly lower than that of
the low-risk group (Figures 2(b), 2(c)). Additionally, ROC
curve showed that the C-index of both sets is 0.91 and 0.79,
respectively (Figures 2(d), 2(e)), indicating the model’s
better verification efficiency.

3.3. Clinical Predictive Value of the Model Based on Multi-Omic
Analysis. ,e tumor microenvironment is mainly composed
of tumor-associated fibroblasts, immune cells, extracellular
matrix, multiple growth factors, inflammatory factors,
specific physical and chemical characteristics, and cancer
cells. ,e tumor microenvironment significantly affects the
diagnosis, survival outcome, and sensitivity of clinical
treatment in cancers. ,rough analyzing the relationship
between risk score and tumor immune infiltration, we
further investigated the potential molecular mechanism of
risk score in TNBC development, which demonstrated that
risk score was positively correlated with macrophage M2,
mast cells resting, NK cells activated, mast cells activated,
etc., and negatively correlated with T-cell CD4 memory
activated, dendritic cells resting, T-cell CD4memory resting,
B-cell naive, etc. (Figure 3(a)). Since surgery combined with
chemotherapy is effective in early breast cancer, our research
was based on the drug sensitivity data of GDSC database,
and the sensitivity of each tumor sample was predicted by R
package “pRRophetic” to further explore the relationship
between risk score and sensitivity of common chemotherapy
drugs. ,e results showed that risk score significantly af-
fected the sensitivity of patients to bicalutamide, bryostatin
1, dasatinib, gefitinib, lapatinib, and metformin
(Figure 3(b)). By investigating the mutation spectrum of
high-/low-risk groups, we found that there was a significant
difference between the two groups in the mutation pro-
portion of multiple genes (Figure 3(c)).

3.4. Prognostic Model-Related Signal Mechanism.
Subsequently, we analyzed the signaling pathways involved
in high-/low-risk models to explore the potential molecular
mechanism of risk score affecting tumor progression. Re-
sults of GSVA revealed that the differential pathways of the
two groups were mainly enriched in UV response up,
adipogenesis, unfolded protein response, P53 pathway,
DNA repair, mitotic spindle, angiogenesis, E2F targets, G2M
checkpoint, fatty acid metabolism, and hypoxia and apical
surface (Figure 4(a)). Finally, we found that there were
significant enrichments in various related pathways through
GSEA. Some of the highly significant signaling pathways

were shown (Figures 4(b), 4(c)), which suggested that the
disturbance of these signaling pathways in the high-/low-
risk groups affected the prognosis of TNBC. Among the
enriched pathways, some of them had been clarified to play
critical roles in TNBC development. For example, the P53
pathway can induce the transcription of target genes re-
sponsible for various cellular mechanisms (mainly DNA
repair) and activate diverse forms of stimuli (such as hyp-
oxia), which are consistent with our enrichment results [19].
It is widely acknowledged that the loss of P53 function may
lead to deficiency in cell cycle checkpoint, genome insta-
bility, cellular immortalization, and excessive cell prolifer-
ation [20, 21]. Besides, we found the enrichment of TGF-β
pathway, which has been recently proven to epigenetically
regulate the progression of TNBC, especially through
lncRNA and miRNA [22]. On the other hand, our results
contained several metabolism pathways, including fatty acid
metabolism and oxidative phosphorylation. According to
the transcriptome analysis of metabolism dysregulation and
metabolic pathway-based subtyping of TNBC, oxidative
phosphorylation is reported to be the most upregulated
metabolic pathway, and the MPS1 subtype is characterized
by higher level of fatty acid metabolism (while the MPS2
subtype showed an upregulation of carbohydrate and nu-
cleotide metabolism), which suggested metabolic hetero-
geneity, diverse prognosis, and treatment strategies between
subtypes [23]. In conclusion, our enrichment results par-
tially reflected the epigenetic and metabolic features of
TNBC progression.

3.5. Robustness Analysis by External Datasets. We down-
loaded the data of TNBC patients with survival data pro-
cessed in GEO databases (GSE135565 and GSE103091),
predicted the clinical classification of TNBC based on the
model, evaluated the survival differences between two
groups through the Kaplan–Meier analysis, and investigated
the stability of the prediction model. ,e results demon-
strated that the OS of the high-risk group was obviously
lower than that of the low-risk group in both GEO external
verification sets (Figures 4(d), 4(e)). To verify the accuracy of
the model, we did ROC curve analysis using external
datasets, which showed that the model had a strong effi-
ciency on prognostic prediction (GSE135565-C-index-
� 0.72, GSE103091-C-index� 0.65) (Figures 4(f), 4(g)).

3.6. Risk and Independent Prognostic Analysis. Since the
samples were divided into the high-/low-risk groups by the
median value of risk score, the results of regression analysis
were displayed by nomogram. ,e results of logistic re-
gression analysis and generalized linear model (GLM)
analysis showed that, in all our samples, risk score value has a
significant contribution to the scoring process of nomogram
prediction model (Figures 5(a)–5(d)). Among these, the
different stages of TNBC were obviously associated with the
distribution of risk score value (Figure 5(a)). We further
found that the distribution of risk score and several clinical
parameters (such as age, stage, and T) had different con-
tributions to the scoring in distinct stages of cancer
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(Figure 5(b)).We also did some prediction analyses on the 5-
year and 7-year periods (Figure 5(c)), and it was found that
the prediction results were more consistent. At the same
time, through univariate and bivariate analysis, it was found
that our risk score was an independent prognostic factor for
TNBC patients (Figures 5(e), 5(f)).

3.7. Correlation Analysis of Risk and Multiple Clinical
Parameters. We grouped all the risk score values by dif-
ferent clinical parameters (tumor stage, T, N, M), which was
shown in the form of boxplot graph (Figures 5(g)–5(h)), and
found that these risk scores were significant among the
groups with multiple clinical indicators through the Krus-
kal–Wallis test (P< 0.05) (Figures 5(g), 5(i)). As the risk
score rose, the stage grade and lymph node involvement
increased.

3.8. lncRNAs Dysregulated in TNBC and Construction of
ceRNA Network. To further evaluate the expression pattern
of lncRNAs involved in the risk score model, we analyzed the
mRNA levels of the lncRNAs in 4 TNBC cell lines and 1
normal breast epithelial cell line, which showed the distinct
expression of the lncRNAs (Figure 6(a)). Furthermore, we
calculated the risk score of each cell line to verify the efficacy
of the model. ,e results demonstrated that the risk scores
based on our model were quite different between TNBC cell
lines, especially in high aggressive cells (MDA-MB-231, BT-
549, Hs 578T) and low aggressive cells (MDA-MB-468) [24].
,e risk score of each cell line was as follows: MDA-MB-231
1.646195791, MDA-MB-468 -3.195350021, BT-549
10.36881901, andHs 578T 3.672140084.We further analyzed
the expression pattern of the lncRNAs in TNBC patients
from TCGA database using the Kruskal–Wallis test, which
showed the distinct expression of the lncRNAs in TNBC

patients’ normal and tumor tissues (Figure 6(b)). In addi-
tion, we built the ceRNA (lncRNA-miRNA-target gene)
network to explore the potential mechanism of dysregulated
lncRNAs in TNBC, where 6 lncRNAs were involved:
TINCR, SOCS2-AS1, NDUFB2-AS1, LINC00667, PINK1-
AS, and YTHDF3-AS1 (Supplementary Figure 2).

4. Discussion

TNBC has remained an unmet medical challenge for de-
cades, since prone to recurrence and metastasis after op-
eration, and no therapeutic targets have been identified
[23, 25]. It is widely acknowledged that metastasis of TNBC
is correlated with aberrant activation of EMT [26]. EMT is a
multistep, plastic, and reversible process that allows tumor
cells to acquire a mesenchymal phenotype [27]. ,e im-
portant characteristics of EMT include the downregulation
of cell adhesionmolecules (such as E-cadherin), activation of
transcription factor (such as Snail2), and upregulation of
mesenchymal cell markers (such as vimentin) [28]. How-
ever, the entirety accomplishment of the EMT progression
demands an intricate genetic procedure, and the precise role
of transcriptional and epigenetic regulators in modulating
diverse EMT processes in tumorigenesis (including TNBC)
is still not fully understood [25, 27, 29]. Recent studies have
focused on the biological role of lncRNAs in malignant
evolvement and EMT. With their multifunction, lncRNAs
are proved to be related to EMT in a wide spectrum of
physiological and pathological processes [30]. ,e pro-
moting and suppressing effects of lncRNAs on EMTunderly
the complexity and plasticity of tumor cells [31]. For ex-
ample, lncRNA CAR10 was reported to be an EMT pro-
moter. CAR10 could induce EMT by directly binding with
miR-30 and miR-203, and then regulating the expression of
Snail1 and Slug in lung adenocarcinoma metastasis [32]. On
the contrary, Han et al. [33] investigated the inhibitory effect

-2

0 1

N

2 3

0

2

G
en

e e
xp

re
ss

io
n

4

6

riskscore (p=1.853e–03)

(i)

-2

0 1

M

0

-1

1

3

2

G
en

e e
xp

re
ss

io
n

4
riskscore (p=0.667)

(j)

Figure 5: Independent prognostic analysis and correlation analysis of clinical parameters. (a) Logistic regression analysis showed the
relationship between TNBC stages and distribution of risk score value. ,e effect of distribution of risk score and clinical parameters on
TNBC stage scoring was analyzed by (b) general linear model and (d) Cox proportional hazards model. (c) Prediction analyses on the 5-year
and 7-year periods. Risk score as an independent prognostic factor proved by (e) univariate and (f) bivariate analyses. Risk score values are
grouped by different clinical parameters and analyzed by the Kruskal–Wallis test: (g) stage; (h) tumor; (i) lymph node; (j) metastasis.
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Figure 6: LncRNA expression in TNBC cell lines and samples. (a) Relative lncRNA expression in 4 TNBC cell lines (MDA-MB-231, MDA-
MB-468, Hs 578T, and BT-549) and 1 normal breast epithelial cell line (MCF 10A). Fold change ＞0 presented the higher expression of
lncRNAs in TNBC cell lines, whereas the fold change <0 meant the lower expression of lncRNAs in TNBC cell lines than in MCF 10A cells.
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of lncRNA CRCMSL in colorectal cancer. ,ey pointed out
that CRCMSL could bind to protein HMGB2 and stabilize
the localization in the cytoplasm, hence attenuating the
interaction between HMGB2 and OCT4 and inhibiting
EMT. In TNBC, multiple lncRNAs had been identified to
regulate EMT pathways and tumor invasion via interacting
with various molecules, such as LINC01638 [34], GAS5 [35],
UCA1 [36], ARNILA [37], and NNT-AS1 [38]. A better
understanding of how lncRNAs regulate EMT process at
diverse molecular levels can accelerate the development of
therapeutic strategies and prognostic targets.

Currently, there are some applications of risk models
with prognostic function in clinical. ,e most widely used
model is the 21-gene expression assay (Oncotype DX, Ge-
nomic Health), which can provide prognostic information in
hormone receptor-positive breast cancer [39]. Nevertheless,
there is still a lack of simple and effective prognostic pre-
dictionmodel in TNBC. Researchers have begun to pay close
attention to establish signatures with the combination of
coding and noncoding RNAs in clinical prognosis. Recently,
Lin et al. [40] constructed a hypoxia signature in the glioma
groups. ,e hypoxia risk model could reflect the overall

immune response intensity of tumor microenvironment and
predict prognosis. Another research established a m6A-re-
lated lncRNA prognostic signature, which could predict the
OS of lower-grade glioma patients [41]. Furthermore, Hong
et al. [42] identified a novel signature. Unlike previous
strategies, they paid attention to the immune-related gene
pairing and built a reasonable model with two-lncRNA
combinations to predict the immune landscape in hepato-
cellular carcinoma.

In this study, we firstly established a novel risk score
prediction model based on EMT-related lncRNAs in TNBC.
In combination with TCGA and GEO databases, along with
14 screened EMT factors, we performed a differential co-
expression analysis to classify 536 candidate lncRNAs. 12 of
them were confirmed to have prognostic value in both
datasets and used to establish a model for predicting the OS
of TNBC patients. According to the median value of risk
score, the patients were divided into high-/low-risk groups
with the significant difference in OS. Our results demon-
strated that the risk score was an independent risk factor in
TNBC. Since the prediction model was preliminary built, its
accuracy and efficacy were carefully compared and verified

Table 1: lncRNAs in cancers.

lncRNA Cancer type Role in
cancer Molecular mechanism Refs

NIFK-AS1 Endometrial cancer Inhibit Sponge miR-146a, inhibits M2-like polarization of macrophages [53]

LINC01315
Colorectal cancer Promote Sponge miR-205-3p, upregulates PRKAA1 [54]
Oral squamous cell

carcinoma Inhibit Sponge miR-211, upregulates DLG3, activates Hippo signaling [55]

LINC00667

Colorectal cancer

Promote

Sponge miR-449b-5p, activated by YY1 [56]
NSCLC Recruits EIF4A3 to stabilize VEGFA [57]

Cholangiocarcinoma Sponge miR-200c-3p, promotes PDK1, activated by YY1 [58]
Glioma USF1/linc00667/miR-429/ALDH1A1 axis [59]

ASB16-AS1

Gastric cancer

Promote

Sponge miR-3918 and miR-4676-3p, cooperates with ATM, induces
TRIM37 phosphorylation [60]

HCC Regulates miR-1827/FZD4 axis, activates wnt/β-catenin pathway [61]
Osteosarcoma Sponge miR-760, upregulates HDGF [62]
Cervical cancer miR-1305/wnt/β-catenin axis [63]

Glioma Affects EMT signaling pathway [64]
Adrenocortical carcinoma

Inhibit
Promotes ubiquitination of HuR [65]

Clear cell renal cell
carcinoma miR-185-5p-miR-214-3p-LARP1 pathway [66]

PINK1-AS Gastric cancer Promote Sponge miR-200a, upregulates Gαi1 [67]
ZSCAN16-
AS1 HCC Promote Regulates miR-181c-5p/SPAG9 axis, activates the JNK pathway [68]

SOCS2-AS1
Prostate cancer Promote Inhibits apoptosis pathway, promotes androgen signaling by modulating

the epigenetic control for AR target genes [69]

Colorectal cancer Inhibit Sponge miR-1264, upregulates SOCS2 [70]
Endometrial cancer Regulates AURKA degradation [71]

TINCR

Breast cancer Promote

Recruits DNMT1 and increases the methylation and suppresses the
transcriptional expression of miR-503-5p, sponge miR-503-5p, and

upregulates EGFR, stimulates JAK2-STAT3 signaling downstream from
EGFR

[45]

Guides STAU1 to OAS1 mRNA to mediate its stability [72]
HCC Interacts with TCPTP, activates STAT3 signaling [73]

Laryngeal squamous cell
carcinoma Inhibit miR-210/BTG2 pathway [74]

Melanoma Prevents ATF4 translation [75]

14 Journal of Oncology



from several aspects, including tumor immune infiltration,
drug sensitivity, mutability spectrum, signaling pathways,
and clinical parameters (age, stage, grade, clinical classifi-
cation, lymph node involvement, etc.).

Among the lncRNAs involved in the model, several of
them were reported to be associated with tumor pro-
gression, such as lncRNA TINCR [43–45] and TUG1
[46–48]. A recent study revealed that serum lncRNA
TINCR level was significantly increased in TNBC and
correlated with clinical outcome [49]. Tang et al. [50] re-
ported that lncRNA TUG1 could act as a miR-197 sponge
to enhance cisplatin sensitivity in TNBC. Additionally,
LINC01315 was newly identified as a prognostic biomarker
in TNBC [51]. Using qRT-PCR, we analyzed the expression
pattern of the 12 lncRNAs finally involved in the risk score
model, which showed that the mRNA levels between TNBC
cell lines were different. In particular, the risk scores of high
aggressive cells were higher than that of low aggressive
cells, which further validated the effectiveness of our
model. Moreover, the expression and function of several
lncRNAs analyzed in previous studies are shown in Table 1.
Since most of the lncRNAs were not fully investigated in
TNBC, we hope that EMT-related lncRNAs might create
novel insights in TNBC development.

On the other side, there existed several shortcomings and
limitations. For instance, the raw data obtained from TCGA
and GEO databases were incomplete and lack regional
specificity, making the final model unreliable in different
regions. More independent TNBC cohorts should be col-
lected for further validation. In summary, our study dem-
onstrated that an effective prognostic model constructed by
EMT-related lncRNAs could serve as an independent risk
factor and provide new strategies for TNBC patients.
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