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Abstract
Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI 
images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and 
normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learn-
ing techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to 
develop a new region-of-interest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. 
The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, 
which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmenta-
tion within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas 
grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance 
between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, 
respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for 
brain MRI tumor segmentation, and a valid and useful tool in medical image processing.
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1  Introduction

In brain tumor research, studying incidence rates, new cases, 
mortality, and survival rates etc., are becoming increasingly 
important [1]. Glioblastoma is the most common form of 
brain cancers and is highly aggressive malignancies with 
poor prognosis [2]. In the US, according to a report from 
2011 to 2015, the 5-year and 10-year relative survival rates 
of patients [3] with malignant tumors were 35.0% and 
29.3%, respectively. The annual average age-adjusted inci-
dence rate of tumors was 23.03/10 million and the median 

survival time [3] of the patients was approximately 12–15 
months, so the diagnosis of tumor shape and grade is critical 
to patient’s treatment plan and prognosis. Multi-modality 
magnetic resonance imaging (MRI) is the principal scan 
tool of detection and diagnosis for glioblastoma tumor, since 
MRI provides superior contrast for soft tissues [4]. Magnetic 
resonance imaging (MRI) can identify, locate and classify 
brain tumors, capture different tumor phenotype spectra. In 
addition, multi-modality MRI can also capture the global 
information of the tumor. Accurate tumor contouring by 
using multi-modality MRI to identify features such as loca-
tion, size, and invasion area plays a key role in computer-
aided diagnosis [5].

Currently existing brain tumor segmentation techniques 
[6–9] can be briefly summarized as follows:

Threshold methods: these methods use local and global 
threshold to contour the tumor [10, 11]. However, the accu-
racy of segmentation is affected by the quality of MRI inho-
mogeneity correction. In addition, the optimal threshold is 
often difficult to identify.
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Edge-based methods: these methods detect tumor bound-
aries by the change of intensities in the MRI image [12, 
13]. Generally, these methods are sensitive on the selection 
of thresholds among different intensities. In addition, the 
ambiguous and abnormal tumor boundaries can raise dif-
ficulties for these methods.

Region grow method: these methods delineate the tumor 
region by extracting sub-regions with similar neighboring 
voxels [14, 15]. However, these methods rely on the choice 
of initial seed point, which is a challenging task. In addition, 
these methods may be disturbed by MRI noise.

Watershed method: these methods segment the tumor 
contour by adding markers on landscape [16, 17]. The main 
challenge of these methods is that they may over-segment 
the tumor contour.

Shape-based methods: these methods generate the tumor 
contour of a new MRI sequence by comparing it with other 
template sequence, such as using atlas and deformation [18]. 
However, the accuracy of atlas reconstruction and deforma-
ble registration will affect the performance of these methods.

Clustering methods: these methods extract features from 
MRI and use unsupervised and supervised classification 
model to assign MRI voxels into different groups. The unsu-
pervised model, such as fuzzy c-means [19], k-means [20], 
and principal component analysis (PCA) [21, 22], do not 
need a training procedure. The supervised model, such as 
random forest (RF) [23], markov random field [24], support 
vector machine (SVM) [25], extreme learning machine [26] 
and deep learning [7], need to first train a classification or 
segmentation model, then feed a new acquired MRI into 
the trained network to obtain a segmented contour of the 
brain image. A late example is by Yang et al. where PCA 
feature extraction is conducted, they are able to diagnose 
breast tumors by using SVM with differential evolution-
based parameter tuning [22].

Compared with deep learning methods, the performance 
of other clustering methods rely on how well the handcraft 
features can represent the brain tumor in MRI images, this 
is a huge challenge since tumor shapes vary dramatically 
among different types. Irregular tumor tissue will seriously 
affect the accuracy of the classification. In addition, since 
these methods need to extract features of multiple levels 
from MRI images followed by smaller patch or single voxel 
assignment, the computational cost of these methods is 
expensive. In the meantime, a number of useful classifica-
tion methods have been developed recently. For example, 
Luo et al. developed a automatic left ventricle segmenta-
tion method which combined a layered extreme learning 
machine with a new location method [26], the training cost 
reduced while the segmentation accuracy improved. Liu 
et al. proposed a new method for feature selection to clas-
sify benign and malignant tumors with a new twin support 
vector machine [27].

In the meantime, recent deep learning methods for 
semantic segmentation, especially the end-to-end fully 
convolutional neural networks (FCNN), have shown great 
performance in medical image segmentation [28]. Zhang 
et al. studied FCNN with adjusted network architecture 
for brain tumor segmentation [29]. Ben et al. developed 
a fused segmentation technique by combining results of 
a 2D and 3D incremental network [30]. The incremental 
network is a particular type of FCNNs. In [31], a technique 
applying densely connected CNN for brain MRI tumor 
segmentation was studied. Chang Liu et al. used the deep 
neural networks to automatically segment the prostate of 
CT images [32], and got good results. A new deep neural 
network (P-DNN) is proposed in [33] to extract comple-
mentary features from MR prostate images, and outper-
forms traditional deep neural networks in terms of results. 
Ryo Ito et al. segmented brain tissue by semi-supervised 
deep learning method [34], which leverages the image reg-
istration technology.

Although these methods produce relatively effective 
performances on brain tumor segmentation, the accuracy of 
these methods may be limited by GPU memory capacities. 
Because, for 3D whole volume images and corresponding 
manual contouring, the training data is often too huge to 
train a segmentation model on a typical GPU. A possible 
solution is to extract smaller 3D patches with a sliding win-
dow as input. However, this strategy will lose global and 
spatial information, and thus produce a relatively inaccurate 
segmentation.

To resolve this issue, this study aims at developing a new 
region-of-interest-aided (ROI-aided) deep learning method 
to exclude the effect of irrelevant tissues in brain MRI 
images, and thus enhances the accuracy of segmentation.

Recently, Feng et al. proposed a cropped 3D image-based 
deep CNN method for their thoracic organs-at-risk multi-
label segmentation [35]. They used 3D U-Net to localize 
each organ, and the images which only contain one organ 
were served as the input to each individual organ segmenta-
tion network. The final segmentation results were obtained 
by merging the segmentation maps of each organ. The 
method they proposed earned the second place in the live 
phase of the 2017 AAPM Thoracic Auto-segmentation Chal-
lenge. In the subsequent ongoing phase, they used a newly 
developed testing augmentation approach and earned the 
first place [35]. Our study is inspired by their work.

The strategies of this work include the following.
First, as brain tumors tend to group in a location, a 2D 

U-Net [36] is used to localize a ROI of tumor by exploiting 
the whole slices’ information and then we obtain the ROI of 
tumor from a coarse segmentation result. Other than down 
sample the image as in [35], MRI images of original reso-
lution are used, the aim is to identify the specific location 
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of ROI, which is important for our next step of accurate 
segmentation.

Second, a 3D U-Net [36] is used to acquire a precise seg-
mentation within the specified ROI by exploiting spatial and 
structural information from the 3D volume of ROI.

The rest of this article is organized as follows. In Sect. 2, 
an overview of the proposed brain tumor segmentation 
framework with the description of ROI-aided strategy is pro-
vided, followed by detailed descriptions of image acquisi-
tion, 2D and 3D U-Net architectures, evaluating metrics, and 
comparing algorithms. In Sect. 3, the proposed method is 
compared with other algorithms for performances. Extended 
discussions about the proposed technique and future studies 
are provided in Sect. 4.

2 � Materials and methods

2.1 � Overview and ROI‑aided strategy

Any learning based segmentation technique typically 
consists of two phases, namely training and testing. Fig-
ure 1 outlines the schematic flow chart of the proposed 
method. In the training phase (upper part of Fig. 1), a 2D 
U-Net localization model is trained. The multi-modal MRI 
sequences of each training patient are used as input images 

and the associated patient’s manual brain tumor contour is 
regarded as the learning target. Slices of images extracted 
from multi-modal brain MRI images, i.e., Flair, T1, T1-con-
trast-enhanced (abbreviated as T1c in Fig. 1), and T2 scan, 
respectively, are concatenated and used as multi-channel 
inputs. The corresponding slice of binary mask of manual 
contour is used as ground truth to supervise the training of 
the 2D U-Net. The input image size of this network is set 
by the size of slice in axial plane, which is 240×240 (voxel 
size). The output of 2D U-Net is a coarsely generated binary 
mask of tumor, which is termed as localization by this study.

After generating the coarse binary mask of tumor via 2D 
U-Net, an ROI is identified by first locating the mass center 
of the mask and then a 3D bounding box centered at that 
center is created to fully enclose the tumor. Considering that 
the maximum height, width, and depth of tumors on MIC-
CAI BraTS 2015 Challenge data [5] are 162, 125, and 111 
for high Gliomas grade (HGG) data and 141, 112, and 89 
for low Gliomas grade (LGG) data, respectively, oversize 
window size will impact the training efficiency and under-
size window size will lead to insufficient extraction, so the 
window size is set to 128×128×128 pixels. To cover the 
tumor, if one ROI cannot sufficiently enclose the generated 
coarse binary mask of tumor, neighboring ROIs of the same 
size are also extracted. The correlated coordinates of the 
ROI/ROIs are recorded so that the segmented binary masks 

Fig. 1   The schematic flow diagram of the proposed method. The 
upper part shows training procedure of 2D localization and 3D seg-
mentation models. The middle part shows the testing stage for a new 

data. The lower part shows the architecture of U-Net used for both 2D 
localization and 3D segmentation models
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within ROI/ROIs can be re-located back to the original volu-
metric space.

After that, we crop the MRI images within the ROI, and 
feed the cropped image to the 3D U-Net to derive the binary 
mask within ROI. The cropped MRI images from four scans 
are inputs, and the manual contour of corresponding ROI is 
set as target to train the 3D U-Net for accurate brain tumor 
segmentation within the ROI.

Evidently, the ROI strategy is to exclude the effect of 
irrelevant tissues in brain MRI images, and enhances the 
accuracy of segmentation. Different from [35] where down 
sampled images were used for cropping, MRI images of 
original resolution are used in the proposed ROI approach. 
Compared to manual cropping, the ROI method uses 2D 
U-Net network to locate the brain tumor tissues, followed 
by a 3D window to fully enclose the tumor tissues to imple-
ment the cropping.

In the testing/segmentation phase (middle part of Fig. 1), 
for a new multi-modal MRI data, the location of tumor ROI 
and the tumor segmentation within that ROI are obtained 
following the same sequence as in training. The final tumor 
segmented contour is obtained by locating the segmented 
tumor within ROI in the entire 3D image.

2.2 � Image acquisition

In this study, we collect the brain MRI data and correspond-
ing manual tumor contour from a benchmark public data-
base, i.e., the multi-modal brain tumor image segmentation 
challenge held in conjunction with MICCAI 2015 (MIC-
CAI-BRATS 2015). This is a large database of brain tumor 
MRI scans in which the relevant tumor structures have been 
well delineated by experienced physicians [5]. The dataset 
include multimodality MRI and the brain tumor image that 
were delineated by both clinicians and radiologists. The MRI 
images (acquired at four centers, i.e., Heidelberg University, 
Massachusetts General Hospital, Debrecen University, and 
Bern University) were scanned by MRI machines of differ-
ent vendors with 1.5T and 3T field strengths [5]. The multi-
modal MRI scans of 220 HGG and 54 LGG patients who 
have received pre- and post-therapy are used for training 
and testing in this study. The maximum height, width, and 
depth of tumors on MICCAI BraTS 2015 Challenge data [5] 
are 162, 125, and 111 for high Gliomas grade (HGG) data 
and 141, 112, and 89 for low Gliomas grade (LGG) data, 
respectively.

The image data set share the following four MRI com-
parisons [5] and all images are skull stripped. 

(1)	 FLAIR: T2-weighted FLAIR image, 2–6 mm slice 
thickness, sagittal, axial, or coronal 2D acquisitions.

(2)	 T1: T1-weighted, native image, 1–6 mm slice thickness, 
axial or sagittal 2D acquisitions.

(3)	 T1c: T1-weighted, contrast-enhanced image, 1 mm iso-
tropic voxel size, 3D acquisition.

(4)	 T2: T2-weighted image, 2–6 mm slice thickness, axial 
2D acquisition.

Volumes of each patient’s MRI images are rigidly registered 
to its T1c MRI scan, which has the highest spatial resolution 
over all scans, and are then restored to the same resolution 
by resampling (1×1× 1 mm3 ) in that challenge data [5] to 
achieve the homogeneity of these data. The voxel size of 
these patients’ MRI data is 240×240×155 mm3 . To unify 
these data, we use a normalization strategy to normalize all 
MRI intensities to the range [– 1, 1]. The normalization is 
performed as follows:

where I denotes the original MRI images of a patient’s MRI 
scan, �(I) denotes the mean value, max95(I) denotes the 95% 
maximum intensity value, min95(I) denotes the 95% mini-
mum intensity value.

The quality of MRI images may be affected by image 
inhomogeneity issue. To resolve this problem, a N4 bias 
field correction method, which is a universal method for 
correcting non-uniformity of low frequency intensity, is used 
in the SimpleITK library of Python package.

2.3 � U‑Net architecture

For both 2D localization and 3D segmentation models, the 
binary mask of manual contour is used as the learning tar-
get of multi-modal MRI image for our proposed method. In 
order to fully exploit the multi-scale information, including 
spatial and structural information, U-Net architecture is used 
for both 2D and 3D models. This is because that the U-Net 
system can extract not only low-frequency feature maps from 
previous convolution layers but also high-frequency feature 
maps from subsequent convolution layers. These multi-level 
feature maps may be helpful for representing the tumor 
boundaries in multiple levels.

As shown in the lower part of Fig. 1, the U-Net architec-
ture is divided into two parts: encoding path and decoding 
path. In the encoding path, the input image slices (for 2D 
localization) and ROI volumes (for 3D segmentation) first 
go through three convolution operators with a max-pooling 
to reduce the size of feature maps. Each convolution operator 
is implemented by a convolution layer followed by a Para-
metric Rectified Linear Units (PReLU) and a batch normali-
zation (shorted as Conv.+PReLU+BN in Fig. 1). Then the 
feature maps go through three deconvolution operators to 

(1)Inormalized =
I − �(I)

max95(I) − min95(I)
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obtain an equal-sized output, which is called end-to-end in 
FCNN [28]. In order to preserve the multi-level features, a 
concatenation is performed to enlarge the number of feature 
maps between the outputs of two equal-sized feature maps 
obtained from encoding and decoding path, respectively. 
Finally, the feature maps are fed into a convolution layer 
to shorten the number of feature maps to only two, and fol-
lowed by a “tanh” layer to polarize the feature maps. The 
two-channel feature maps are regarded as posterior of the 
tumor tissue and the normal tissue. After that, a threshold is 
used to obtain the binary mask of tumor.

Binary cross entropy (BCE) loss, which measures the 
dissimilarity between generated binary mask of tumor and 
the binary mask of manual contour, is used to supervise the 
model. Let {Si ∶ i ∈ I} denote all values of voxels of gener-
ated binary mask of tumor, and {Mi ∶ i ∈ I} be values of 
voxels of binary mask of manual contour. The binary cross 
entropy is defined as follows:

In order to enhance the robustness against the inaccuracies 
in both tumor localization and segmentation, data augmenta-
tion, including flipping, rotation, and elastic deformation, is 
used to expand the variety of training data.

2.4 � Quantitative measurements

We use ten-fold cross-validation experiments to evaluate the 
proposed brain tumor segmentation algorithm. Specifically, 
following the principle of equal distribution, we randomly 
separate the patients’ data (both 220 HGG and 54 LGG data) 
into ten groups, where the first nine groups have data from 
27 patients, and the last group have data from 31 patients. 
For any of such ten-fold cross-validation experiments, one 
group of data set is taken as the validation data for perfor-
mance evaluation, the rest nine groups are regarded as the 
training data. This experiment is repeatedly performed ten 
times, with each group served as validation data once.

To evaluate the performance, the measuring metrics are 
calculated by comparing the segmented brain tumor contour 
with the known manual contour by experts. Specifically, the 
Dice similarity coefficient (DSC), the Hausdorff distance 
(HD), and the mean surface distance (MSD) are used to 
evaluate the accuracy of the proposed method.

DSC is applied to measure the overlapping of the seg-
mented contour obtained by proposed tumor segmentation 
method and the manual contour delineated from experienced 
physicians.

(2)LossBCE = −
∑

i∈I

Milog(Si) −
∑

i∈I

(1 −Mi)log(1 − Si)

(3)DSC =
2 ⋅ �S

⋂
M�

�S� + �M�

where S denotes the segmented contour, M denotes the cor-
responding manual contour, | ⋅ | denotes the number of vox-
els within that contour.

HD and MSD measure the surface area differentiation 
between the segmented and manual contour. HD is used to 
evaluate the maximum difference between the surface area 
of segmented contour S and corresponding manual con-
tour M, MSD is applied to measure the average difference 
between the surface area of segmented contour S and cor-
responding manual contour M, given as

where h(S,M) = max
s∈S min

m∈M ‖s − m‖ , h(M, S) = max
m∈M

min
s∈S ‖m − s‖ , ‖ ⋅ ‖ denotes the Euclidean distance.

To prove that ROI-aided strategy can exclude the influ-
ence of irrelevant tissue in MRI scans, we compare the pro-
posed method with 3D U-Net without using 2D U-Net for 
localization (called as pure 3D U-Net) and set the patch size 
as 128×128×128. In order to illustrate that the whole 3D 
ROI input can exploit more spatial information, we compare 
the proposed method with 2D U-Net, which regard the slice 
of transverse plane as input (called as pure 2D U-Net).

The latest well known V-Net [28] is used in the com-
parison studies. V-Net uses Dice-loss as the loss function 
to supervise the model and adjusts network architecture by 
adding more convolution layers and replacing the concatena-
tion operator with element sum operator.

The proposed method is also compared with the recent 
densely connected FCN algorithm (called as DCFCN) [31]. 
The main idea of this algorithm is to utilize densely con-
nected convolutional blocks to boost the performance.

To illustrate the significant improvement of the proposed 
method against competitive techniques, a paired two-tailed 
t-test is used between the numerical results calculated by the 
proposed method and that by the comparing approaches. All 
parameters among studied techniques are set by their best 
performances.

3 � Results

3.1 � Robustness of ROI‑aided strategy

In the proposed method, we first use 2D U-Net to obtain a 
coarse binary mask of tumor and then set a ROI to cover 
and center this coarse binary mask. The center position of 
ROI is originally set as the mass center of the coarse binary 
mask. In order to ensure that this ROI location identification 
is robust for the brain tumor segmentation, we randomly 

(4)H(S,M) =max(h(S,M), h(M, S))

(5)MSD =
h(S,M) + h(M, S)

2
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choose one group as validation data from the above ten 
groups of data in Sect. 2.4, and set all possible eight groups 
from the rest nine groups as training set. This procedure has 
altogether C8

9
= 9 times of experiments. The average metrics 

of each experiment is used to compare the differences among 
various methods.

Table 1 shows the DSC, HD, and MSD of the segmen-
tation results of these nine experiments. Among the nine 
experiments of the proposed method, the DSC, HD, and 
MSD do not show any significant change (with all the 
P-value between each two experiments larger than 0.05). 
Thus, it demonstrates that ROI location of the proposed 
method is not sensitive to different test.

3.2 � Contribution of ROI‑aided strategy

To demonstrate the efficacy of ROI-aided strategy, we com-
pare the results of proposed method with pure 3D U-Net 
and pure 2D U-Net as previously mentioned. Figure 2 shows 
the visual results on axial view of these three methods. Sub-
images (a1–a8) show an extreme case of a HGG patient, 
where the Flair image (a1) loses almost half of the soft tis-
sue region as compared with the rest three scans (a2–a4). 
Sub-images (b1–b8) show a normal case of a LGG patient. 
As is shown in (b1–b8), with the regular boundary contrast 
appeared in the multi-modal MRI images, all three methods 
provide similar segmentation results, which are very close 
to the manual contour.

However, as shown in (a1–a8), when normal tissue inten-
sities of T2 images are at similar levels of tumor intensi-
ties (as pointed out in (a4) by yellow arrow), the pure 3D 
U-Net introduces some false segmentation, whereas pure 
2D U-Net and the proposed method show no false tumor 
boundary. Furthermore, the proposed method can recover 
more details of the tumor boundary than that pure 2D U-Net 
can, as shown in sub-image comparison of (a8) vs. (a7), we 
believe the ability of showing boundary details is due to the 
exploitation of features from 3D volume of the whole ROI. 
In the meantime, misclassification of pure 3D U-Net may be 
caused by patch-based feature extraction that causes the loss 

of some spatial information, this misclassified region should 
be ventricle tissue not the tumor tissue.

Table 2 is used to test the improvement of the ROI-aided 
strategy by using ten-fold cross-validation experiments. The 
results demonstrate that the proposed method significantly 
improves the performance compared with other methods on 
the DSC metric (P-value<0.05). On the HD metric compari-
son, the proposed method is significantly better than that of 
pure 3D U-Net, while no significant improvement over that 
of pure 2D U-Net. As for the MSD metric comparison, the 
three methods show comparable results.

Table 1   Numerical results with 
different test

Experiment# 1 2 3 4 5 6 7 8 9

DSC
 Mean 0.879 0.881 0.877 0.884 0.875 0.876 0.877 0.868 0.886
 Std 0.060 0.060 0.061 0.059 0.060 0.060 0.060 0.060 0.060

HD
 Mean 3.549 3.543 3.575 3.594 3.594 3.515 3.553 3.501 3.505
 Std 1.380 1.426 1.357 1.391 1.373 1.414 1.347 1.381 1.397

MSD
 Mean 0.283 0.287 0.278 0.271 0.274 0.278 0.287 0.278 0.287
 Std 0.070 0.070 0.071 0.070 0.070 0.070 0.070 0.070 0.070

Fig. 2   The visual results of the proposed and comparing methods 
on transverse plane. a1–a8 Show a HGG patient’s Flair, T1, T1c, T2 
image, binary mask of manual contour, result obtained by pure 3D 
U-Net, result obtained by pure 2D U-Net, and the result obtained 
by the proposed method, respectively. b1–b8 Show a LGG patient’s 
images as same image sequence with (a1–a8)
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3.3 � Comparison with state‑of‑the‑art methods

To further validate the proposed method, its performance 
is compared against previously mentioned V-Net [28] and 
DCFCN [31]. Figure  3 shows the visual segmentation 

results of one patient. The aim of this figure is to compare 
the performance when the boundary contrast of tumor on 
MRI images are not very clear to distinguish. As is shown 
in sub-images (a1) and (a4), the tumor edges of the Flair and 
T2 images are smooth and ambiguous. In addition, the T1 
image shows nearly minimal tumor structure in sub-image 
(a2). Under this extreme situation, our proposed method and 
DCFCN still have similar binary mask of the tumor to that 
of manual tumor contour, but the V-Net method cannot. Fur-
thermore, the result of the proposed method is much more 
like the manual contour.

Table 3 compares the numerical results of the proposed 
method against two other techniques. It shows clearly that 
the proposed method outperforms the other two methods on 
DSC and HD metrics significantly.

For comparison, the numerical results from the BRATS-
2015 leaderboard are carefully studied. The top-one ranked 
most recent segmentation model [37] for this brain tumor 
segmentation has the DSC performance of 0.87, the second 
to fourth top-ranked models [38–40] have the DSC perfor-
mance of 0.85, and the fifth top-ranked model [41] has the 
DSC performance of 0.84.

In the meantime, the DSC performance of our proposed 
method (around 0.876) is close to top-one model and out-
performs the rest four models, which demonstrates the effi-
ciency of our proposed method.

4 � Discussion

We propose a new brain tumor segmentation method uti-
lizing the new ROI-aided strategy into the U-Net architec-
ture to automatically locate the tumor and then segment the 

Table 2   Numerical comparison between proposed method with pure 
3D and 2D U-Net among all patients’ data

The P-value of each column is calculated by comparing the results 
of proposed method and the results of the comparing method in that 
column

Comparing method Pure 3D U-Net Pure 2D U-Net Proposed

DSC
 Mean 0.858 0.860 0.877
 Std 0.080 0.069 0.060
 P-value <0.001 0.039 N/A

HD
 Mean 5.102 3.638 3.553
 Std 1.702 1.588 1.347
 P-value <0.001 0.051 N/A

MSD
 Mean 0.290 0.285 0.287
 Std 0.070 0.070 0.070
 P-value 0.764 0.893 N/A

Fig. 3   The visual results of the proposed and other state-of-the-art 
methods on axial view. a1–a4 Show a patient’s Flair, T1, T1c, and T2 
images. a5–a6 Show the zoomed-in images of (a1–a4), the zoomed-in 
window location is shown as the red rectangle in (a1). b1–b4 Show 
the binary mask by the manual contour, by the V-Net, by the DCFCN, 
and by the proposed method, respectively. b5–b8 Show the zoomed-
in images of (b1–b4) within the same zoomed-in window as shown in 
the red rectangle of (a1)

Table 3   Numerical comparison between proposed method with 
V-Net and DCFCN among all patients’ data

The P-value of each column is calculated by comparing the results 
of proposed method and the results of the comparing method in that 
column

Comparing method V-Net DCFCN Proposed

DSC
 Mean 0.859 0.867 0.876
 Std 0.079 0.077 0.068
 P-value <0.001 0.042 N/A

HD
 Mean 5.222 3.926 3.594
 Std 1.800 1.642 1.347
 P-value <0.001 0.035 N/A

MSD
 Mean 0.290 0.290 0.289
 Std 0.069 0.070 0.069
 P-value 0.884 0.893 N/A
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tumor contour. Our proposed method is significantly better 
compared with the state-of-the-art methods on DSC and HD 
metrics as described in Table 3. The application of the new 
ROI-aided strategy achieve significant improvement on the 
DSC metric as compared with pure 2D and 3D U-Net with-
out using the new ROI-aided strategy.

Different from recent fully convolutional network (FCN)-
based methods, which directly perform segmentation on 
whole input volume, our proposed network is a cascaded net-
work including two U-Nets. The first U-Net provides a rough 
tumor segmentation, and derives the location and boundary 
of tumor, namely the region-of-interest (ROI) of the tumor. 
Then, the second U-Net performs the fine segmentation 
on the image that is cropped within the ROI of the tumor. 
The effectiveness of our proposed cascading U-Net method 
can be summarized in two folds. First, useless information 
from the irrelevant regions is excluded. These include, for 
example, the bony and brain stem structures, which have 
higher or equal tissue contrast as compared to tumor. These 
regions may introduce additional bias if one FCN is directly 
applied for tumor segmentation. This is the purpose of the 
first U-Net to obtain the ROI of the tumor, i.e., locating the 
tumor and its relative small region of interest.

Secondly, the challenge of segmenting tumor through 
deep learning is that tumor region is relatively small than 
that of the whole brain volume. Thus, if one takes the whole 
brain volume as input for a direct segmentation, the imbal-
ance issue between positive labels (tumor voxels) and nega-
tive labels (non-tumor voxels) will be significant, which may 
cause convergence difficulties for recent deep learning-based 
models. To resolve this issue, we crop the image within ROI 
that is obtained via first U-Net and feed it to the second 
U-Net. The non-tumor and tumor regions within the ROI 
would be at a relatively equal level. The imbalance issue 
for the second U-Net would be diminished. Thus, the accu-
racy of the obtained fine segmentation of tumor would be 
enhanced as compared to recent FCN-based methods.

So, two U-Nets are used for brain tumor segmentation 
in our proposed method. The 2D U-Net aims to roughly 
determine the location (i.e., ROI) of brain tumor and the 3D 
U-Net aims to perform fine segmentation on the ROI. The 
details of our networks design are as follows.

Tables 4 and 5 show the structural parameters of 2D and 
3D U-Nets, respectively. Adam gradient optimizer is used 
to optimize the two networks. The learning rate of adam 
gradient optimizer is set to 1.0 × 10−5 and the same-padding 
operation is used. The batch size of 2D U-Net training is set 
to 20 and the batch size of 3D U-Net training is set to 4. It 
takes about 0.5 h with 200 epochs during training the 2D 
U-Net, and takes about 7 h with 200 epochs during training 
the 3D U-Net. For a new input MRI, the 2D U-Net takes 
about 0.5 min to obtain the brain tumor location, and the 3D 
U-Net takes about 2 min to derive the tumor segmentation. 

We then locate the segmentation back to the original image 
coordinate according to the localization obtained via 2D 
U-Net. This procedure takes within 1 s.

Our method can perform segmentation within 1 s for a 
new MRI image from a newly arrived patient, which will be 
an efficient tool for the brain tumor contouring and a poten-
tial tool for solving the labor-consuming issue of manual 
contour during clinic. As is shown in Table 3 and the com-
parison with most recent brain tumor segmentation methods 
listed in leaderboard of BRATS2015, the DSC performance 
is better than most of these methods and is comparable with 
top one ranked method, which demonstrates the efficiency 
and accuracy of our proposed method. In total, our proposed 
method takes about 7 GB during training. The proposed 
method can be also used in segmenting of tumor and lesion 
of different body sites and different image modality. For 
example, a recent study [42] of lung CT infection segmen-
tation for COVID-19 pneumonia patient used the strategy 
of cascaded network. In future, we will evaluate the perfor-
mance of proposed method on this dataset.

Our method is suitable for segmentation on different 
medical image modalities. However, the intensity values 

Table 4   The architecture of 2D U-Net

Backbone Filter and  stride Feature Input shape

Input N/A N/A 240 × 240 × 4

Conv_0_0 3 × 3&1 × 1 16 240 × 240 × 4

Conv_0_1 3 × 3&1 × 1 16 240 × 240 × 16

Conv_0_2 3 × 3&1 × 1 16 240 × 240 × 16

MaxPool_0 2 × 2&2 × 2 – 240 × 240 × 16

Conv_1_0 3 × 3&1 × 1 32 120 × 120 × 16

Conv_1_1 3 × 3&1 × 1 32 120 × 120 × 32

MaxPool_1 2 × 2&2 × 2 – 120 × 120 × 32

Conv_2_0 3 × 3&1 × 1 64 60 × 60 × 32

Conv_2_1 3 × 3&1 × 1 64 60 × 60 × 64

MaxPool_2 2 × 2&2 × 2 – 60 × 60 × 64

Conv_3_0 3 × 3&1 × 1 128 30 × 30 × 64

Conv_3_1 3 × 3&1 × 1 128 30 × 30 × 128

DeConv_2 3 × 3&2 × 2 64 30 × 30 × 128

Concate_2 – – 60 × 60 × 64

Conv_2_2 3 × 3&1 × 1 64 60 × 60 × 128

Conv_2_3 3 × 3&1 × 1 64 60 × 60 × 64

DeConv_1 3 × 3&2 × 2 32 60 × 60 × 64

Concate_1 – – 120 × 120 × 32

Conv_1_2 3 × 3&1 × 1 32 120 × 120 × 64

Conv_1_3 3 × 3&1 × 1 32 120 × 120 × 32

DeConv_0 3 × 3&2 × 2 16 120 × 120 × 32

Concate_0 – – 240 × 240 × 16

Conv_0_2 3 × 3&1 × 1 16 240 × 240 × 32

Conv_0_3 3 × 3&1 × 1 16 240 × 240 × 16

Conv_final 3 × 3&1 × 1 2 240 × 240 × 16
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of different image modalities, such as CT, cone-beam CT 
(CBCT), and ultrasound image, will be different. As a result, 
different normalizations for these datasets should be applied. 
In addition, it should be noticed that the image quality of 
different image modalities is affected by different bias issue. 
For example, in our task, the MRI is affected by inhomoge-
neity issue, thus we use an inhomogeneity correction tool 
as preprocessing step. Scatter artifact and ring artifact will 
affect the image quality of CBCT and CT, so scatter cor-
rection [43] and ring artifact reduction [44] should be per-
formed before training and testing the model. In ultrasound, 
speckle noise may affect the segmentation performance, so 
speckle noise reduction method [45] should be performed.

There are still more practical tasks to be studied. First of 
all, since the MRI images of MICCAI-BRATS 2015 chal-
lenge data are well registered, no alignment required. How-
ever, for practical clinic study, different MRI scans of the 
same patient often have mismatches at different time and/or 
with different scan settings. Thus, rigid and deformable reg-
istration [46, 47] will be needed. Secondly, for MRI images, 
there is no correction for geometric artifacts. In actual clini-
cal study, the majority of the MRI images showing tissue 

regions are most likely affected by geometric artifacts. Wang 
et al. showed excellent data about susceptibility-induced 
geometric distortions [48], which is not negligible for the 
future tumor segmentation study. Therefore, without correct-
ing geometric distortion within skull is likely to affect the 
robustness of all techniques in actual clinical data. This will 
also be part of our subsequent work to add some effective 
means to correct the geometric artifacts, such as a field-map 
based correction [49]. There is also the third practical task 
to study. The proposed technique is currently merely imple-
mented by normal 2D and 3D U-Net architectures since the 
goal is to prove that the new ROI-aided strategy can improve 
the brain tumor segmentation accuracy. In our future work, 
we will test this ROI-aided strategy on other more advanced 
architectures such as the deeply supervised networks [50]. 
The next subsequent area of study is to develop a method 
that has the ability of automatic ROI searching with flexible 
ROI size. In the current study, the ROI size is fixed since 
the maximum tumor region is known in the data base. A 
practically valid strategy may need to have the ability to 
automatically identifying ROI sizes. In fact, the recent mask 
R-CNN has shown a great potential on flexible bounding 
box size for object detection [51], which may a direction 
in our future studies. Last but not the least, we have not yet 
applied multi-label segmentation for the MICCAI-BRATS 
2015 challenge data. Multi-label segmentation shall also be 
part of our subsequent studies.

5 � Conclusions

In summary, we develop a more accurate brain multi-modal 
tumor segmentation method using the new ROI-aided cas-
cading network strategy. Numerical tests demonstrate that 
this technique can be a useful tool for brain cancer detection, 
diagnosis, and radiotherapy treatment planning.
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