
entropy

Article

Cryptanalysis and Improvement of a Chaotic
Map-Based Image Encryption System Using Both
Plaintext Related Permutation and Diffusion

Cheng-Yi Lin and Ja-Ling Wu *

Department of Computer Science and Information Engineering, Graduate Institute of Networking
and Multimedia, National Taiwan University, Taipei 106, Taiwan; sincerity@cmlab.csie.ntu.edu.tw
* Correspondence: wjl@cmlab.csie.ntu.edu.tw

Received: 27 April 2020; Accepted: 20 May 2020; Published: 22 May 2020
����������
�������

Abstract: In theory, high key and high plaintext sensitivities are a must for a cryptosystem to resist
the chosen/known plaintext and the differential attacks. High plaintext sensitivity can be achieved
by ensuring that each encrypted result is plaintext-dependent. In this work, we make detailed
cryptanalysis on a published chaotic map-based image encryption system, where the encryption
process is plaintext Image dependent. We show that some designing flaws make the published
cryptosystem vulnerable to chosen-plaintext attack, and we then proposed an enhanced algorithm to
overcome those flaws.

Keywords: image encryption; chaotic map; permutation; diffusion; cryptanalysis

1. Introduction

With the rapid progress in digital technology and mobile devices, people have produced more and
more user-generated information in these few years; besides texts, most of them are multimedia data,
such as images and videos. With the increasing of information security and privacy protection issues,
researchers have proposed lots of encryption algorithms [1] against unauthorized access to those
user-generated media data.

As suggested in [2], the main techniques used to develop image encryption algorithms can
roughly be divided into the following six categories: chaotic map, DNA computing, cellular automata,
wavelet transmission, neural networks, and compressive sensing. The extreme initial value sensitivity
and high randomness of the chaotic systems make the chaotic maps the most popular tool in digital
image encryption algorithms. This is because the chaotic systems have some useful properties,
like being ergodic, highly sensitive to initial conditions, and pseudo-randomness, which fit the
essential requirements for building a practical cryptosystem [3]. Fridrich [4] proposed the first image
encryption algorithm based on a chaotic map in 1998. After that, a large number of digital image
encryption algorithms that were based on chaotic maps were proposed [3], and the references therein.
Since Liu et al. addressed lots of the chaotic map-based image encryption algorithms published on
signal processing and information technology-related Journals before 2019, our following discussions
will mainly focus on related works [5–10] posted on the Entropy Journal, most recently.

In order to prevent an Image exchanging system from brute force and differential
attacks, [5] presented a new image encryption mechanism, in which the Enhanced Logistic Map (ELM)
and some simple encryption techniques, such as block scrambling, modified zigzag transformation,
and chaotic-map based key generation, are used. The results of encryption are evaluated from six
different security measures. The corresponding results demonstrate the security, reliability, efficiency,
and flexibility of the proposed method. Sine-Tent map (STM) is intended in [7] to widen the chaotic

Entropy 2020, 22, 589; doi:10.3390/e22050589 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6842-2224
http://www.mdpi.com/1099-4300/22/5/589?type=check_update&version=1
http://dx.doi.org/10.3390/e22050589
http://www.mdpi.com/journal/entropy

Entropy 2020, 22, 589 2 of 23

range and to improve the shambolic performance of one-dimensional (1D) discrete chaotic maps.
Based on STM, a novel double S-box based color image encryption algorithm is recommended,
which offers better applicability in real-time image encryption. Notice that, in [7], the 256-bit hash
value of a randomly sampled noise signal is applied to serve as the one-time initial values of the
proposed system. Since there is only one operation, XOR, is used to diffuse the pixels; the encryption
process can be executed very fast. [8] presents a chaotic-map based image encryption algorithm, where
Logistic and Henon maps are used.

High key and high plaintext sensitivities are a must for a cryptosystem to resist the chosen/known
plaintext and the differential attacks. High plaintext sensitivity can be achieved by ensuring that
each encrypted result is plaintext-dependent. To reach this goal, [9] suggested that the surrounding
of a plaintext image could be surrounded by a sequence generated from the SHA-256 hashed value
of the corresponding plaintext. For conquering the same challenges, in [10], both the permutation
and the diffusion stages of the proposed color image encryption scheme are related to the original
plain image. For keeping high system efficiency, only one round of plaintext tied permutation and
diffusion operations are performed for obtaining the cipher image. Moreover, the proposed approach
can be applied to real-time image encryption directly since there is no need to send original image
dependent security keys to the receiver. Our work is highly inspired by and related to [10]; we will
explore it further in the next section.

In general, the analyses of encryption and decryption algorithms show that all of the algorithms,
as mentioned above, have a good encryption effect, anti-attack ability, and high security. However,
a minor designing flaw may make encryption algorithms vulnerable, even if they are chaotic-based.
In the following, we will take the high plaintext sensitivity related work: “A simple Chaotic map-based
Image Encryption System Using Both Plaintexts Related Permutation and Diffusion (CIES-UBPRPD)”,
as proposed by Huang et al. [10], as an example to illustrate our above statement.

In a plain data-dependent cryptosystem, like CIES-UBPRPD, the cryptanalysis complexity is
mostly increased. Therefore, the security level of the system will also be enhanced. Even though the
experiments given in CIES-UBPRPD [10] showed lots of advantages when compared with conventional
approaches, some designing flaws have been found by us. In this work, we first break a simplified
version of CIES-UBPRPD with a chosen-plaintext attack, to demonstrate the effect of the discovered
flaws. Subsequently, we make a few adjustments on CIES-UBPRPD and show that the modified version
does relieve the defect of the original CIES-UBPRPD.

The rest of this paper is organized, as follows. Section 2 briefly describes the process of
CIES-UBPRPD. In Section 3, we pointed out some design flaws of CIES-UBPRPD and demonstrated
the effects of the weaknesses by issuing a chosen-plaintext attack against a simplified version
of it. Afterwards, a modified version of CIES-UBPRPD is provided in Section 4. With the added
supplements, the security level and the completeness of CIES-UBPRPD can be enlarged significantly.
Some experimental results of the modified CIES-UBPRPD are presented in Section 5, in order to verify
our previous claim, where the associated security analysis is also included. Finally, Section 6 concludes
this writeup.

2. Related Work

In the original CIES-UBPRPD [10], all the arrays are started with index one, while in this work,
we use an equivalent description but change all array indexes starting from zero. For the ease of
discussion, except for the array indexes, most of our notations follow the usage that was adopted
in [10].

Entropy 2020, 22, 589 3 of 23

2.1. The Involved Chaotic Maps

2.1.1. Generalized Arnold’s Cat Map

Arnold’s Cat Map (ACM) is a well-known two-dimensional chaotic system proposed by the
Russian mathematician Vladimir I. Arnold [11]. ACM is usually replaced by its generalized form to
achieve higher security and higher randomness, as shown in Equation (1):[

x′

y′

]
=

[
1 a
b ab + 1

][
x
y

]
mod

[
M
N

]
, (1)

where (x, y) and (x′, y′) denote the positions of the original pixel and the target pixel, a and b are the
system parameters, while M and N are the image’s height and width, respectively. After obtaining the
target position (x′, y′), from Equation (1), the two pixels that are located at (x, y) and (x′, y′) will swap
their pixel values with each other.

2.1.2. Chebyshev Map

Chebyshev map [12] is a one-dimensional chaotic system that can be formulated, as shown in
Equation (2):

xn+1 = Ta(xn) = cos(a× arccosxn), (2)

where xn ∈ [−1, 1] and a ∈ N is again one of the system parameters. For a ≥ 2, chaotic behavior of
Equation (2) holds. The initial value x0 of the above equation is considered as part of the secret key.
In CIES-UBPRPD, a is fixed at 4.

2.2. Image Encryption Algorithm

On the bases of ACM and Chebyshev map, the above-mentioned Chaotic map-based Image
Encryption System—CIES-UBPRPD—was proposed by Huang et al. [10], where the most eye-catching
property of the algorithm is its plaintext data-dependent encryption process. The encryption process
of the original CIES-UBPRPD consists of the following two stages:

2.2.1. Permutation Stage

Step 1. Iterate the Chebyshev map defined in Equation (2) M × N + n0 + 9 times, discard
the first n0 terms to avoid the harmful effect, and obtain the chaotic sequence xn, which contains
(M×N + 9) elements.

xn =
{
x0, x1, · · · , xM×N+8

}
.

Step 2. Generate another sequence xnq according to

xnq(i) = (k1 ⊗ k2 ⊗ k3) ⊗ xn(i) × 1015, (3)

where i ∈ {0, 1, · · · , 8} and ⊗ denotes bitwise XOR operator.
Step 3. Calculate sumr, sumg, and sumb based on the following equations:

sumr =
M−1∑
i=0

N−1∑
j=0

PR(i, j),

sumg =
M−1∑
i=0

N−1∑
j=0

PG(i, j),

sumb =
M−1∑
i=0

N−1∑
j=0

PB(i, j),

(4)

where PR, PG, and PB represent the Red, Green, and Blue channels of the plain image P, respectively.

Entropy 2020, 22, 589 4 of 23

Step 4. Calculate the system parameters by using the following equations: br = mod
(
xnq(0) ⊗ sumr + xnq(1) ⊗ sumg + xnq(2) ⊗ sumb, 256

)
ar = mod((br + 1) × (k1 ⊗ k2 ⊗ k3), 65536) + 1 bg = mod

(
xnq(3) ⊗ sumr + xnq(4) ⊗ sumg + xnq(5) ⊗ sumb, 256

)
ag = mod

((
bg + 1

)
× (k1 ⊗ k2 ⊗ k3), 65536

)
+ 1 bb = mod

(
xnq(6) ⊗ sumr + xnq(7) ⊗ sumg + xnq(8) ⊗ sumb, 256

)
ab = mod((bb + 1) × (k1 ⊗ k2 ⊗ k3), 65536) + 1,

(5)

where (br, ar),
(
bg, ag

)
, and (bb, ab) are pairs of parameters used to permute PR, PG, and PB, respectively.

Moreover, mod (x, m) denotes the calculation of “x mod m”.
Step 5. Permute PR, PG, and PB using the following modified Cat Map with the corresponding

parameters: [
x′

y′

]
=

[
1 a

b + 1 a(b + 1) + 1

][
x + 1
y + 1

]
mod

[
M
N

]
, (6)

where x ∈ {0, 1, · · · , M− 1} and y ∈ {0, 1, · · · , N − 1}. The scanning sequence is started from left to right
and from top to bottom. After PR, PG and PB are shuffled, we get the permuted image P∗.

2.2.2. Diffusion Stage

Step 1. Transform P∗R, P∗G, and P∗B, into three on-dimensional (1D) arrays P∗R_P, P∗G_P, and P∗B_P,
respectively, by row-major ordering.

Step 2. Calculate the diffusion matrix D according to

D(i) = mod(
⌊
xn(i + 9) × (k1 ⊗ k2 ⊗ k3)c, 256) , (7)

where i ∈ {0, 1, · · · , M×N − 1}.
Step 3. Calculate CR_P, CG_P, and CB_P by using the following equations:

CR_P(0) = (br + k1)mod256
CG_P(0) =

(
bg + k2

)
mod256

CB_P(0) = (bb + k3)mod256
(8)


CR_P(i) = mod

(
P∗RP

(i) ⊗D(i) + num, 256
)
⊗CR(i− 1)

CG_P(i) = mod
(
P∗GP

(i) ⊗D(i) + num, 256
)
⊗CG(i− 1)

CB_P(i) = mod
(
P∗BP

(i) ⊗D(i) + num, 256
)
⊗CB(i− 1)

(9)

where num =
(
ar × br + ag × bg + ab × bb

)
⊗ (k1 + k2 + k3), and i ∈ {1, 2, · · · , M×N − 1}.

Step 4. Transform CR_P, CG_P, and CB_P into three grayscale images with size M ×N, and then
merge them into one color cipher image C, with size M×N × 3.

Notice that the permutation processes executed in Step 5 involved parameters sumr, sumg, and sumb,
which are input (plaint) image data-dependent (cf. Equations (4) and (5)). Notice that, as pre-described
in Section 1, the encryption process only includes one round permutation stage and diffusion stage.
Conceptually and theoretically, if the encryption process of a cryptosystem is plaintext data-dependent,
the associated cryptanalysis is much complicated. Therefore, the corresponding security level of the
system is much enhanced, as compared with its data-independent counterpart.

Entropy 2020, 22, 589 5 of 23

2.3. Image Decryption Algorithm

Similarly, also from [10], the decryption process of the original CIES-UBPRPD consists of the
following five steps:

Step 1. Transform CR, CG, and CG into three 1D arrays CR_P, CG_P, and CB_P, respectively,
by row-major ordering.

Step 2. Calculate the diffusion matrix D = {d0, d1, · · · , dM×N−1} based on Equation (7).
Step 3. Calculate the system parameters by using the following equations:

br = (CR_P(0) − k1)mod256
bg = (CG_P(0) − k2)mod256
bb = (CB_P(0) − k3)mod256

(10)

ar = mod((br + 1) × (k1 ⊗ k2 ⊗ k3), 65536) + 1
ag = mod

((
bg + 1

)
× (k1 ⊗ k2 ⊗ k3), 65536

)
+ 1

ab = mod((bb + 1) × (k1 ⊗ k2 ⊗ k3), 65536) + 1.
(11)

Step 4. Reconstruct P∗R_P, P∗G_P, and P∗B_P according to
P∗RP

(i) = mod
((

CRP(i) ⊗CRP(i− 1)
)
− num, 256

)
⊗D(i)

P∗GP
(i) = mod

((
CGP(i) ⊗CGP(i− 1)

)
− num, 256

)
⊗D(i)

P∗BP
(i) = mod

((
CBP(i) ⊗CBP(i− 1)

)
− num, 256

)
⊗D(i),

(12)

where
num =

(
ar × br + ag × bg + ab ⊗ bb

)
⊗ (k1 + k2 + k3), (13)

and i ∈ {1, 2, · · · , M×N − 1}. Then transform these three arrays into 2D arrays P∗R, P∗G, and P∗B,
respectively.

Step 5. Reconstruct PR, PG, and PB by using the Cat Maps defined in Equation (1), but now the
scanning sequence is started from right to left and from bottom to top.

3. Cryptanalysis

Cryptanalysis is a must procedure for any cryptosystem to be applied to any real applications.
We launched a few analyses on CIES-UBPRPD when we learned it from [10]. This section is organized,
as follows. Section 3.1 reports the security weaknesses we found and Section 3.2 presents the attack
that we used to break a simplified version of the original CIES-UBPRPD.

3.1. Security Weaknesses

3.1.1. Equivalent Classes in Keyspace

After detailed analyses of CIES-UBPRPD, we found that two secret key groups key1 =

(x0, k1, k2, k3, n0) and key2 =
(
x′0, k′1, k′2, k′3, n′0

)
could play indistinguishable roles to each other, in the

original cryptosystem, if the following conditions are satisfied:

n0 = n′0
x0 = x′0
k1 ⊗ k2 ⊗ k3 = k′1 ⊗ k′2 ⊗ k′3
k1 ≡ k′1(mod256)
k2 ≡ k′2(mod256)
k3 ≡ k′3(mod256).

(14)

Entropy 2020, 22, 589 6 of 23

For demonstration, here we choose key1 = (0.7, 784533, 763092, 777777, 1500) and key2 =

(0.7, 353173, 676820, 307761, 1500), which satisfy all of the conditions given in Equation (14). First,
we use key1 to encrypt the benchmark image Lena (left, Figure 1) and obtain the corresponding cipher
image (middle, Figure 1). Subsequently, we use key2 to decrypt the cipher image and obtain the
recovered image (right, Figure 1).

Entropy 2020, 22, x FOR PEER REVIEW 6 of 22

we use 𝑘𝑒𝑦1 to encrypt the benchmark image Lena (left, Figure 1) and obtain the corresponding

cipher image (middle, Figure 1). Subsequently, we use 𝑘𝑒𝑦2 to decrypt the cipher image and obtain

the recovered image (right, Figure 1).

Figure 1. An Example of the Problem of Equivalent Classes in Keyspace.

The above example implies that one can split the set of all keys into equivalence classes that are

based on the conditions given in Equation (14), and the effects of keys belonging to the same

equivalence classes will be indistinguishable to each other in CIES-UBPRPD. This property shrinks

the effective keyspace from (1016 × (1012 − 105)3 × 1500) ≈ 2183 to (1016 × 28 × 28 × 28 × 232 ×

1500) ≈ 2120 (since 1012 ≈ 240, we can assume 𝑘1, 𝑘2 and 𝑘3 are of 40-bit long), which is far less

than what [10] initially claimed.

3.1.2. Low Sensitivity to the Change of Plaintext

Once the secret key group is chosen, and the summation of pixel values in each channel is given,

then the parameters used in the Cat Map are always fixed. Having the same settings means that the

permutation mapping will be fixed no matter what the plain image is. Furthermore, there is no cross-

channel interaction during permutation and diffusion stages in the original CIES-UBPRPD, which

suggests that errors inside one channel will not propagate to the other channels.

Therefore, we can construct two similar plain images where only their R channels are different,

but their sum of R channel remains the same. Additionally the corresponding cipher images of these

two images will have no differences in G and B channels. This situation violates the diffusion

property that a chaotic-map based cryptosystem is looking for.

For demonstration, we modify the standard Lena image by increasing the first-pixel value by 1

and decreasing the second-pixel value also by 1 in the R channel, and then compare the

corresponding cipher image with that of the standard Lena image. The results are shown in Figure 2

and Table 1, the details of two widely used measures, number of pixels change rate (NPCR) and

unified average changing intensity (UACI), will be given in Section 5.2.5.

Table 1. Number of pixels change rate (NPCR) and unified average changing intensity (UACI) Values

Between the Two Cipher Images Given in Figure 2.

 R G B

NPCR (%) 86.5371 0 0

UACI (%) 4.8464 0 0

Figure 1. An Example of the Problem of Equivalent Classes in Keyspace.

The above example implies that one can split the set of all keys into equivalence classes that
are based on the conditions given in Equation (14), and the effects of keys belonging to the same
equivalence classes will be indistinguishable to each other in CIES-UBPRPD. This property shrinks the
effective keyspace from (1016

×

(
1012
− 105)3

× 1500
)
≈ 2183 to

(
1016
× 28
× 28
× 28
× 232

× 1500
)
≈ 2120

(since 1012
≈ 240, we can assume k1, k2 and k3 are of 40-bit long), which is far less than what [10]

initially claimed.

3.1.2. Low Sensitivity to the Change of Plaintext

Once the secret key group is chosen, and the summation of pixel values in each channel is given,
then the parameters used in the Cat Map are always fixed. Having the same settings means that
the permutation mapping will be fixed no matter what the plain image is. Furthermore, there is
no cross-channel interaction during permutation and diffusion stages in the original CIES-UBPRPD,
which suggests that errors inside one channel will not propagate to the other channels.

Therefore, we can construct two similar plain images where only their R channels are different,
but their sum of R channel remains the same. Additionally the corresponding cipher images of these
two images will have no differences in G and B channels. This situation violates the diffusion property
that a chaotic-map based cryptosystem is looking for.

For demonstration, we modify the standard Lena image by increasing the first-pixel value by 1
and decreasing the second-pixel value also by 1 in the R channel, and then compare the corresponding
cipher image with that of the standard Lena image. The results are shown in Figure 2 and Table 1,
the details of two widely used measures, number of pixels change rate (NPCR) and unified average
changing intensity (UACI), will be given in Section 5.2.5.

Table 1. Number of pixels change rate (NPCR) and unified average changing intensity (UACI) Values
Between the Two Cipher Images Given in Figure 2.

R G B

NPCR (%) 86.5371 0 0
UACI (%) 4.8464 0 0

Entropy 2020, 22, 589 7 of 23

Entropy 2020, 22, x FOR PEER REVIEW 7 of 22

(a) Original Lena and Its Cipher Image C1 (b) Modified Lena and Its Cipher Image C2.

(c) The difference Image |c1−c2| and Its Histograms in different Color Channels.

Figure 2. An Illustration Example of the Low Sensitivity to the Change of Plaintext Image.

3.2. Chosen-Plaintext Attack

As stated by Bruce Schneier [13], in academic cryptography, a weakness or a break in a scheme

is usually defined quite conservatively: it might require impractical amounts of time, memory, or

known plaintexts. It also might require the attacker to be able to do things many real-world attackers

cannot. For example, the attacker might need to choose particular plaintexts to be encrypted or even

to ask for plaintexts to be encrypted while using several keys related to the secret key. Furthermore,

it might only reveal a small amount of information, enough to prove the cryptosystem imperfect, but

too little to be useful to real-world attackers. Finally, an attack might only apply to a weakened

version of cryptographic tools, like a reduced-round block cipher, as a step towards breaking the full

system.

Following the principles of cryptanalysis stated above, we now present a chosen-plaintext attack

that works if the size of all images equals 256 × 256 pixels.

3.2.1. Extraction of the Permutation Matrix

1. Construct a special plain image 𝑃, such that

𝑃𝑅 = 𝑃𝐺 = 𝑃𝐵 = [

1 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

]

256×256

.

2. Encrypt 𝑃 using CIES-UBPRPD to obtain the corresponding cipher image 𝐶. We denote the

image after permutation stage as 𝑃∗ (an intermediate product during the execution of the

whole encryption process).

3. Let us use R channel as an example: select two different positions (𝑎, 𝑏) and (𝑥, 𝑦), where

𝑎, 𝑏, 𝑥, 𝑦 ∈ {0,1,⋯ ,255} and construct another special plain image 𝑃′, such that

𝑃′𝑅 = [𝑓(𝑖, 𝑗)]256×256,

𝑃′𝐺 = 𝑃′𝐵 = [

1 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

]

256×256

,

where

Figure 2. An Illustration Example of the Low Sensitivity to the Change of Plaintext Image.

3.2. Chosen-Plaintext Attack

As stated by Bruce Schneier [13], in academic cryptography, a weakness or a break in a scheme
is usually defined quite conservatively: it might require impractical amounts of time, memory,
or known plaintexts. It also might require the attacker to be able to do things many real-world
attackers cannot. For example, the attacker might need to choose particular plaintexts to be encrypted
or even to ask for plaintexts to be encrypted while using several keys related to the secret key.
Furthermore, it might only reveal a small amount of information, enough to prove the cryptosystem
imperfect, but too little to be useful to real-world attackers. Finally, an attack might only apply to a
weakened version of cryptographic tools, like a reduced-round block cipher, as a step towards breaking
the full system.

Following the principles of cryptanalysis stated above, we now present a chosen-plaintext attack
that works if the size of all images equals 256× 256 pixels.

3.2.1. Extraction of the Permutation Matrix

1. Construct a special plain image P, such that

PR = PG = PB =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


256×256

.

2. Encrypt P using CIES-UBPRPD to obtain the corresponding cipher image C. We denote the
image after permutation stage as P∗ (an intermediate product during the execution of the whole
encryption process).

Entropy 2020, 22, 589 8 of 23

3. Let us use R channel as an example: select two different positions (a, b) and (x, y), where a, b, x, y ∈
{0, 1, · · · , 255} and construct another special plain image P′, such that

P′R = [f (i, j)]256×256,

P′G = P′B =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


256×256

,

where

f (i, j) =


0, i f (i, j) = (a, b)
2, i f (i, j) = (x, y)
1, else

.

4. Encrypt P′ to obtain its cipher image C′. From Section 3.1.2, we knew that P and P′ share the
same parameters used in ACM; thus, they have the same permutation mapping. Let us denote
the first position of different values that occurred in CR and C′R, following the raster-scan order,
as ∆C. It means that P′∗R(∆C) , P∗R(∆C) = 1, such that C′R(∆C) , CR(∆C), which means
either P′R(a, b) = 0 or P′R(x, y) = 2 will be moved to the position ∆C after performing the
permutation stage. This property reveals some information regarding the permutation behavior
of CIES-UBPRPD. We define ((a, b), (x, y), ∆C) as a tuple of constraints.

5. Choose a different (a, b) or (x, y), repeat Step 3 to Step 4 several times and collect all of the
produced constraint tuples, and then define the associated collection of constraint tuples as a
set S.

6. Construct a 256 × 256 matrix Z, by setting the chosen positions (a, b) and (x, y), used in Step
2, with different positive integers and all other positions with value 0. For example, assume
there are two constraint tuples ((0, 0), (0, 1), (8, 8)) and ((0, 0), (0, 2), (6, 9)) in S, we can now set
Z(0, 0) = 1, Z(0, 1) = 2, Z(0, 2) = 3, and Z(i, j) = 0, ∀(i, j) <

{
(0, 0), (0, 1), (0, 2)

}
.

7. Using the brute-force searching algorithm, denoted as Algorithm 1 in the following, to find
br and âr for all of the above chosen plain images, where âr = armod256. In the specifically
considered case, all of the images are of size 256 × 256 × 3, ar, and âr are equivalent in the
permutation stage. Actually, we do not need to know what ar exactly is, but only its last eight
bits. If Algorithm 1 outputs more than one candidate pair, let us go back to Step 3 to collect more
constrained tuples and iterate this step until only one pair is left.

8. Making changes to G and B channels, repeat the procedures listed in Step 3 to Step 7 and obtain
bg, âg, bb, and âb, where âg = agmod256 and âb = abmod256.

9. Extract k1mod256, k2mod256, and k3mod256 by using
k1mod256 = (CR(0, 0) − br)mod256
k2mod256 =

(
CG(0, 0) − bg

)
mod256

k3mod256 = (CB(0, 0) − bb)mod256
.

We denote these three values as k̂1, k̂2, and k̂3, respectively, for convenience.

Entropy 2020, 22, 589 9 of 23

Entropy 2020, 22, x FOR PEER REVIEW 8 of 22

𝑓(𝑖, 𝑗) = {
0, 𝑖𝑓 (𝑖, 𝑗) = (𝑎, 𝑏)
2, 𝑖𝑓 (𝑖, 𝑗) = (𝑥, 𝑦)
1, 𝑒𝑙𝑠𝑒

.

4. Encrypt 𝑃′ to obtain its cipher image 𝐶′. From Section 3.1.2, we knew that 𝑃 and 𝑃′ share the

same parameters used in ACM; thus, they have the same permutation mapping. Let us denote

the first position of different values that occurred in 𝐶𝑅 and 𝐶′𝑅 , following the raster-scan

order, as Δ𝐶. It means that 𝑃′𝑅
∗ (Δ𝐶) ≠ 𝑃𝑅

∗(Δ𝐶) = 1, such that 𝐶′𝑅(Δ𝐶) ≠ 𝐶𝑅(Δ𝐶), which means

either 𝑃′𝑅(𝑎, 𝑏) = 0 or 𝑃′𝑅(𝑥, 𝑦) = 2 will be moved to the position Δ𝐶 after performing the

permutation stage. This property reveals some information regarding the permutation

behavior of CIES-UBPRPD. We define ((𝑎, 𝑏), (𝑥, 𝑦), Δ𝐶) as a tuple of constraints.

5. Choose a different (𝑎, 𝑏) or (𝑥, 𝑦), repeat Step 3 to Step 4 several times and collect all of the

produced constraint tuples, and then define the associated collection of constraint tuples as a

set 𝑆.

6. Construct a 256 × 256 matrix 𝑍, by setting the chosen positions (a, b) and (x, y), used in Step

2, with different positive integers and all other positions with value 0. For example, assume

there are two constraint tuples ((0,0), (0,1), (8,8)) and ((0,0), (0,2), (6,9)) in 𝑆, we can now

set 𝑍(0,0) = 1, 𝑍(0,1) = 2, 𝑍(0,2) = 3, and 𝑍(𝑖, 𝑗) = 0, ∀(𝑖, 𝑗) ∉ {(0,0), (0,1), (0,2)}.

7. Using the brute-force searching algorithm, denoted as Algorithm 1 in the following, to find 𝑏𝑟

and 𝑎�̂� for all of the above chosen plain images, where 𝑎�̂� = 𝑎𝑟mod256. In the specifically

considered case, all of the images are of size 256 × 256 × 3, 𝑎𝑟 , and 𝑎�̂� are equivalent in the

permutation stage. Actually, we do not need to know what 𝑎𝑟 exactly is, but only its last eight

bits. If Algorithm 1 outputs more than one candidate pair, let us go back to Step 3 to collect

more constrained tuples and iterate this step until only one pair is left.

8. Making changes to G and B channels, repeat the procedures listed in Step 3 to Step 7 and

obtain 𝑏𝑔, 𝑎�̂�, 𝑏𝑏, and 𝑎�̂�, where 𝑎�̂� = 𝑎𝑔mod256 and 𝑎�̂� = 𝑎𝑏mod256.

9. Extract 𝑘1mod256, 𝑘2mod256, and 𝑘3mod256 by using

{

𝑘1mod256 = (𝐶𝑅(0,0) − 𝑏𝑟)mod256
𝑘2mod256 = (𝐶𝐺(0,0) − 𝑏𝑔)mod256

𝑘3mod256 = (𝐶𝐵(0,0) − 𝑏𝑏)mod256

.

We denote these three values as 𝑘1
^ , 𝑘2

^ , and 𝑘3
^ , respectively, for convenience.

 Entropy 2020, 22, x FOR PEER REVIEW 9 of 22

3.2.2. Extraction of the Diffusion Matrix

First, we convert above-mentioned 𝐶𝑅 into 1D array 𝐶𝑅_𝑃 by row major ordering. We can now

obtain the diffusion matrix 𝐷, according to

𝐷(𝑖) = mod((𝐶𝑅_𝑃(𝑖) ⊗ 𝐶𝑅_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚′, 256)⊗ 𝑃𝑅_𝑃
∗ (𝑖)

= mod((𝐶𝑅𝑃(𝑖) ⊗ 𝐶𝑅𝑃(𝑖 − 1)) − 𝑛𝑢𝑚′, 256)⊗ 1,

where

𝑛𝑢𝑚′ = (𝑎�̂� × 𝑏𝑟 + 𝑎�̂� × 𝑏𝑔 + 𝑎�̂� × 𝑏𝑏) ⊗ (𝑘1
^ + 𝑘2

^ + 𝑘3
^),

𝑖 ∈ {1,2,⋯ ,𝑀 × 𝑁 − 1}, and 𝑃𝑅_𝑃
∗ is a 1D array transformed from 𝑃𝑅

∗ by row major ordering.

Notice that the first element of the diffusion matrix is not used in the cryptosystem, so we can just

assign 𝐷(0) = 0.

So far, we have already extracted 𝑘1
^ , 𝑘2

^ , 𝑘3,
^ and the diffusion matrix 𝐷, which are all the

required information for decrypting the cipher image.

3.2.3. Recovering the Original Plain Image

Assume that the cipher image is 𝐶 with the size 256 × 256 × 3, and the attacker already extracts

𝑘1
^ , 𝑘2

^ , 𝑘3
^ , and the diffusion matrix 𝐷 according to the analyses given above. The attacker can

decrypt 𝐶 using the following steps:

1. Transform 𝐶𝑅, 𝐶𝐺, and 𝐶𝐵 into three 1D arrays 𝐶𝑅_𝑃, 𝐶𝐺_𝑃, and 𝐶𝐵_𝑃, respectively, in row

major ordering.

2. Calculate the required parameters, as follows.

{

 𝑏𝑟 = (𝐶𝑅_𝑃(0) − 𝑘1
^)mod256

𝑏𝑔 = (𝐶𝐺_𝑃(0) − 𝑘2
^)mod256

𝑏𝑏 = (𝐶𝐵_𝑃(0) − 𝑘3
^)mod256

{

 𝑎�̂� = mod((𝑏𝑟 + 1) × (𝑘1
^ ⊗ 𝑘2

^ ⊗ 𝑘3
^),256) + 1

𝑎�̂� = mod((𝑏𝑔 + 1) × (𝑘1
^ ⊗ 𝑘2

^ ⊗ 𝑘3
^),256) + 1

𝑎�̂� = mod((𝑏𝑏 + 1) × (𝑘1
^ ⊗ 𝑘2

^ ⊗ 𝑘3
^),256) + 1.

3. Reconstruct 𝑃𝑅_𝑃
∗ , 𝑃𝐺_𝑃

∗ and 𝑃𝐵_𝑃
∗ according to

{

 𝑃𝑅_𝑃

∗ = mod((𝐶𝑅_𝑃(𝑖) ⊗ 𝐶𝑅_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚′, 256)⊗ 𝐷(𝑖)

𝑃𝐺_𝑃
∗ = mod((𝐶𝐺_𝑃(𝑖) ⊗ 𝐶𝐺_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚′, 256) ⊗ 𝐷(𝑖)

𝑃𝐵_𝑃
∗ = mod ((𝐶𝐵_𝑃(𝑖) ⊗ 𝐶𝐵_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚

′, 256)⊗ 𝐷(𝑖),

where

𝑛𝑢𝑚′ = (𝑎�̂� × 𝑏𝑟 + 𝑎�̂� × 𝑏𝑔 + 𝑎�̂� × 𝑏𝑏) ⊗ (𝑘1
^ + 𝑘2

^ + 𝑘3
^),

3.2.2. Extraction of the Diffusion Matrix

First, we convert above-mentioned CR into 1D array CR_P by row major ordering. We can now
obtain the diffusion matrix D, according to

D(i) = mod((CR_P(i) ⊗CR_P(i− 1)) − num′, 256) ⊗ P∗R_P(i)
= mod

((
CRP(i) ⊗CRP(i− 1)

)
− num′, 256

)
⊗ 1,

where
num′ =

(
âr × br + âg × bg + âb × bb

)
⊗

(
k̂1 + k̂2 + k̂3

)
,

i ∈ {1, 2, · · · , M×N − 1}, and P∗R_P is a 1D array transformed from P∗R by row major ordering.
Notice that the first element of the diffusion matrix is not used in the cryptosystem, so we can just
assign D(0) = 0.

So far, we have already extracted k̂1, k̂2, ˆk3, and the diffusion matrix D, which are all the required
information for decrypting the cipher image.

3.2.3. Recovering the Original Plain Image

Assume that the cipher image is C with the size 256× 256× 3, and the attacker already extracts k̂1,
k̂2, k̂3, and the diffusion matrix D according to the analyses given above. The attacker can decrypt C
using the following steps:

1. Transform CR, CG, and CB into three 1D arrays CR_P, CG_P, and CB_P, respectively, in row
major ordering.

Entropy 2020, 22, 589 10 of 23

2. Calculate the required parameters, as follows.
br =

(
CR_P(0) − k̂1

)
mod256

bg =
(
CG_P(0) − k̂2

)
mod256

bb =
(
CB_P(0) − k̂3

)
mod256

âr = mod
(
(br + 1) ×

(
k̂1 ⊗ k̂2 ⊗ k̂3

)
, 256

)
+ 1

âg = mod
((

bg + 1
)
×

(
k̂1 ⊗ k̂2 ⊗ k̂3

)
, 256

)
+ 1

âb = mod
(
(bb + 1) ×

(
k̂1 ⊗ k̂2 ⊗ k̂3

)
, 256

)
+ 1.

3. Reconstruct P∗R_P, P∗G_P and P∗B_P according to


P∗R_P = mod

((
CR_P(i) ⊗CR_P(i− 1)

)
− num′, 256

)
⊗D(i)

P∗G_P = mod
((

CG_P(i) ⊗CG_P(i− 1)
)
− num′, 256

)
⊗D(i)

P∗B_P = mod
((

CB_P(i) ⊗CB_P(i− 1)
)
− num′, 256

)
⊗D(i),

where
num′ =

(
âr × br + âg × bg + âb × bb

)
⊗

(
k̂1 + k̂2 + k̂3

)
,

and i ∈ {1, 2, · · · , M×N − 1}. Subsequently, transform these three arrays into two-dimensional
(2D) arrays P∗R, P∗G, and P∗B, respectively.

4. Reconstruct PR, PG, and PB by using ACM, but now the scanning sequence is from right to left
and from bottom to top.

We rescale the standard Lena to 256× 256× 3 and encrypt it with CIES-UBPRPD, and then crack
the cipher image with the proposed chosen-plaintext attack. Figure 3 shows the simulation result.

Entropy 2020, 22, x FOR PEER REVIEW 10 of 22

and 𝑖 ∈ {1,2,⋯ ,𝑀 × 𝑁 − 1}. Subsequently, transform these three arrays into two-dimensional (2D)

arrays 𝑃𝑅
∗, 𝑃𝐺

∗, and 𝑃𝐵
∗, respectively.

4. Reconstruct 𝑃𝑅, 𝑃𝐺 , and 𝑃𝐵 by using ACM, but now the scanning sequence is from right to

left and from bottom to top.

We rescale the standard Lena to 256 × 256 × 3 and encrypt it with CIES-UBPRPD, and then

crack the cipher image with the proposed chosen-plaintext attack. Figure 3 shows the simulation

result.

Figure 3. (Left) The Original Plaintext Image; (Middle) the Encrypted (or Ciphertext) Image; (Right)

the Recovered Image After Launching the Proposed Chosen-plaintext Attack to the Ciphertext Image.

4. Improved CIES-UBPRPD Algorithm

4.1. The Weaknesses of the Original CIES-UBPRPD

We can crack the original CIES-UBPRPD by the chosen-plaintext attack comes from its following

weaknesses:

1. Misuse of the modulo operation. A value’s remainder divided by 256 equals to the last eight

bits in its binary representation. This operation makes the last eight bits of the value more

important than the rest parts. This unequal importance in bits gives us a large number of clues

for finding the equivalent classes of parameters in CIES-UBPRPD.

2. The parameters used in ACM are not very sensitive to the initial plain images. As we pointed

out in Section 3.1.2, images that have the same 𝑠𝑢𝑚𝑟, 𝑠𝑢𝑚𝑔, and 𝑠𝑢𝑚𝑏 share the same system

parameters. Thus, it is vulnerable to differential attacks.

3. The diffusion matrix (process) depends only on secret keys, but not the plain images. Once we

cracked one cipher image and extracted the diffusion matrix, we can use it to decrypt the other

cipher images.

4.2. The Enhanced CIES-UBPRPD

In the enhanced encryption algorithm, instead of the summations of pixel values in each channel,

the corresponding SHA-256 hashed values are used as one of the features of a plain image, and this

replacement still makes the associated diffusion matrix plaintext-dependent. SHA-256 is a secure

cryptographic hash that belongs to SHA-2 families. The hash value served as an external secret key;

however, it is dangerous to reuse the same external key when encrypting the same image. Therefore,

we add a random number with the precision of 10−16 as an additional input to SHA-256 each time

that we calculate the hash value. In this way, we can use the hashing output as a one-time key.

Figure 3. (Left) The Original Plaintext Image; (Middle) the Encrypted (or Ciphertext) Image; (Right)
the Recovered Image After Launching the Proposed Chosen-plaintext Attack to the Ciphertext Image.

4. Improved CIES-UBPRPD Algorithm

4.1. The Weaknesses of the Original CIES-UBPRPD

We can crack the original CIES-UBPRPD by the chosen-plaintext attack comes from its
following weaknesses:

1. Misuse of the modulo operation. A value’s remainder divided by 256 equals to the last eight bits
in its binary representation. This operation makes the last eight bits of the value more important
than the rest parts. This unequal importance in bits gives us a large number of clues for finding
the equivalent classes of parameters in CIES-UBPRPD.

Entropy 2020, 22, 589 11 of 23

2. The parameters used in ACM are not very sensitive to the initial plain images. As we pointed
out in Section 3.1.2, images that have the same sumr, sumg, and sumb share the same system
parameters. Thus, it is vulnerable to differential attacks.

3. The diffusion matrix (process) depends only on secret keys, but not the plain images. Once we
cracked one cipher image and extracted the diffusion matrix, we can use it to decrypt the other
cipher images.

4.2. The Enhanced CIES-UBPRPD

In the enhanced encryption algorithm, instead of the summations of pixel values in each channel,
the corresponding SHA-256 hashed values are used as one of the features of a plain image, and this
replacement still makes the associated diffusion matrix plaintext-dependent. SHA-256 is a secure
cryptographic hash that belongs to SHA-2 families. The hash value served as an external secret key;
however, it is dangerous to reuse the same external key when encrypting the same image. Therefore,
we add a random number with the precision of 10−16 as an additional input to SHA-256 each time that
we calculate the hash value. In this way, we can use the hashing output as a one-time key.

4.2.1. Secret Key Formulation

There are six secret keys in the proposed enhanced CIES-UBPRPD algorithm, including the
external secret key H that is generated from SHA-256, the initial value x0 of Chebyshev map, and the
four positive integers k1, k2, k3, and n0, where H is a 256-bit binary number, x0 ∈ (0, 1), k1 ∈[
105 . . . 1012], k2 ∈[105 . . . 1012], k3 ∈[105 . . . 1012

]
, and n0 ∈ [1000, 2500]. H is then divided into 32 8-bit

blocks as H = h0, h1, · · · , h31.

4.2.2. Image Encryption Algorithm

Permutation Stage

1. Use x0 as the initial value and iterate the Chebyshev map (n0 + 131) times, discard the first n0

elements to avoid the harmful effect, and obtain the chaotic sequences xn, which contain 131
elements. That is,

xn = {x0, x1, · · · , x130}.

2. Generate another sequence xnq by

xnq(i) = bxi × ki mod 3 × cos hi mod 32c mod 256, where i ∈ {0, 1, · · · , 130}.

3. Calculate the parameters by following equations:

a = (
31∑

i=0
hi × xnq(i))mod65536

b = (
31∑

i=0
hi × xnq(i + 32))mod65536

c = (
31∑

i=0
hi × xnq(i + 64))mod65536

d = (
31∑

i=0
hi × xnq(i + 96))mod65536

4. Permute P using the following three-dimensional (3D) cat map:
i′

j′

k′

 =


1 a 0
b ab + 1 0
c d 1




i
j
k

mod


M
N
3

, (15)

Entropy 2020, 22, 589 12 of 23

where i ∈ {0, 1, · · · , M− 1}, j ∈ {0, 1, · · · , N − 1}, and k ∈ {0, 1, 2} is used to indicate the color channel.
The scanning sequence is from R channel to B channel, from left to right and from top to bottom.
After this step, we get the permuted image P∗.

Diffusion Stage

1. Transform P∗R, P∗G, and P∗B, into three 1D arrays P∗R_P, P∗G_P and P∗B_P by row-major ordering.

2. Use y0 = cos a+cos b+cos c+cos d+x0
5 as the new initial value and iterate the Chebyshev map

(3×M×N + n0) times, discard the first n0 elements and generate another chaotic sequence
yn, which contains 3×M×N elements. That is,

yn = {x0, x1, · · · , x3×M×N−1}.

3. Calculate the diffusion matrices DR, DG, and DB according to:
DR(i) =

⌊
yi × (k2 ⊗ k3)

⌋
mod 256

DG(i) =
⌊
yi+MN × (k1 ⊗ k3)

⌋
mod 256

DB(i) =
⌊
yi+2MN × (k1 ⊗ k2)

⌋
mod 256

where i ∈ {0, 1, · · · , M×N − 1}.

4. Calculate CR_P, CG_P and CB_P by using
CR_P(0) = mod

(
P∗R_P(0) ⊗DR(0) + num, 256

)
⊗ xnq(128)

CG_P(0) = mod
(
P∗G_P(0) ⊗DG(0) + num, 256

)
⊗ xnq(129)

CB_P(0) = mod
(
P∗B_P(0) ⊗DB(0) + num, 256

)
⊗ xnq(130)

CR_P(i) = mod
(
P∗R_P(i) ⊗DR(i) + num, 256

)
⊗CB(i− 1)

CG_P(i) = mod
(
P∗G_P(i) ⊗DG(i) + num, 256

)
⊗CR(i)

CB_P(i) = mod
(
P∗B_P(i) ⊗DB(i) + num, 256

)
⊗CG(i),

where num = ((a + b + c + d) ⊗ (k1 + k2 + k3))mod256 and i ∈ {1, 2, · · · , M×N − 1}.
5. Transform CR_P, CG_P, and CB_P into three grayscale images with size M ×N, and then merge

them into color cipher image C with size M×N × 3.

Image Decryption Algorithm

1. Transform CR, CG, and CG into three 1D arrays CR_P, CG_P, and CB_P respectively,
by row-major ordering.

2. Calculate the chaotic sequence xnq in the same way as the encryption process.
3. Calculate the parameters a, b, c, d in the same way as the encryption process.
4. Calculate the diffusion matrices DR, DG, and DB in the same way as the encryption process.
5. Reconstruct P∗R_P, P∗G_P, and P∗B_P by using


P∗R_P(0) = mod

((
CR_P(0) ⊗ xnq(128)

)
− num, 256

)
⊗DR(0)

P∗G_P(0) = mod
((

CG_P(0) ⊗ xnq(129)
)
− num, 256

)
⊗DG(0)

P∗B_P(0) = mod
((

CB_P(0) ⊗ xnq(130)
)
− num, 256

)
⊗DB(0)

P∗R_P(i) = mod((CR_P(i) ⊗CR_P(i− 1)) − num, 256) ⊗DR(i)
P∗G_P(i) = mod((CG_P(i) ⊗CG_P(i− 1)) − num, 256) ⊗DG(i)
P∗B_P(i) = mod((CB_P(i) ⊗CB_P(i− 1)) − num, 256) ⊗DB(i)

,

where num = ((a + b + c + d) ⊗ (k1 + k2 + k3))mod256 and i ∈ {1, 2, · · · , M×N − 1}.
Subsequently, transform these three arrays into 2D arrays P∗R, P∗G and P∗B, respectively.

Entropy 2020, 22, 589 13 of 23

6. Reconstruct PR, PG, and PB by using 3D cat map in Equation (15), but now the scanning sequence
is from B channel to R channel, from right to left, and from bottom to top.

5. Experimental Results

5.1. Verification of Encryption and Decryption Algorithms

We apply the proposed algorithm to several testing images (all o f size 512× 512× 3) to demonstrate the
algorithm’s performance. The secret keys are set, as follows: x0 = 0.3, k1 = 111111, k2 = 222222, k3 = 333333,
and n0 = 1000. Figure 4 shows the encryption and decryption results. From the results, we can say
that the cipher images are noise-like and irrelevant to the plain images.

Entropy 2020, 22, x FOR PEER REVIEW 12 of 22

{

𝐶𝑅_𝑃(0) = mod(𝑃𝑅_𝑃
∗ (0) ⊗ 𝐷𝑅(0) + 𝑛𝑢𝑚, 256)⊗ 𝑥𝑛𝑞(128)

𝐶𝐺_𝑃(0) = mod(𝑃𝐺_𝑃
∗ (0) ⊗ 𝐷𝐺(0) + 𝑛𝑢𝑚, 256)⊗ 𝑥𝑛𝑞(129)

𝐶𝐵_𝑃(0) = mod(𝑃𝐵_𝑃
∗ (0) ⊗ 𝐷𝐵(0) + 𝑛𝑢𝑚, 256)⊗ 𝑥𝑛𝑞(130)

{

𝐶𝑅_𝑃(𝑖) = mod(𝑃𝑅_𝑃
∗ (𝑖) ⊗ 𝐷𝑅(𝑖) + 𝑛𝑢𝑚, 256)⊗ 𝐶𝐵(𝑖 − 1)

𝐶𝐺_𝑃(𝑖) = mod(𝑃𝐺_𝑃
∗ (𝑖) ⊗ 𝐷𝐺(𝑖) + 𝑛𝑢𝑚, 256)⊗ 𝐶𝑅(𝑖)

𝐶𝐵_𝑃(𝑖) = mod(𝑃𝐵_𝑃
∗ (𝑖) ⊗ 𝐷𝐵(𝑖) + 𝑛𝑢𝑚, 256)⊗ 𝐶𝐺(𝑖),

where 𝑛𝑢𝑚 = ((𝑎 + 𝑏 + 𝑐 + 𝑑)⊗ (𝑘1 + 𝑘2 + 𝑘3))mod256 and 𝑖 ∈ {1,2,⋯ ,𝑀 × 𝑁 − 1}.

5. Transform 𝐶𝑅_𝑃, 𝐶𝐺_𝑃 , and 𝐶𝐵_𝑃 into three grayscale images with size 𝑀 ×𝑁, and then merge

them into color cipher image 𝐶 with size 𝑀 ×𝑁 × 3.

Image Decryption Algorithm

1. Transform 𝐶𝑅, 𝐶𝐺 , and 𝐶𝐺 into three 1D arrays 𝐶𝑅_𝑃, 𝐶𝐺_𝑃 , and 𝐶𝐵_𝑃 respectively, by row-

major ordering.

2. Calculate the chaotic sequence 𝑥𝑛𝑞 in the same way as the encryption process.

3. Calculate the parameters 𝑎, 𝑏, 𝑐, 𝑑 in the same way as the encryption process.

4. Calculate the diffusion matrices 𝐷𝑅, 𝐷𝐺 , and 𝐷𝐵 in the same way as the encryption process.

5. Reconstruct 𝑃𝑅_𝑃
∗ , 𝑃𝐺_𝑃

∗ , and 𝑃𝐵_𝑃
∗ by using

{

𝑃𝑅_𝑃
∗ (0) = mod((𝐶𝑅_𝑃(0)⊗ 𝑥𝑛𝑞(128)) − 𝑛𝑢𝑚, 256)⊗ 𝐷𝑅(0)

𝑃𝐺_𝑃
∗ (0) = mod((𝐶𝐺_𝑃(0) ⊗ 𝑥𝑛𝑞(129)) − 𝑛𝑢𝑚, 256)⊗ 𝐷𝐺(0)

𝑃𝐵_𝑃
∗ (0) = mod((𝐶𝐵_𝑃(0) ⊗ 𝑥𝑛𝑞(130)) − 𝑛𝑢𝑚, 256)⊗ 𝐷𝐵(0)

{

𝑃𝑅_𝑃
∗ (𝑖) = mod((𝐶𝑅_𝑃(𝑖) ⊗ 𝐶𝑅_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚, 256)⊗ 𝐷𝑅(𝑖)

𝑃𝐺_𝑃
∗ (𝑖) = mod((𝐶𝐺_𝑃(𝑖) ⊗ 𝐶𝐺_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚, 256)⊗ 𝐷𝐺(𝑖)

𝑃𝐵_𝑃
∗ (𝑖) = mod((𝐶𝐵_𝑃(𝑖) ⊗ 𝐶𝐵_𝑃(𝑖 − 1)) − 𝑛𝑢𝑚, 256) ⊗ 𝐷𝐵(𝑖)

,

where 𝑛𝑢𝑚 = ((𝑎 + 𝑏 + 𝑐 + 𝑑)⊗ (𝑘1 + 𝑘2 + 𝑘3))mod256 and 𝑖 ∈ {1,2,⋯ ,𝑀 × 𝑁 − 1} .

Subsequently, transform these three arrays into 2D arrays 𝑃𝑅
∗, 𝑃𝐺

∗ and 𝑃𝐵
∗ , respectively.

6. Reconstruct 𝑃𝑅, 𝑃𝐺 , and 𝑃𝐵 by using 3D cat map in Equation (15), but now the scanning

sequence is from B channel to R channel, from right to left, and from bottom to top.

5. Experimental Results

5.1. Verification of Encryption and Decryption Algorithms

We apply the proposed algorithm to several testing images (all 𝑜𝑓 𝑠𝑖𝑧𝑒 512 × 512 × 3) to

demonstrate the algorithm’s performance. The secret keys are set, as follows: 𝑥0 = 0.3, 𝑘1 =

111111, 𝑘2 = 222222, 𝑘3 = 333333, and 𝑛0 = 1000. Figure 4 shows the encryption and decryption

results. From the results, we can say that the cipher images are noise-like and irrelevant to the plain

images.

 Entropy 2020, 22, x FOR PEER REVIEW 13 of 22

Figure 4. The Testing Results of the Modified Encryption Scheme: (left) the Plaintext Images; (middle)

the Ciphertext Images; and, (right) the Recovered Images.

5.2. Security Analyses

5.2.1. KeySpace Analysis

Keyspace is defined as the cardinality of the set of all possible keys. Having a large keyspace is

an important factor for ensuring a cryptosystem to resist the brute force attack. The best-known attack

complexity of SHA-256 is in the order of 2128. The range of the rest keys are: 𝑥0 ∈ (0,1), 𝑘1, 𝑘2, 𝑘3 ∈

[105. . . 1012] and 𝑛0 ∈ [1000, 2500]. If 𝑥0 has the precision of 10−16, the keyspace of the proposed

scheme can reach to 2128 × 1016 × (1012 − 105) × (1012 − 105) × (1012 − 105) × 1500 ≈ 2311, which

is much larger than 2100 and enough to make the brute force attack invalid.

5.2.2. Histogram Analysis

An image’s histogram reflects the distribution of its pixels’ intensity values, which reveals some

statistical information of the image to attackers. To against statistical attacks, the histogram of cipher

images generated from a secure encryption system should be flat. The distributions of cipher images’

histograms are close to uniformly, indicating that the cipher images are nearly random, and it is

rather tough to retrieve any useful statistical information from them, as we can see in Figures 5 and

6.

Figure 4. The Testing Results of the Modified Encryption Scheme: (left) the Plaintext Images; (middle)
the Ciphertext Images; and, (right) the Recovered Images.

Entropy 2020, 22, 589 14 of 23

5.2. Security Analyses

5.2.1. KeySpace Analysis

Keyspace is defined as the cardinality of the set of all possible keys. Having a large keyspace is an
important factor for ensuring a cryptosystem to resist the brute force attack. The best-known attack
complexity of SHA-256 is in the order of 2128. The range of the rest keys are: x0 ∈ (0, 1), k1, k2, k3 ∈[
105...1012

]
and n0 ∈ [1000, 2500]. If x0 has the precision of 10−16, the keyspace of the proposed scheme

can reach to 2128
× 1016

×

(
1012
− 105

)
×

(
1012
− 105

)
×

(
1012
− 105

)
× 1500 ≈ 2311, which is much larger

than 2100 and enough to make the brute force attack invalid.

5.2.2. Histogram Analysis

An image’s histogram reflects the distribution of its pixels’ intensity values, which reveals some
statistical information of the image to attackers. To against statistical attacks, the histogram of cipher
images generated from a secure encryption system should be flat. The distributions of cipher images’
histograms are close to uniformly, indicating that the cipher images are nearly random, and it is rather
tough to retrieve any useful statistical information from them, as we can see in Figures 5 and 6.

Entropy 2020, 22, x FOR PEER REVIEW 14 of 22

(a) The Plaintext Lena Image and Its Histograms in Different Color Channels.

(b) The Ciphertext Lena Image and Its Histograms in Different Color Channels.

(c) The Recovered Lena Image and Its Histograms in Different Color Channels.

Figure 5. The Original/Encrypted/Recovered Lena Images and the Corresponding Histograms in

Different Color Channels.

(a) The Plaintext Baboon Image and Its Histograms in Different Color Channels.

(b) The Ciphertext Baboon Image and Its Histograms in Different Color Channels.

(c) The Recovered Baboon Image and Its Histograms in Different Color Channels.

Figure 5. The Original/Encrypted/Recovered Lena Images and the Corresponding Histograms in
Different Color Channels.

Entropy 2020, 22, 589 15 of 23

Entropy 2020, 22, x FOR PEER REVIEW 14 of 22

(a) The Plaintext Lena Image and Its Histograms in Different Color Channels.

(b) The Ciphertext Lena Image and Its Histograms in Different Color Channels.

(c) The Recovered Lena Image and Its Histograms in Different Color Channels.

Figure 5. The Original/Encrypted/Recovered Lena Images and the Corresponding Histograms in

Different Color Channels.

(a) The Plaintext Baboon Image and Its Histograms in Different Color Channels.

(b) The Ciphertext Baboon Image and Its Histograms in Different Color Channels.

(c) The Recovered Baboon Image and Its Histograms in Different Color Channels.

Figure 6. The Original/Encrypted/Recovered Baboon Images and the Corresponding Histograms in
Different Color Channels.

5.2.3. Correlation Analysis

In a natural image (or plain image), two adjacent pixels usually have strong correlation with
each other. In contrast, the correlation coefficient of a cipher image should be decreased to zero in
order to prevent statistical attacks. We use Equation (16) to measure the correlation of all adjacent
pixels at horizontal, vertical, diagonal, and anti-diagonal directions:

rxy =
cov(x, y)√

D(x)
√

D(y)
, (16)

Here,

cov(x, y) = 1
N

N∑
i=1

(xi − E(x))(yi − E(y)),

D(x) = 1
N

N∑
i=1

(xi − E(x))2,

E(x) = 1
N

N∑
i=1

xi,

x and y are the two adjacent pixel values and N is the number of pairs of adjacent pixels.
The correlation coefficients of all plain images are close to 1, while those of cipher images are

nearly 0, as shown in Table 2. Furthermore, we randomly select 2000 pairs of adjacent pixels at the four
specific directions from the R channel of the standard Lena image and its corresponding cipher image,
and then plot the scatter diagrams in Figure 7.

Entropy 2020, 22, 589 16 of 23

Table 2. Correlation Coefficients of the Plain/Cipher Lena Images.

Plain Image Cipher Image

R G B R G B

Lena

V 0.9893 0.9823 0.9574 0.0015 −0.0017 −0.0023
H 0.9797 0.9689 0.9325 −0.008 −0.0014 −0.0013
D 0.9696 0.9554 0.9180 −0.003 −0.0011 −0.0011
A 0.9777 0.9652 0.9252 −0.006 −0.0005 −0.0002

baboon

V 0.8659 0.7650 0.8808 0.0004 −0.0017 0.006
H 0.9230 0.8654 0.9073 0.0005 0.0027 0.0019
D 0.8543 0.7347 0.8398 0.0004 −0.0026 0.0014
A 0.8518 0.7249 0.8424 −0.0015 −0.0017 0.002

Entropy 2020, 22, x FOR PEER REVIEW 15 of 22

Figure 6. The Original/Encrypted/Recovered Baboon Images and the Corresponding Histograms in

Different Color Channels.

5.2.3. Correlation Analysis

In a natural image (or plain image), two adjacent pixels usually have strong correlation with

each other. In contrast, the correlation coefficient of a cipher image should be decreased to zero in

order to prevent statistical attacks. We use Equation (16) to measure the correlation of all adjacent

pixels at horizontal, vertical, diagonal, and anti-diagonal directions:

𝑟𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

√𝐷(𝑥)√𝐷(𝑦)
, (16)

Here,

𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑁
∑(

𝑁

𝑖=1

𝑥𝑖 − 𝐸(𝑥))(𝑦𝑖 − 𝐸(𝑦)),

𝐷(𝑥) =
1

𝑁
∑(

𝑁

𝑖=1

𝑥𝑖 − 𝐸(𝑥))
2,

𝐸(𝑥) =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

,

𝑥 and 𝑦 are the two adjacent pixel values and 𝑁 is the number of pairs of adjacent pixels.

The correlation coefficients of all plain images are close to 1, while those of cipher images are

nearly 0, as shown in Table 2. Furthermore, we randomly select 2000 pairs of adjacent pixels at the

four specific directions from the R channel of the standard Lena image and its corresponding cipher

image, and then plot the scatter diagrams in Figure 7.

Figure 7. The Scatter Diagrams of Randomly Select 2000 Pairs of Adjacent Pixels at Four Specific

Directions from the R Channel of (top) the Plaintext and (bottom) the Ciphertext Lena images.

Figure 7. The Scatter Diagrams of Randomly Select 2000 Pairs of Adjacent Pixels at Four Specific
Directions from the R Channel of (top) the Plaintext and (bottom) the Ciphertext Lena images.

5.2.4. Key Sensitivity Analysis

A cryptosystem might suffer from differential attacks if cipher images that are generated from
different keys are similar. Thus, a secure encryption algorithm should be highly sensitive to all keys,
which means even a tiny change in the secret key will lead to a completely different cipher image.

Figure 4 illustrates the plain, cipher, and decrypted Lena images. We change H, x0, k1, k2, k3,
and n0 by one bit (i.e., 10−16 for x0 and 1 for H, k1, k2, k3 and n0) to obtain six new cipher images, and the
results are shown in Figure 8. Figure 9 shows the differential results between these six cipher images
and the cipher image obtained in Figure 4b. Furthermore, we use the six one-bit difference key groups
to decrypt Figure 4b, and the decrypting results are shown in Figure 10.

Entropy 2020, 22, 589 17 of 23

Entropy 2020, 22, x FOR PEER REVIEW 16 of 22

Table 2. Correlation Coefficients of the Plain/Cipher Lena Images.

Plain Image Cipher Image

R G B R G B

Lena

V 0.9893 0.9823 0.9574 0.0015 -0.0017 -0.0023

H 0.9797 0.9689 0.9325 -0.008 -0.0014 -0.0013

D 0.9696 0.9554 0.9180 -0.003 -0.0011 -0.0011

A 0.9777 0.9652 0.9252 -0.006 -0.0005 -0.0002

baboon

V 0.8659 0.7650 0.8808 0.0004 -0.0017 0.006

H 0.9230 0.8654 0.9073 0.0005 0.0027 0.0019

D 0.8543 0.7347 0.8398 0.0004 -0.0026 0.0014

A 0.8518 0.7249 0.8424 -0.0015 -0.0017 0.002

5.2.4. Key Sensitivity Analysis

A cryptosystem might suffer from differential attacks if cipher images that are generated from

different keys are similar. Thus, a secure encryption algorithm should be highly sensitive to all keys,

which means even a tiny change in the secret key will lead to a completely different cipher image.

Figure 4 illustrates the plain, cipher, and decrypted Lena images. We change 𝐻, 𝑥0, 𝑘1, 𝑘2, 𝑘3, and

𝑛0 by one bit (i.e., 10−16 for 𝑥0 and 1 for 𝐻, 𝑘1, 𝑘2, 𝑘3 and 𝑛0) to obtain six new cipher images, and

the results are shown in Figure 8. Figure 9 shows the differential results between these six cipher

images and the cipher image obtained in Figure 4b. Furthermore, we use the six one-bit difference

key groups to decrypt Figure 4b, and the decrypting results are shown in Figure 10.

(a) c1 with key H +1 (b) c2 with key x0+10−16 (c) c3 with key k1+1

(d) c4 with key k2+1 (e) c5 with key k3+1 (f) c6 with key n0+1

Figure 8. The Six Ciphertext Images Obtained by Changing Single Bit of Different Secret Key Parameters.
Figure 8. The Six Ciphertext Images Obtained by Changing Single Bit of Different Secret Key Parameters.Entropy 2020, 22, x FOR PEER REVIEW 17 of 22

(a) |c−c1| (b) |c−c2| (c) |c−c3|

(d) |c−c4| (e) |c−c5| (f) |c−c6|

Figure 9. The Differential Results Between the Six Cipher Images given in Figure 8 and the Cipher

Image has given in Figure 4b. Notice that, without notation confusion, the Original Ciphertext Lena

Image is denoted as Image c, here.

(a) Decrypt c with key H+1 (b) Decrypt c with key x0+10-16 (c) Decrypt c with key K1+1

(d) Decrypt c with key K2+1 (e) Decrypt c with key K3+1 (f) Decrypt c with key n0+1

Figure 10. The Decrypted Images of Figure 4b with the 1-bit Difference Keys, mentioned in Sub-

Section 5.2.4.

5.2.5. Plaintext Sensitivity Analysis

Figure 9. The Differential Results Between the Six Cipher Images given in Figure 8 and the Cipher
Image has given in Figure 4b. Notice that, without notation confusion, the Original Ciphertext Lena
Image is denoted as Image c, here.

Entropy 2020, 22, 589 18 of 23

Entropy 2020, 22, x FOR PEER REVIEW 17 of 22

(a) |c−c1| (b) |c−c2| (c) |c−c3|

(d) |c−c4| (e) |c−c5| (f) |c−c6|

Figure 9. The Differential Results Between the Six Cipher Images given in Figure 8 and the Cipher

Image has given in Figure 4b. Notice that, without notation confusion, the Original Ciphertext Lena

Image is denoted as Image c, here.

(a) Decrypt c with key H+1 (b) Decrypt c with key x0+10-16 (c) Decrypt c with key K1+1

(d) Decrypt c with key K2+1 (e) Decrypt c with key K3+1 (f) Decrypt c with key n0+1

Figure 10. The Decrypted Images of Figure 4b with the 1-bit Difference Keys, mentioned in Sub-

Section 5.2.4.

5.2.5. Plaintext Sensitivity Analysis

Figure 10. The Decrypted Images of Figure 4b with the 1-bit Difference Keys, mentioned in
Sub-Section 5.2.4.

5.2.5. Plaintext Sensitivity Analysis

Similar to key sensitivity, a secure encryption algorithm should also be very sensitive to plain
images. We use NPCR (number of pixels change rate) and UACI (unified average changing intensity)
to measure the difference between two cipher images, which are defined, as follows:

NPCR = 1
M×N

M−1∑
i=0

N−1∑
j=0

D(i, j) × 100%,

UACI = 1
M×N

M−1∑
i=0

N−1∑
j=0

|c1(i, j)−c2(i, j)|
255 × 100%,

where

D(i, j) =
{

0, i f c1(i, j) = c2(i, j)
1, i f c1(i, j) , c2(i, j)

,

and c1 and c2 are two cipher images. The theoretical values of NPCR and UACI between two different
cipher images are 99.6094% and 33.4635%, respectively.

We evaluate plaintext sensitivity, as follows. First, we randomly select x0, k1, k2, k3, n0 from the
keyspace, encrypt the test image p1, and with it to get the cipher image c1. Second, we randomly
select a position in p1, increasing each channel’s value by 1 in some places to obtain a modified image
p2. Next, we encrypt p2 to obtain a cipher image c2. Subsequently, calculate the NPCR and UACI
values between c1 and c2. Repeat this process 200 times and list the averaged NPCR and UACI values
in Table 3. Both the averaged NPCR and UACI values for all tested images are very close to their
theoretical optimal ones, which means the enhanced CIES-UBPRPD algorithm do sensitive to the plain
input images, as shown in Table 3.

Entropy 2020, 22, 589 19 of 23

Table 3. The Plaintext Sensitivity Analyzing Results, Measured in Terms of Averaged NPCR and
UACI Values.

NPCR (%) UACI (%)

R G B R G B

Lena 99.6094 99.6084 99.6096 33.4673 33.4630 33.4662
baboon 99.6075 99.6081 99.6086 33.4606 33.4646 33.4684
fruits 99.6081 99.6103 99.6095 33.4612 33.4620 33.4689

airplane 99.6094 99.6071 99.6101 33.4669 33.4595 33.4564
peppers 99.6099 99.6109 99.6092 33.4649 33.4641 33.4702

5.3. Robustness Analyses

Cipher images can easily be polluted during the transmission through a public channel, as pointed
out by one of the anonymous reviewers; therefore, the robustness of a secure image encryption
scheme is also an essential performance merit. For testing the robustness of the proposed image
encryption scheme, the noise-adding attack and the partial occlusion attack in the ciphertext domain
are investigated.

(a) Noise-adding Attack: the ciphered and the de-ciphered images that are presented in Figure 11
are obtained based on the enhanced CIES-UBPRPD, in which the testing ciphertext images have been
contaminated by adding with different degrees of salt-and-pepper noises. For performance analysis, we
employ the widely used Peak Signal-to-Noise Ratio (PSNR) to evaluate the algorithm’s restoring ability.
That is

PSNR = 10× log10
2552

MSE
(dB),

where,

MSE =
1

3×M×N

M−1∑
i=0

N−1∑
j=0

2∑
k=0

(O(i, j, k) −D(i, j, k))2,

O is the decrypted image obtained from the clean cipher image and D is the decrypted image obtained
from the polluted cipher image. Generally, a higher PSNR indicates a better quality or ability of
reconstruction. Table 4 shows the PSNRs of the proposed approach against the noise-adding attack.

Table 4. Robustness of the Proposed Approach Against the Noise-adding Attack, in terms of Peak
Signal-to-Noise Ratio (PSNR).

Added Noise Density PSNR of the De-Ciphered Image

0.1 (10% of the image frame) 17.6748 (dB)
0.2 14.9988 (dB)
0.3 13.5375 (dB)

(b) Partial-occlusion Attack. The ciphered and the de-ciphered images that are presented in
Figure 12 are obtained based on the enhanced CIES-UBPRPD, in which the testing ciphertext images
have been contaminated by occluding some parts of them (i.e., zeroing out those pixel values) that
are depicted by the black segments. Similar to the noise-adding attack, PSNR is used to evaluate the
proposed approach’s restoring ability against this attack, as shown in Table 5.

Entropy 2020, 22, 589 20 of 23

Entropy 2020, 22, x FOR PEER REVIEW 19 of 22

MSE =
1

3 ×𝑀 × 𝑁
∑ ∑∑(𝑂(𝑖, 𝑗, 𝑘) − 𝐷(𝑖, 𝑗, 𝑘))2

2

𝑘=0

𝑁−1

𝑗=0

𝑀−1

𝑖=0

,

O is the decrypted image obtained from the clean cipher image and D is the decrypted image obtained

from the polluted cipher image. Generally, a higher PSNR indicates a better quality or ability of

reconstruction. Table 4 shows the PSNRs of the proposed approach against the noise-adding attack.

(a) Clean Cipher Image (b) Cipher Image with (c) Cipher Image with (d) Cipher Image with

 Noise-density 0.1 (10%) Noise-density 0.2 Noise-density 0.3

(e) de-ciphered image of

(a)

(f) de-ciphered image of

(b)

(g) de-ciphered image of

(c)

(h) de-ciphered image of

(d)

Figure 11. Robustness of the Proposed Approach Against the Noise-adding Attack.

Table 4. Robustness of the Proposed Approach Against the Noise-adding Attack, in terms of Peak

Signal-to-Noise Ratio (PSNR).

Added Noise Density PSNR of the De-Ciphered Image

0.1 (10% of the image frame) 17.6748 (dB)

0.2 14.9988 (dB)

0.3 13.5375 (dB)

(b) Partial-occlusion Attack. The ciphered and the de-ciphered images that are presented in

Figure 12 are obtained based on the enhanced CIES-UBPRPD, in which the testing ciphertext images

have been contaminated by occluding some parts of them (i.e., zeroing out those pixel values) that

are depicted by the black segments. Similar to the noise-adding attack, PSNR is used to evaluate the

proposed approach’s restoring ability against this attack, as shown in Table 5.

(a) Occluding-make 1 (b) Occluding-make 2 (c) Occluding-make 3 (d) Occluding-make 4

Figure 11. Robustness of the Proposed Approach Against the Noise-adding Attack.

Entropy 2020, 22, x FOR PEER REVIEW 19 of 22

MSE =
1

3 ×𝑀 × 𝑁
∑ ∑∑(𝑂(𝑖, 𝑗, 𝑘) − 𝐷(𝑖, 𝑗, 𝑘))2

2

𝑘=0

𝑁−1

𝑗=0

𝑀−1

𝑖=0

,

O is the decrypted image obtained from the clean cipher image and D is the decrypted image obtained

from the polluted cipher image. Generally, a higher PSNR indicates a better quality or ability of

reconstruction. Table 4 shows the PSNRs of the proposed approach against the noise-adding attack.

(a) Clean Cipher Image (b) Cipher Image with (c) Cipher Image with (d) Cipher Image with

 Noise-density 0.1 (10%) Noise-density 0.2 Noise-density 0.3

(e) de-ciphered image of

(a)

(f) de-ciphered image of

(b)

(g) de-ciphered image of

(c)

(h) de-ciphered image of

(d)

Figure 11. Robustness of the Proposed Approach Against the Noise-adding Attack.

Table 4. Robustness of the Proposed Approach Against the Noise-adding Attack, in terms of Peak

Signal-to-Noise Ratio (PSNR).

Added Noise Density PSNR of the De-Ciphered Image

0.1 (10% of the image frame) 17.6748 (dB)

0.2 14.9988 (dB)

0.3 13.5375 (dB)

(b) Partial-occlusion Attack. The ciphered and the de-ciphered images that are presented in

Figure 12 are obtained based on the enhanced CIES-UBPRPD, in which the testing ciphertext images

have been contaminated by occluding some parts of them (i.e., zeroing out those pixel values) that

are depicted by the black segments. Similar to the noise-adding attack, PSNR is used to evaluate the

proposed approach’s restoring ability against this attack, as shown in Table 5.

(a) Occluding-make 1 (b) Occluding-make 2 (c) Occluding-make 3 (d) Occluding-make 4 Entropy 2020, 22, x FOR PEER REVIEW 20 of 22

(e) de-ciphered image of

(a)

(f) de-ciphered image of

(b)

(g) de-ciphered image of

(c)

(h) de-ciphered image of

(d)

Figure 12. Robustness of the Proposed Approach Against the Partial-occlusion Attack.

Table 5. Robustness of the Proposed Approach Against the Partial-occlusion Attack, in terms of

PSNR.

Data Occlusion Loss PSNR of the De-Ciphered Image

Pixel values in the bottom half = 0 11.6397 (dB)

Pixel values in the center square = 0 14.6680 (dB)

Pixel values in center row-rectangle = 0 14.6726 (dB)

Pixel values in center column-rectangle =0 14.6285 (dB)

From Figures 11 and 12, we can still recognize the de-ciphered images, even if the clean cipher

images are contaminated by noise-adding or partial-occlusion attacks. This implies that the

robustness of the enhanced CIES-UBPRPD is acceptable to practical image security applications.

6. Discussions and Conclusions

6.1. Discussions

In the past few years, combining both compression and encryption in a single algorithm to

reduce the complexity is a new tempting approach for securing data during transmission and storage

[14–18]. This new approach aims to extend the functionality of compression algorithms to achieve

both compression and encryption simultaneously in a single process without an additional

encryption stage. Employing the new combined simultaneous compression-encryption approach

highly reduces the required resources for encryption (computational and power resources),

according to [15] and [18]. Owing to such an attractive property, lots of works are devoted to this

topic [19–23], some of them are also chaotic map based. In [22], we proposed three techniques for

enhancing various chaos-based joint compression and encryption (JCAE) schemes. They respectively

improved the execution time, compression ratio, and estimation accuracy of three different chaos-

based JCAE schemes. However, all of the above-mentioned works are plain image independent.

Therefore, for enhancing the security level further, how to design an effective plain Image dependent

JCAE scheme is one of our future research directions.

Since steganography can also be utilized to conceal the private information, such as to provide

privacy protection of medical images, as pointed out by one of the anonymous reviewers, besides

Image Encryption and Decryption, Image Steganography is another worthy of noticing area in the

field of Image Security. Interested readers are referred to the following informative writeups,

although it is not within the scope of this work [24,25].

6.2. Conclusions

In this paper, we make detailed cryptanalysis on a published chaotic map-based image

encryption system, where the encryption process is plaintext Image dependent. We show that some

designing weaknesses make the published cryptosystem vulnerable to chosen-plaintext attack, and

we then proposed an enhanced algorithm to overcome those weaknesses.

Figure 12. Robustness of the Proposed Approach Against the Partial-occlusion Attack.

Table 5. Robustness of the Proposed Approach Against the Partial-occlusion Attack, in terms of PSNR.

Data Occlusion Loss PSNR of the De-Ciphered Image

Pixel values in the bottom half = 0 11.6397 (dB)
Pixel values in the center square = 0 14.6680 (dB)

Pixel values in center row-rectangle = 0 14.6726 (dB)
Pixel values in center column-rectangle = 0 14.6285 (dB)

Entropy 2020, 22, 589 21 of 23

From Figures 11 and 12, we can still recognize the de-ciphered images, even if the clean cipher
images are contaminated by noise-adding or partial-occlusion attacks. This implies that the robustness
of the enhanced CIES-UBPRPD is acceptable to practical image security applications.

6. Discussions and Conclusions

6.1. Discussions

In the past few years, combining both compression and encryption in a single algorithm to reduce
the complexity is a new tempting approach for securing data during transmission and storage [14–18].
This new approach aims to extend the functionality of compression algorithms to achieve both
compression and encryption simultaneously in a single process without an additional encryption stage.
Employing the new combined simultaneous compression-encryption approach highly reduces the
required resources for encryption (computational and power resources), according to [15] and [18].
Owing to such an attractive property, lots of works are devoted to this topic [19–23], some of them
are also chaotic map based. In [22], we proposed three techniques for enhancing various chaos-based
joint compression and encryption (JCAE) schemes. They respectively improved the execution time,
compression ratio, and estimation accuracy of three different chaos-based JCAE schemes. However, all
of the above-mentioned works are plain image independent. Therefore, for enhancing the security
level further, how to design an effective plain Image dependent JCAE scheme is one of our future
research directions.

Since steganography can also be utilized to conceal the private information, such as to provide
privacy protection of medical images, as pointed out by one of the anonymous reviewers, besides
Image Encryption and Decryption, Image Steganography is another worthy of noticing area in the
field of Image Security. Interested readers are referred to the following informative writeups, although
it is not within the scope of this work [24,25].

6.2. Conclusions

In this paper, we make detailed cryptanalysis on a published chaotic map-based image encryption
system, where the encryption process is plaintext Image dependent. We show that some designing
weaknesses make the published cryptosystem vulnerable to chosen-plaintext attack, and we then
proposed an enhanced algorithm to overcome those weaknesses.

In summary, we use the SHA-256 hash value instead of the sum of each channel as a “plaintext
feature”, so the enhanced CIES-UBPRPD has higher plaintext sensitivity than its original counterpart.
Moreover, the newly proposed encryption process includes the cross-channel interaction, which can
resist the Chosen Plaintext Attack that we launched. Since the SHA-256 hash value also serves as
an external key, making the improved Keyspace reaches to 2311, which is larger than the effective
Keyspace 2120 of the original CIES-UBPRPD. Besides the security and the robustness, we also take the
execution time into account to provide a full performance baseline for comparing the original and the
proposed image encryption algorithms, as suggested by one of the anonymous reviewers. Since the
calculation amount of the enhanced CIES-UBPRPD is larger than that of the original CIES-UBPRPD,
as shown in Table 6, the execution time of the proposed algorithm will be slightly slower than that of
its original counterpart. Our implementation is conducted on Intel Core i7-8700 CPU @ 3.2GHz and
32GB RAM with Windows 10 OS, and written in Python.

Table 6. The Timing Performance Comparison of the Original and the Proposed Approaches.

Original CIES-UBPRPD Enhanced CIES-UBPRPD

512 × 512 (image size) 3.3557 (s) 3.7944 (s)
256 × 256 (image size) 0.8355 (s) 0.9165 (s)

Entropy 2020, 22, 589 22 of 23

The value of the proposed algorithm for practical usage in image security is justified, according
to the security, the robustness, and the timing performance analyses. Finally, since the currently
proposed chosen-plaintext attack can be only effective to all RGB-Colored images of size 256× 256 pixels,
finding an attack that can be applied to more general cases is one of the possible future extensions.
We humbly hope that this paper will remind researchers to pay more attention when building their
chaotic-based image encryption algorithms in the future.

Author Contributions: Conceptualization, C.-Y.L.; methodology, C.-Y.L.; software, C.-Y.L.; validation, C.-Y.L. and
J.-L.W.; formal analysis, C.-Y.L.; investigation, C.-Y.L. and J.-L.W.; data curation, C.-Y.L.; writing—original draft
preparation, C.-Y.L. and J.-L.W.; writing—review and editing, C.-Y.L. and J.-L.W.; visualization, C.-Y.L. and J.-L.W.;
supervision, J.-L.W.; project administration, J.-L.W.; funding acquisition, J.-L.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, under the grant number:
MOST 108-2221-E-002-103-my3.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumari, M.; Gupta, S.; Sardana, P. A Survey of Image Encryption Algorithms. 3D Res. 2017, 8. [CrossRef]
2. Liu, M.; Zhao, F.; Jiang, X.; Liu, X.; Liu, Y. A Novel Image Encryption Algorithm Based on Plaintext-related

Hybrid Modulation Map. J. Internet Technol. 2019, 20, 2141–2155.
3. Kyamakya, K.; Halang, W.A.; Unger, H.; Chedjou, J.C.; Rulkov, N.C.; Li, Z. (Eds.) Recent Advances

in Nonlinear. In Dynamics and Synchronization: Theory and Applications, Studies in Computational Intelligence
254; Springer: Berlin, Heidelberg, 2009.

4. Fridrich, J. Symmetric Ciphers Based on Two-Dimensional Chaotic Maps. Int. J. Bifurc. Chaos 1998, 8,
1259–1284. [CrossRef]

5. Priya, R.; Vidhyapriya, R.; Seifedine, K.; Robertas, D.; Tomas, B. An Image Encryption Scheme Based on
Block Scrambling, Modified Zigzag Transformation and Key Generation Using Enhanced Logistic-Tent Map.
Entropy 2019, 21, 656. [CrossRef]

6. Zhu, S.; Wang, G.; Zhu, C. A Secure and Fast Image Encryption Scheme based on Double Chaotic S-Boxes.
Entropy 2019, 21, 790. [CrossRef]

7. Liu, H.; Kadir, A.; Sun, X. Chaos-based fast colour image encryption scheme with true random number keys
from environmental noise. IET Image Process. 2017, 11, 324–332. [CrossRef]

8. Li, Q.; Qian, G. A New Image Encryption Algorithm Based on Chaotic Maps. In Proceedings of the 9th
International Conference on Signal Processing Systems, Auckland, New Zealand, 27–30 November 2017;
pp. 65–69.

9. Zhu, S.; Zhu, C.; Wang, W. A New Image Encryption Algorithm Based on Chaos and Secure Hash SHA-256.
Entropy 2018, 20, 716. [CrossRef]

10. Huang, L.; Cai, S.; Xiao, M.; Xiong, X. A Simple Chaotic Map-Based Image Encryption System Using Both
Plaintext Related Permutation and Diffusion. Entropy 2018, 20, 535. [CrossRef]

11. Arnold, V.I.; Avez, A. Problèmes Ergodiques de la Mécanique Classique; Benjamin: New York, NY, USA, 1967.
(In French)

12. He, D.; He, C.; Jiang, L.-G.; Zhu, H.-W.; Hu, G.-R. Chaotic characteristics of a one-dimensional iterative map
with infinite collapses. IEEE Trans. Circuits Syst. I Regul. Pap. 2001, 48, 900–906. [CrossRef]

13. Schneier, B. A self-study course in block-cipher cryptanalysis. Cryptologia 2000, 24, 18–33. [CrossRef]
14. Wu, C.-P.; Kuo, C.-C. Design of integrated multimedia compression and encryption systems. IEEE Trans.

Multimed. 2005, 7, 828–839. [CrossRef]
15. Grangetto, M.; Magli, E.; Olmo, G. Multimedia Selective Encryption by Means of Randomized Arithmetic

Coding. IEEE Trans. Multimed. 2006, 8, 905–917. [CrossRef]
16. Zhou, J.; Liang, Z.; Chen, Y.; Au, O.C. Security Analysis of Multimedia Encryption Schemes Based on

Multiple Huffman Table. IEEE Signal Process. Lett. 2007, 14, 201–204. [CrossRef]
17. Nagaraj, N.; Vaidya, P.G.; Bhat, K.G. Arithmetic coding as a non-linear dynamical system. Commun. Nonlinear

Sci. Numer. Simul. 2009, 14, 1013–1020. [CrossRef]

http://dx.doi.org/10.1007/s13319-017-0148-5
http://dx.doi.org/10.1142/S021812749800098X
http://dx.doi.org/10.3390/e21070656
http://dx.doi.org/10.3390/e21080790
http://dx.doi.org/10.1049/iet-ipr.2016.0040
http://dx.doi.org/10.3390/e20090716
http://dx.doi.org/10.3390/e20070535
http://dx.doi.org/10.1109/81.933333
http://dx.doi.org/10.1080/0161-110091888754
http://dx.doi.org/10.1109/TMM.2005.854469
http://dx.doi.org/10.1109/TMM.2006.879919
http://dx.doi.org/10.1109/LSP.2006.884012
http://dx.doi.org/10.1016/j.cnsns.2007.12.001

Entropy 2020, 22, 589 23 of 23

18. El-Arsh, H.Y.; Mohasseb, Y.Z. A New Light-Weight JPEG2000 Encryption Technique Based on Arithmetic
Coding. In Proceedings of the MILCOM 2013—2013 IEEE Military Communications Conference, Institute of
Electrical and Electronics Engineers (IEEE). San Diego, CA, USA, 18–20 November 2013; pp. 1844–1849.

19. Mostafa, M.; Fakhr, M.W. Joint image compression and encryption based on compressed sensing and
entropy coding. In Proceedings of the 2017 IEEE 13th International Colloquium on Signal Processing & its
Applications (CSPA), Penang, Malaysia, 10–12 March 2017; pp. 129–134. [CrossRef]

20. Guo, L.; Li, J.; Xue, Q. Joint image compression and encryption algorithm based on SPIHT and crossover
operator. In Proceedings of the 2017 14th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP), Institute of Electrical and Electronics Engineers (IEEE),
Chengdu, China, 15–17 December 2017; pp. 185–188.

21. Shehata, A.E.R.; El-Arsh, H.Y. Lightweight Joint Compression-Encryption-Authentication-Integrity
Framework Based on Arithmetic Coding. arXiv 2018, arXiv:1804.04300.

22. Tsai, C.-J.; Wang, H.-C.; Wu, J.-L. Three Techniques for Enhancing Chaos-Based Joint Compression and
Encryption Schemes. Entropy 2019, 21, 40. [CrossRef]

23. Xie, Y.; Yu, J.; Guo, S.; Ding, Q.; Wang, E. Image Encryption Scheme with Compressed Sensing Based on New
Three-Dimensional Chaotic System. Entropy 2019, 21, 819. [CrossRef]

24. Liao, X.; Guo, S.; Yin, J.; Wang, H.; Li, X.; Sangaiah, A.K. New cubic reference table based image steganography.
Multimed. Tools Appl. 2017, 77, 10033–10050. [CrossRef]

25. Liao, X.; Yin, J.; Guo, S.; Li, X.; Sangaiah, A.K. Medical JPEG image steganography based on preserving
inter-block dependencies. Comput. Electr. Eng. 2018, 67, 320–329. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/cspa.2017.8064937
http://dx.doi.org/10.3390/e21010040
http://dx.doi.org/10.3390/e21090819
http://dx.doi.org/10.1007/s11042-017-4946-9
http://dx.doi.org/10.1016/j.compeleceng.2017.08.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Involved Chaotic Maps
	Generalized Arnold’s Cat Map
	Chebyshev Map

	Image Encryption Algorithm
	Permutation Stage
	Diffusion Stage

	Image Decryption Algorithm

	Cryptanalysis
	Security Weaknesses
	Equivalent Classes in Keyspace
	Low Sensitivity to the Change of Plaintext

	Chosen-Plaintext Attack
	Extraction of the Permutation Matrix
	Extraction of the Diffusion Matrix
	Recovering the Original Plain Image

	Improved CIES-UBPRPD Algorithm
	The Weaknesses of the Original CIES-UBPRPD
	The Enhanced CIES-UBPRPD
	Secret Key Formulation
	Image Encryption Algorithm

	Experimental Results
	Verification of Encryption and Decryption Algorithms
	Security Analyses
	KeySpace Analysis
	Histogram Analysis
	Correlation Analysis
	Key Sensitivity Analysis
	Plaintext Sensitivity Analysis

	Robustness Analyses

	Discussions and Conclusions
	Discussions
	Conclusions

	References

