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A B S T R A C T   

The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of 
new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive 
issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in 
clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to 
explore and develop new strategies for drug repositioning by employing computational pharmacology, data 
mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, 
affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating 
pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data 
mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new 
therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this infor
mation could be used to monitor disease progression or devise treatment strategies. Importantly, our work 
bridged the interactome with the chemical compound space to better understand the complex landscape of 
COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for 
COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeuti
cally valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to 
establish robust practices for treating today's and future infectious diseases by preparing solid analytical 
frameworks.   

1. Introduction 

A global healthcare crisis created by the COVID-19 pandemic led to 
an unprecedented challenge in healthcare. This infectious disease 
caused by the SARS-CoV-2 virus first emerged in December 2019 in 
Wuhan, China and rapidly spread around the world affecting multiple 
countries. While the initial response of the World Health Organisation 

(WHO) was restrained to a ‘health emergency’, the status was soon 
recategorised as a ‘pandemic’ [1,2]. COVID-19 patients presented with 
varying symptoms which were classified into three categories, namely 
mild, moderate, and severe. The disease progression, associated com
plications, and mortality were identified to show age and gender 
dependent differences with comorbidities also playing a significant role 
[3,4]. The initial therapeutic management of COVID-19 was limited and 

Abbreviations: AP, Aromatic proportion = number of aromatic atoms / number of heavy atoms; COPD, chronic pulmonary disease; ARDS, Acute Respiratory 
Distress Syndrome; MW, molecular weight; MolLogP, log of a partition coefficient for a molecule; TPSA, topological polar surface area. 
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the urgent nature of the pandemic prompted clinicians to try different 
approaches [3]. A variety of protocols were developed to provide 
treatment and aid patient recovery where the therapeutic options 
included antiviral drugs, anti-inflammatory drugs, immunomodulators 
and other types of intervention [3,5,6]. As more information was 
collected and emergency approvals for clinical trials produced data, the 
clinical strategies were further refined [3,5,6]. This also presented an 
opportunity to explore drug repurposing and search for effective clinical 
management options capturing both infection prevention and the alle
viation of symptoms [2,7,8]. 

Repurposing drugs offers the advantage of reduced clinical devel
opment time and working with an already well-established pharmaco
logical profile [9,10]. Moreover, many researchers took full advantage 
of various in silico approaches, such as machine learning, bioinformatics 
or computational chemistry, to test new candidate molecules against 
various COVID-19 targets [11–13]. While computational methods un
doubtedly help to refine the complex chemical space, the field still re
quires a structured approach and practice establishment to ensure that 
outcomes are comparable and properly benchmarked [14–16]. Thus, 
unsurprisingly most of the molecules that were selected for repurposing 
where not effective in treating severe COVID-19 cases leading to various 
controversies [10,17,18]. The less-than-optimal results may also indi
cate that the research in drug repurposing focuses too narrowly on either 
the targets or the chemical entities without considering broader sys
temic implications [10,13,19–21]. 

Seeing the challenges and urgent need for new research and dis
covery strategies, we set out to explore the COVID-19 infection from the 
perspectives of computational pharmacology, systems biology, and 
cheminformatics bridging the system-wide effects with compound 
chemical features. Mining the data of available COVID-19 clinical trials 
allowed us to capture the links between compounds under investigation 
and their targets spanning both direct and expanded interactions (i.e., 
additional degrees of separation between interacting proteins). Since in- 
depth information on the COVID-19 clinical profile is limited and study- 
dependent [10,22], we used tested chemical entities as a proxy to un
derstand the disease network and what pathways might be relevant if a 
drug proves to be beneficial. We employed several different techniques 
ranging from a direct to an extended interactome recreation which 
enabled us to identify a broader scope of affected signalling networks 
under a single drug influence [23,24]. Our analysis of COVID-19 drug 
targets demonstrated that there is an overlap across certain target 
groups and the diversity of pharmaceuticals provides more options to 
adjust medications based on their systemic effects. Intriguingly, looking 
into the extended networks of drug targets, we found rich clusters of 
shared features. This allowed us to hypothesise that a direct drug-target 
interaction will have an effect on other associated interactors and this 
information could be used to assess drugs under investigation that share 
a predicted network [5,6,10,23–25]. Moreover, this approach could be 
used to select combination therapy regimens. Under these assumptions, 
we extracted the most noticeable clusters of drugs that have multiple 
shared targets through their signalling networks and used the ontology- 
based enrichment analysis to identify cellular processes, functional 
signalling networks, and linked pathways. Indeed, we were able to 
verify that compounds modulate a number of shared processes that are 
engaged through different network nodes. These findings have several 
important implications for future repurposing studies highlighting that 
focusing on a single target can lead to potentially missing a number of 
other relevant systemic effects [26]. Selecting treatment options based 
on a network-centric perspective can provide insights into short- and 
long-term effects, and gathering such data could significantly improve 
how medical practitioners prescribe therapeutics and/or mitigate un
wanted outcomes [5,27,28]. Such methods could help establish robust 
practices to collect and organise data for drug repositioning and clinical 
studies [10,22,29]. 

We also explored the regulatory miRNA space and found that many 
target genes/proteins showed a staggering number of shared regulatory 

miRNAs. These findings also agree with the clinical miRNA observations 
in COVID-19; however, such data is still very limited [30,31]. Our 
identified enrichment highlights that processes affected by the drugs 
used to treat viral infections have a complex regulatory interplay and 
analysing them further could help refine treatment options from bio
markers to RNA interference therapeutics [30,32,33]. 

While understanding the biological space is extremely important 
when optimising drug selection or identifying new antiviral and/or anti- 
inflammatory treatment methods, computational pharmacology can aid 
in bridging compound chemical features with observed effects [34–36]. 
Thus, we explored the chemical profiles of the drugs that are undergoing 
or have been undergoing clinical trials for COVID-19. Such information 
can be a valuable guide when designing a screening library either by 
narrowing down or expanding drugs to diversify the compound set 
[34–36]. In our study, we demonstrated that drugs used to treat COVID- 
19 do not have clear structural patterns, aside from a steroid subgroup 
and certain smaller subclusters. Chemical space mining (> 2.1 M com
pounds) and our built quantitative structure-activity relationship 
(QSAR) models via machine learning (ML) and deep learning (DL) 
enabled us to extract the most relevant features of drugs predicted to 
have antiviral properties against the SARS-CoV-2 virus. We applied the 
models to investigate which chemical entities in the COVID-19 clinical 
trial set could have antiviral properties. Both models had similar accu
racy (ML- 96.77%; DL- 96.48%) differentiating between antiviral and 
control compounds when they were tested on the said drug set. Some of 
the identified drugs were already known antivirals tested for COVID-19 
(e.g., ritonavir). To our surprise, when we used the trained models on 95 
small fragment-like molecules that were experimentally verified to bind 
the Mpro protein on the SARS-CoV-2 virus [37], none were selected as 
antivirals. These results underscored that current libraries used to test 
compounds might be too narrow or biased. Thus, experimental activity 
data on targets of interest is crucial in establishing QSAR relationships 
[38]. 

Drug repurposing and new compound development need to be built 
on diverse compound screening libraries with a strong understanding of 
their interactome and regulome. Such integrative approaches can pre
vent early failures in discovery pipelines or ineffective treatment regi
mens in repurposing studies [36,39]. As can be seen from our in-depth 
analysis, evaluating compounds for COVID-19 should expand beyond 
direct drug-target interactions and consider a more complex space of 
affected networks in order to develop more robust combination thera
pies (Fig. 1). Thus, we should take this opportunity to establish research 
and discovery practices for today's and future infectious diseases by 
preparing solid analytical frameworks. 

2. Methods 

2.1. Data collection and mining 

Data for COVID-19 associated clinical trials and drugs involved in 
treatment and/or clinical investigation protocols were primarily 
retrieved from the Open Targets platform that curates information on 
clinical testing, known targets, and compound information [40,41]. 
Mining (November 2021) returned 1375 target-drug pairs which 
constituted 230 unique drugs and 356 unique targets (i.e., some drugs 
have multiple main targets or different drug formulations). In addition, 
Open Targets were searched for compound and known target associa
tions to extract the relevant chemical data (e.g., SMILES, InchiKey, etc.) - 
this provided information on 18,376 compounds. To expand and verify 
the data sets, the information was cross-referenced against PubChem 
COVID-19 records (1625 compound data) [42,43] and the STITCH 
database containing compound-protein interaction data (15,473,939 
interaction points) [44]. Additional interactome data was retrieved 
mining the STRING database (135,660 interactions, 5922 new targets 
for the expanded interactome network) [45,46]. Reactome database was 
used to extract information on relevant pathways [47]. miRNA database 
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was used from the OmicInt package associated repository to mine non- 
conding RNA interactions [48]. ChEMBL compound database (>2.1 M 
chemical entities) was used to search for similar and control compounds 
when investigating COVID-19 clinical trial drugs [49]. COVID-19 CAS 
and Diamond/Xchem Mpro compound repositories were used to extract 
predicted and experimentally tested antiviral drugs [37,50]. 

2.2. Computational pharmacology and bioinformatics analysis 

COVID-19 clinical trial data mining, cleaning, and analysis was 
performed in R programming environment (v4.1.2) with RStudio [51]. 
Specific libraries used for enrichment, clustering, and ontology analyses 
include STRINGdb (v2.6.0), ClusterProfiler (v4.2.0), EnrichGO (v4.2.0), 
EnrichPathway (v4.2.0), and BioMart (v2.50.1) [52–56]. 

2.3. Cheminformatics analysis 

Python programming environment (v3.9.7) [57] was used for 
chemical descriptor extraction, Morgan fingerprinting, Mol2vec finger
printing [58], compound similarity assessment, substructure search, and 
image generation. Used packages and analytical frameworks include 
Rdkit (v2021.9.4), NumPy (v1.22.1), Pandas (v1.3.5), Seaborn 
(v0.11.2), Matplotlib (v3.5.1), and Chemexpy (v1.0.10) [59–64]. 
Custom algorithmic assessments, comparative analyses, and data mining 
were performed using Rdkit (v2021.9.4) [59]. 

2.4. Machine and deep learning 

Python programming environment (v3.9.7) [57] was used for ma
chine and deep learning. The machine learning framework was imple
mented via Scikit-learn library [65] where LGBMClassifier [66] was 
used as a classifier with default parameters, train-test split at 0.2, where 
features comprised vectorised and normalised Morgan fingerprints 
(radius = 3, nBits = 2048). Deep learning neural networks were built for 
Mol2vec [58] encoded chemical features using the following set-up 
facilitated by TensorFlow and Keras libraries [67,68]: sequential addi
tion of layers starting with a Dense layer (hidden units = 200, activa
tion=’relu’, and input shape = (300,)), followed by Dense layers with 
hidden units: 128, 100, 50 and a dropout of 0.25 after each. All layers 
except the last were activated with ‘relu’ function, the last dense layer 
had only 1 hidden unit and sigmoid activation. Binary cross-entropy 
with adam optimiser and metrics for accuracy were used for the 
model compilation. The analysis was run for 200 epochs using 256 units 

for batch size with 0.2 split of the original data for validation. Deep 
learning was performed using Python 3 Google Compute Engine back
end (Tensor processing units, TPU), RAM 12 GB, and HDD 107 GB. 

3. Results 

3.1. COVID-19 clinical trials represent a broad spectrum investigation of 
potential therapeutics to modify the disease course 

We opted to use mined data from the Open Targets platform on 
referenced COVID-19 clinical trials (230 unique drugs with a known 
target status) so that our analyses were focused on a consistent set of 
compounds [40,41]. Assessing clinical phase distributions for drugs that 
are undergoing or underwent clinical trials revealed that the majority of 
the therapeutics are in phase 2 (46.52%) with phase 3 and 4 being the 
other predominant categories at 28.26% and 20.43%, respectively 
(Fig. 2, A). Based on the available information, the largest proportion of 
clinical studies (50.87%) are still recruiting patients while other cate
gories, such as ‘Not yet recruiting’ or ‘Completed’ distribute below the 
20% mark (Fig. 2, B). Supplementary Fig. 1 captures the clinical phase 
and status of every drug profile with a clear shift towards advanced 
clinical phases underscoring the emergency status of the disease and a 
large number of therapeutics under investigation to capture population- 
based effects [40,41]. Drug targets and types of drugs used to combat the 
COVID-19 infection and the associated complications (Fig. 2, C) further 
exemplify a broad therapeutic engagement. Most of the drugs in clinical 
trials are inhibitors (nearly half of all treatment options) with agonists 
(20.87%) and antagonists (17.83%) comprising the other two main 
categories (Fig. 2, D). About two thirds of the pharmacological inter
vention options belong to a small-molecule category (Fig. 2, F). Anti
bodies (14.35%) and other proteins (10%) are two additional drug 
classes that are important in treating this viral infection (Fig. 2, F). 
However, it is necessary to note that an important evidence gap has been 
reported for the safety of the drugs tested for COVID-19. As reported in 
January 2021, 40.4% of completed trials did not post results on 
ClinicalTrials.gov or in the academic literature [22]. 

3.2. COVID-19 treatment strategies highlight the need for a more in-depth 
understanding of drug pharmacological action 

The original set of compounds (Open Targets, 230 unique drugs with 
a known target status) used to treat or investigated for the treatment of 
COVID-19 was searched for any shared proteins across the main known 

Fig. 1. An outline for COVID-19 investigational drug analysis summarising key analytical steps and outcomes.  
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Fig. 2. Summary plots for COVID-19 clinical trials data (n = 230; November 2021). Information was mined from the Open Targets COVID-19 database where duplicate entries for the same chemical entity were removed 
when preparing summary plots. A – a clinical phase distribution plot for COVID-19 clinical trials; B - a bar plot for the status of COVID-19 clinical trials; C – a pie chart for drug activity types; D – a pie chart for drug 
molecule types. 
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drug targets (Suppl. Fig. 2). Since a compound might be listed to engage 
one or more proteins, we aimed to cross-reference drugs and their tar
gets to get insights into shared action [23]. This analysis returned 
several smaller clusters with denser sets in the top left corner of the 
heatmap (Suppl. Fig. 2). For example, dipyridamole and pentoxifylline 
engage a broad spectrum of phosphodiesterases (PDEs), such as PDE3B, 
PDE1A, or PDE5A. Comparing dipyridamole and pentoxifylline action 
allowed identifying some additional main targets where these com
pounds differ. Specifically, dipyridamole inhibits the equilibrative 
nucleoside transporter-1 (ENT1 or SLC29A1) which serves a sodium- 
independent transporter for purine and pyrimidine nucleosides and 
pentoxifylline is believed to downregulate adenosine A2A receptor 
(A2AR)-mediated pathways [69–71]. Propofol, sevoflurane, and iso
flurane also form a noticeable group in the heatmap (Suppl. Fig. 2). 
These drugs are used in anaesthesia protocols for patients requiring 
mechanical ventilation and prolonged, deep sedation to optimize 

oxygenation and ventilation during respiratory failure from COVID-19 
[72–75]. Analgesia drugs also form a cluster through their shared ac
tion on PTGS1 and PTGS2, also known as cyclooxygenase 1 and cyclo
oxygenase 2 [76]. The corticosteroid section (bottom left of the 
heatmap, Suppl. Fig. 2) have one shared target that stands out – nuclear 
receptor subfamily 3 group C member 1 (NR3C1). This receptor was 
implicated in the progression of the COVID-19 infection where a single 
cell transcriptome study revealed that the NR3C1-CXCL8-Neutrophil 
axis determines the severity of the COVID-19 disease [77]. 

Based on the drug-target network analysis, we concluded that in 
order to better understand pharmacological interaction processes, we 
needed to expand the drug interactome space. 

Fig. 3. A heatmap showing the size of shared gene networks for drugs (n = 230) that were used to treat or investigated for the treatment of COVID-19. Every drug 
used for the treatment had a main target and an extended network that consisted of protein-protein interactions or associations which were mined based on 
experimental, text mining, and analysis-based evidence (STRING database; threshold = 700). Each drug and its associated interactor network were cross-referenced 
against other drugs to establish a shared network, i.e., overlapping drug sets. This information is shown via the heatmap where diagonal entries represent the network 
size for a selected drug. Clusters selected for the downstream analysis are highlighted in green squares with the cluster IDs next to them. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Interactome investigation revealed new opportunities for drug 
repurposing and combination therapies 

Taking into consideration the fact that targets are part of complex 
signalling networks prompted us to explore what the overlap size of the 
interactome is for each drug and if it could be used to find alternative 
therapies, repurpose existing ones, or help develop new drugs faster. In 
other words, the main known targets for each drug were expanded by 
mining protein-protein interaction networks to extract an estimated 
network that has links to the drug through its main target. These net
works were searched for overlaps in pairwise drug comparisons where 
the overall protein set consisted of 5922 unique targets. On average each 
main drug target had about 97.6 interactors (Suppl. Fig. 3) ranging from 
no known interactors to a maximum number of 558 other proteins. This 
search allowed us to identify emerging patterns in data on a systemic 
level (Fig. 3) where three larger and two smaller clusters with relatively 
large, shared networks were found for different drugs. Clusters 1, 2, and 
3 were found to be the least diverse considering the number of seed 
proteins (or the main drug targets) (Fig. 3; Suppl. Table 1 and Suppl. 
Fig. 4). By contrast, clusters 4 and 5 showed the most diversity with 17 
and 29 unique seed proteins, respectively. 

Exploring the two most diverse clusters, clusters 4 and 5, we can see 
that cluster 4 contains drugs used to treat hypertension, namely los
artan, valsartan, telmisartan, candesartan, and ambrisentan. Losartan is 
an angiotensin II receptor blocker (ARB) used to treat hypertension and 
it has been proposed that this drug acting as a selective antagonist of the 
angiotensin II type 1 (AT1) receptor may offer some protection from 
lung damage induced by COVID-19 [78–80]. As can be seen, cluster 4 
drugs are predicted to mostly engage the same size networks; however, 
comparing and exploring drug-specific networks can help identify 
diverging biochemical processes that could be therapeutically relevant. 
One example of such an approach can be found in cluster 4 for ambri
sentan - a selective type A endothelin (ET-A) receptor antagonist. This 
selective antagonist is used to primarily treat pulmonary arterial hy
pertension and has been applied in COVID-19 combination therapy with 
dapagliflozin which inhibits sodium glucose co-transporter-2 (SGLT-2) 
[81]. While dapagliflozin has not been listed in the Open Targets COVID- 
19 clinical trial data (November 2021), we explored the extended 
interactome for SGLT-2 using the same principles as for other com
pounds. We then compared dapagliflozin with ambrisentan for any 
overlapping targets in their networks. The dapagliflozin network is 
relatively small – only 11 targets, while ambrisentan's network size is 
183 proteins. The networks shared only two targets, namely adenylate 
cyclase 7 (ADCY7) and glucagon (GCG) highlighting the different 
cellular process engagement with a two-gene convergence point. Simi
larly, cluster 5 combines several different drug classes, e.g., aviptadil, 
prasugrel, chlorpromazine, and naltrexone, that converge through a 
shared interactor network (Fig. 3; Suppl. Table 1 and Suppl. Fig. 4). 
Ticagrelor and prasugrel (P2Y12 platelet inhibitors) have been 
employed to manage acute coronary syndrome (ACS) and as a throm
boprophylaxis in patients with COVID-19. Numerous studies explored 
combinations of an enhanced prophylactic doses to correct the param
eters of viscoelastic coagulation [82–84]. Other drugs, such as chlor
promazine (phenothiazine antipsychotic), naltrexone (opioid receptor 
antagonist), and fingolimod (a sphingosine 1-phosphate receptor 
modulator), have been recognised for their multi-modulation potential 
and have also been tested in various clinical settings [85–88]. Consid
ering our findings, it is important to highlight the need for the consoli
dation and further exploration of the pleiotropic effects of the drugs used 
to treat COVID-19. Consequently, we selected cluster 5, the most diverse 
cluster, to explore the occurring interactions more in-depth. 

3.4. Interactome analyses accentuated diverse process networks that 
could be used to advance therapeutics development 

Rather than exploring genes in isolation we examined what 

signalling networks and functional processes can be enriched for the 
identified clusters. Fig. 4 highlights that cluster 5 identified during the 
interactome analysis (Fig. 3, Suppl. Table 1 and 2) also shows varied 
functional enrichment patterns ranging from calcium ion homeostasis to 
neutrophil migration. A proportion of genes from cluster 5 also belongs 
to the extracellular signal-regulated protein kinase (ERK) cascade which 
has previously been reported as a potential therapeutic target in coro
navirus infections where cascade inhibition was observed to lead to 
infection resolution [89]. As can be seen other clusters had different 
profiles where clusters 3 and 4 had several shared functional themes 
involving haemostasis (Suppl. Fig. 5). Haemostatic aspects of COVID-19 
have been reported as a serious concern in stabilising patients and 
reducing tissue/organ damage [82,90,91]. Furthermore, clusters 1 and 2 
are good examples demonstrating how even a few genes/proteins (i.e., 
cluster drug main targets) can impact multiple different cellular func
tions through the extended network; such considerations can always be 
useful when predicting drug effects or exploring alternative uses (Suppl. 
Fig. 5) [5,7,10]. To better understand specific functions in a gene clus
ter, it is helpful to explore if any of the genes in the over-represented 
functional groups belong to the same pathway. Cluster 5 has several 
clear themes where some genes are shown to play a role in multiple 
pathways and others are much more pathway specific (Fig. 5). As an 
example we can inspect one drug - cenicriviroc from cluster 5 (experi
mental drug, inhibitor of C–C motif chemokine receptors, namely CCR2 
and CCR5) which has several targets, e.g., interleukin 10 (IL-10), CCR5, 
C–C motif chemokine ligand 20 (CCL20), C-X-C motif chemokine ligand 
10 (CXCL10), CD86, and formyl peptide receptor 1 (FPR1), belonging to 
the IL-10 signalling pathway (Fig. 5; Suppl. Table 1 and 2). Due to its 
apparent broad engagement spectrum, cenicriviroc has been included in 
clinical trials to assess its anti-inflammatory and immunomodulatory 
effects [92–95]. Drugs with different targets, such as icatibant (brady
kinin 2 receptor antagonist) or ozanimod (sphingosine 1-phosphate re
ceptor agonist), show a potential pathway overlap through shared 
network targets and this understanding could be useful in managing 
their COVID-19 clinical trials (Fig. 5; Suppl. Table 2) [96,97]. 

The identified enrichment clusters as well as individual drugs could 
be used to compare and match different combination therapy regimens, 
such as haemodynamics modulating and anti-inflammatory. In the case 
of anti-inflammatory action, it is possible to compare drugs having im
mediate vs long-term effect in order to reduce tissue damage occurring 
in acute and chronic disease progression. 

3.5. miRNAs represent a potentially new biomarker and therapeutic 
modulation space linking the drug interactome 

Seeing the complexity of the drug networks, we also analysed the 
non-coding regulatory layer for the most diverse cluster 5 (Fig. 3). We 
used the minded data of validated miRNAs and their regulome genes to 
explore the dynamics of miRNAs in the selected gene cluster [48]. We 
found a rich network of miRNAs known to be involved in the regulation 
of multiple genes (Suppl. Fig. 6). We identified that some genes from 
cluster 5 are linked to miR-320 family which downregulation has been 
associated with the progression of disease severity and miR-320 have 
been suggested as potential biomarkers for SARS-CoV-2 [98,99]. Other 
miRNAs from cluster 5 have also been reported in other studies as 
prognostic markers. For example, circulating miRNAs from ten COVID- 
19 patients (sampling done longitudinally with ten age and gender 
matched healthy donors) allowed to profile the alteration of 55 miRNAs 
in COVID-19 patients during early-stage disease [30]. Our enrichment 
recovered miR-31-5p (marked upregulation in COVID-19 patients) and 
other strongly associated biomarker miRNAs, namely miR-423-5p and 
miR-23a-3p [30]. 
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Fig. 4. COVID-19 drug network enrichment for drug interactor cluster 5 (29 unique main targets, 23 drugs). A - a network plot showing genes for the top five enriched groups. B - a dot plot depicting specific functional 
enrichment. The size of the dots indicate the size of the cluster for the particular functional group with the probability provided through p.adj. Values. 
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3.6. Compound chemical profiles capture certain interactome features 
and also reveal a highly heterogeneous chemical space 

While various drugs showed interesting interactome overlaps, we 
assessed the chemical and pharmacological characteristics and investi
gated if network analyses can be superimposed to chemical data. Only 
158 compounds out of 230 unique drugs used in COVID-19 investiga
tional studies were selected for chemical profiling after filtering out 
similar drugs (i.e., only differences in formulation) and antibodies or 
small peptides. To analyse the chemical feature space, we employed 
chemical descriptors, structural analysis, and fingerprint-based ap
proaches. We started compound analysis from a medicinal chemistry 
perspective (e.g., calculated partition coefficient - CLogP, molecular 
weight - MW, topological polar surface area - TSPA, etc.) to gain 
important insights about any biases in the data, such as lipophilicity or 
hydrophilicity. As can be seen, compounds showed diverse character
istics (Fig. 6); however, no specific correlation patterns could be iden
tified for pairwise comparisons aside from the expected physicochemical 
relationships, e.g., MW vs C atom count. Such analyses provide initial 
glimpses into any emerging patterns that could be explained by linear 
dependencies and also help to evaluate any outliers or composition 
biases. We continued this analysis by performing cross-compound sim
ilarity evaluation using Morgan fingerprints (nBits = 2048, radius = 2) 
and Tanimoto similarity scores (Fig. 7) [58,100]. Surprisingly, most of 
the compounds showed only borderline similarity fluctuating around 
0.2 and just the steroid group stood out with higher similarity scores 
forming a cluster. Other smaller groups can also be identified, e.g., 
angiotensin receptor blockers (Fig. 7). However, only cluster 2 (Fig. 3) 
drugs show clear links between network and chemical features (Fig. 7). 
Other categories are not only more dispersed (with partitioned clusters) 
but also show very little overall similarity. Overall, the assessment 
underlined specific fragments or structural elements, such as heterocy
cles, fused ring structures, and/or amphiphatic groups, as a few chem
ical features influencing the observed similarity across the analysed 
compounds. 

The network-based representation of the SARS-CoV-2 infection has 
also found support in other studies searching for a framework to eval
uate specific clinical outcomes [101–103]. We, however, add to this 
proposition by bridging biological, pharmacological, and chemical 
spaces where searching for privileged structures to treat COVID-19 
might involve a significantly larger chemical space and more variation 
than currently is considered [101–103]. We used cluster 5 as our case 
study to further evaluate what chemical features exist for these com
pounds and if we could use that information to search for new drugs or 
design alternative compounds. 

To explore cluster 5 compounds (Fig. 3, Suppl. Table 1 and 2) that 
were split into smaller groups based on chemical similarity in depth 
(Fig. 7), we isolated these compounds and assessed them as a separate 
set (Suppl. Fig. 7). Cluster 5 compounds share little similarity with the 
highest similarity score being 0.43 (Tanimoto similarity) between pra
sugrel and cenicriviroc. These drugs have several features contributing 
to the similarity where, for example, heterocycles and substituted ben
zenes, are among major elements linking these two groups. On the other 
hand, most other compounds from the cluster have marginal similarity. 
Another example of low similarity and different chemical structures can 
be found in the comparison between dexmedetomidine (used as an 
anxiolytic, sedative, and pain management drug with ability to provide 
sedation without risk of respiratory depression) and melatonin (sleep- 
wake cycle regulating hormone) (Tanimoto similarity = 0.09) (Suppl. 
Fig. 7) [104,105]. These observations underline why selecting phar
macological management options cannot rely on the chemical similarity 
of drugs alone or just main known targets because pharmacological 
engagement depends on multiple direct and indirect effects contributing 
to the cellular and organism level response (Suppl. Table 2). 
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3.7. Machine and deep learning based QSAR models underlined the 
limitations in current chemical libraries used for drug design 

We began building a QSAR model by first mining the ChEMBL 
database (>2.1 M compounds) to investigate if cluster 5 compounds had 
any matches based on similarity [49]. To mine the database, we set the 
Tanimoto similarity threshold for >0.4 based on earlier observations of 
the existing heterogeneity within COVID-19 compounds (Fig. 7). This 
assessment returned various compounds that matched specific reference 
drugs from cluster 5 (Suppl. Table 3). Such findings demonstrate that 
while similarity-based search might lead to identifying more drugs, this 
may not be the most optimal strategy as more complex chemical 

relationships need to be established when searching for active com
pounds. Specifically, the earlier chemical space analysis motivated us to 
explore compound chemical characteristics not limited to similarity but 
relying on the drug's ‘architecture’ features [58,100,106]. 

We first built a machine learning model (LightGBM) with a gradient 
boosting framework to take advantage of the tree-based learning algo
rithm for complex classification tasks [7,21,106–108]. In order to 
develop this model, we needed a balanced dataset representing active 
and inactive compounds. A curated set of known antivirals and/or 
compounds resembling antivirals (COVID-19 CAS) was used to build a 
reference compound set for the expected actives (n = 48,876) [50]. To 
prepare the inactives (n = 50,000), we opted to randomly search 

Fig. 6. Compound property distributions for COVID-19 drugs (n = 158) where density plots and linear regression plots are also provided with pairwise scatter plots. 
Abbreviations: AP - Aromatic proportion = number of aromatic atoms / number of heavy atoms; MW – molecular weight, TPSA - topological polar surface area; 
MolLogP – log of a partition coefficient for a molecule. 
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ChEMBL database and select the least similar compounds when 
compared to the actives (<0.2 Tanimoto similarity score) [49]. Chem
ical characteristics analysis (Suppl. Fig. 8 and Suppl. Fig. 9) confirmed 
that the selected groups are diverse without any noticeable biases in 
composition. We set aside 20% of combined data for the model evalu
ation. Each compound was prepared as a vectorised representation of 
Morgan fingerprints (nBits = 2048, radius = 3) to represent the chemical 
features which we reasoned captured both structural and composition 
elements. The model showed 96.77% accuracy without any marked 
overfitting and successfully classified the test compounds as active and 
inactive. Applying the model to the original dataset of 158 compounds 

in COVID-19 clinical trials, 13 drugs were predicted to have antiviral 
activity (Suppl. Fig. 10). Some known antiviral drugs, such as ritonavir 
or maraviroc, were also included in the returned group. Other inter
esting therapeutic options included menthol which has been suggested 
to have anti-inflammatory and antiviral properties [109] and amanta
dine which was shown to block the ion channel activity of Protein E from 
SARS-CoV-2 (a conserved viroporin among coronaviruses) [110]. Sur
prisingly, when we used the developed QSAR model to test experi
mentally validated antivirals against the COVID-19 Mpro protein [37], 
none of the compounds were classified to possess any activity against 
COVID-19. 

Fig. 7. A compound similarity heatmap for COVID-19 drugs (n = 158) where the legend provides information on the clusters identified through the gene network 
analysis for COVID-19 drugs. Similarity was assessed using the Tanimoto similarity method and compound fingerprints were calculated as Morgan fingerprints (nbits 
= 2048, radius = 2). 
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We developed a deep learning neural net to perform the same clas
sification using a different type of compound feature encoding (Mol2
vec) to mitigate any effects stemming from the model itself or compound 
preparation [58]. The training set-up was again a randomised selection 
of compounds setting aside 20% to monitor the performance of the 
neural network and inspect for under− /over-fitting. The model reached 
96.48% accuracy after 200 epochs and returned 10 compounds from the 
COVID-19 clinical trial drug set as active against the virus. The com
pounds matched the ML model for decitabine, maraviroc, ritonavir, 
ribavirin, amantadine, baricitinib, hydroxychloroquine, etoposide, and 
cobicistat (Suppl. Fig. 11). Again, the Mpro experimental dataset was 
returned as inactive. 

These interesting findings point to the fact that compounds expected 
to be effective against the SARS-CoV-2 virus based on searching known 
antivirals and/or similar compounds do not represent a complete and 
relevant chemical space. This might also explain why identifying new 
therapeutic strategies for COVID-19 drug repurposing has been difficult 
[111]. Such observations highlight the need to combine both in silico 
analytics and experimental data to retrieve valuable compounds. 

Finally, we also investigated the Mpro experimental dataset which 
included a range of compounds with varying similarity (Suppl. Fig. 12). 
We mined the ChEMBL database to search for compounds that showed a 
Tanimoto similarity higher than 0.6 for Mpro molecules based on 
fingerprint comparisons. This returned several compounds and we then 
inspected their maximum common substructures (MCS) to evaluate any 
shared features (Suppl. Fig. 12). Interestingly, the experimental com
pound, namely Z1220452176, contained a functionalised indole ring 
which matched Melatonin. Melatonin has been included in COVID-19 
clinical trials and while two different QSAR models did not predict it 
to be antiviral compound, it clearly shares a large substructure with the 
experimental compound [112]. 

4. Discussion 

The global spread of the SARS-CoV-2 virus resulted in a fast-evolving 
pandemic which prompted researchers and clinicians to investigate 
many different therapeutic avenues to combat the emerging healthcare 
crisis. While this created an opportunity to take advantage of drug 
repurposing strategies, the large number of ongoing studies revealed 
pervasive issues in clinical research [1,10,18,22]. Specifically, the lack 
of accessible and organised data to effectively compare clinical protocols 
and experimental studies as well as missing updates on clinical trial 
outcomes create transparency problems. Consequently, this may nega
tively impact the research and meta-analyses in this field [22]. Such 
trends also highlight that we need to have a better preparedness for 
future infectious diseases where rapid information sharing might be 
critical. 

With our study we aimed not only to assess the existing clinical trial 
data but also to expand the available information so that new perspec
tives could be applied in clinical studies and therapeutic decision mak
ing. We based our analyses on computational pharmacology and systems 
biology principles to understand the networks that drugs modulate 
beyond a single main target (Fig. 1) [24,113]. Moreover, we reasoned 
that focusing on a single target limits our understanding about broader 
systemic effects and how to effectively select combination therapeutic 
regimens. We also wanted to bridge the interactome with the chemical 
compound space and explore shared similarities and emerging patterns 
as combined information could prove to be useful when developing 
repurposing strategies further [6,10]. 

4.1. Clinical study and data organisation issues complicate drug 
repurposing 

We began our analysis by exploring the current status of the COVID- 
19 clinical trial data based on drug clinical phases, drug mode of action, 
and known main targets. COVID-19 infection management options span 

multiple clinical phases and drug pharmacological action (Fig. 2). In 
combination, the results suggest that many different therapeutic ave
nues have been and are currently being explored to combat the infection 
as well as the associated complications. However, the overall clinical 
trial organisation and monitoring come with evidence gaps as there are 
no systematic data collection and verification, with some reports 
missing or not harmonised across different databases [22]. Moreover, 
across academic reports and various databases, drug profiling might 
reflect different formulations, while in other cases this information is not 
exclusively reported. Consequently, the lack of an organised approach to 
monitor clinical trials and systemically collect data hinders repurposing 
and/or new compound development. These shortcomings not only 
reflect the current challenges but also call to take action and improve 
our data collection approaches. Specifically, by creating a unified 
method to combine clinical and academic data, we can significantly 
improve our forecasting and analytical capabilities which might be very 
important in various clinical areas, such as drug repurposing, new drug 
development, and preparing for other epidemics [5,6,10,13]. 

4.2. From a single target to network-centric pharmacology 

As we focused on a selected set of compounds (Open Targets, 230 
unique drugs with a known target status) used to treat or investigated for 
the treatment of COVID-19, we explored how their known main targets 
can be used to get insights into shared action and/or help predict side 
effects (Suppl. Fig. 2) [6,9]. This led to several interesting findings. 

First, our target-focused comparison revealed that while some drugs, 
e.g., dipyridamole and pentoxifylline, share a number of key targets, 
their differences in other targets might point to potential side effects. We 
used dipyridamole and pentoxifylline as a case study since these phar
maceuticals engage a broad spectrum of PDEs. Moreover, multiple 
studies have demonstrated the importance of phosphodiesterases in 
regulating various cellular processes [25,69,71,114–116]. PDE1A stands 
out from the rest of the PDE family with earlier research suggesting that 
this enzyme plays a role in myofibroblasts formation [117]. Since 
PDE1A preferentially hydrolyses cyclic guanosine monophosphate 
(cGMP), which regulates a variety of cellular responses, including pro
liferation, transformation, extracellular matrix expression, apoptosis, 
and vascular tone, it makes sense that under a severe immune challenge 
curtailing abnormal pro-fibrotic processes might help preserve multiple 
tissue functions [117]. Support for this also comes from a PDE5A inhi
bition study (with sildenafil) where the inhibition has been shown to 
reduce cardiac hypertrophy, adverse remodelling, as well as cardiac 
inflammation and apoptosis in the hypertensive heart [118]. When 
comparing dipyridamole and pentoxifylline action there are some 
additional main targets where these compounds differ and what could 
be used as a therapeutic guidance. Dipyridamole inhibits the ENT1 that 
serves as a sodium-independent transporter for purine and pyrimidine 
nucleosides [70,115]. Since adenosine is known to contribute to the 
pathophysiology of respiratory disease where adenosine challenge can 
lead to bronchospasm and dyspnoea, adenosine clearance can be ther
apeutically beneficial [115]. ENT1 facilitates the removal of this 
nucleoside from the extracellular environment, thus terminating its ac
tion. Consequently, inhibition of ENT1 can lead to a rapid spike in 
extracellular adenosine concentration and increased adenosine receptor 
signalling. While dipyridamole has been suggested as a therapeutic 
option for COVID-19 with multiple beneficial properties and clinical 
trials are on-going [70,71], it might prove to be advantageous to 
consider the side effects when selecting broad spectrum therapeutics. 
Specifically, higher adenosine concentration has been documented to 
lead to bronchoconstriction and dyspnoea in asthmatic or chronic pul
monary disease (COPD) patients [119]. Pentoxifylline is also known to 
act as an immunomodulator with anti-inflammatory properties. The 5′- 
nucleotidase inhibition of pentoxifylline leads to the reduced production 
of adenosine and inosine from their monophosphate forms. Through a 
nonselective phosphodiesterase inhibition as well as A2AR-mediated 
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pathways, this drug downregulates the expression of tumor necrosis 
factor alpha (TNFα), IL-1, IL-6 and interferon gamma (IFNγ) [25,120]. 
Current evidence also suggests that pentoxifylline downregulates the 
A2AR pathway where this therapeutic multi-modulatory action could 
protect from adenosine receptor overactivity [25,119,120]. Thus, pen
toxifylline has been suggested as a repurposing candidate to reduce 
tissue damage during the cytokine storm resulting from the SARS-CoV-2 
infection [25]. Considering the clinical data and based on the target- 
centric analysis, this drug appears to have more clinical benefits in 
comparison to dipyridamole. Overall, PDEs modulators can prove to be 
useful in regulating multiple cellular functions and minimising tissue 
damage during uncontrolled or prolonged immune responses. Varying 
drug specificity towards PDEs also allows more flexibility in clinical 
approaches; for example, in contrast to other PDE inhibitors, apremilast 
offers a specific inhibition of PDE4 [114](Suppl. Fig. 2). The lessons 
learnt could be applied to other similar infections, especially employing 
network-based assessments for drug actions. 

Another key observation was that drugs with limited sets of known 
main targets, such as propofol, sevoflurane, isoflurane, cyclooxygenase 
inhibitors, or corticosteroids, reduce our ability to infer therapeutic and 
off-target effects. This likely explains why it has been difficult to draw 
conclusions about the efficacy of some of these drugs in COVID-19 
treatment, e.g., in the case of corticosteroid or acetaminophen (para
cetamol) use [121,122]. The majority of the studies for non-steroidal 
anti-inflammatory agents (NSAIDs) did not indicate any associations 
between their use and increased mortality rates or an increased risk for 
respiratory failure during COVID-19 and thus, NSAID use is supported to 
manage COVID-19 symptoms, such as fever or muscle pain 
[121,123,124]. There are reports where acetaminophen (paracetamol) 
was found to be linked with worse outcomes; yet other case studies do 
not report any significant differences between clinical outcomes for 
paracetamol or ibuprofen users [125,126]. Corticosteroid treatment has 
also been linked to IL-6 levels where one study showed that alveolar 
macrophages, endothelial cells, and smooth muscle cells co-express 
NR3C1 and IL-6, implicating a potential corticosteroid role in cytokine 
release storm [127]. However, corticosteroid use has diverging support 
as systemic studies are lacking and data collected from meta-analyses 
does not allow to account for all patient subgroups [122,128]. 

We appreciate that the more information we have about known drug 
targets, the better differentiation and selection of drugs can be achieved 
[24]. Thus, until the compounds used in treating COVID-19 have 
extensive studies on their other potential targets, we must to rely on data 
mining to understand the larger modulation potential of each and every 
drug. 

To compensate for these limitations, we propose to use an extended 
interactome analysis where drug main target or targets are used to 
search for close interactors and establish network-centric characteristics 
of a drug. For drugs in COVID-19 clinical trials, we identified several 
clusters that have multiple interactions where clusters 1, 2, and 3 were 
found to be the least diverse and two remaining clusters had the most 
diversity considering the number of seed proteins (or the main drug 
targets) (Fig. 3; Suppl. Table 1 and Suppl. Fig. 4). One of the most diverse 
clusters – cluster 4, contains drugs used to treat hypertension where 
clustered pharmaceuticals mostly belong to the networks of the same 
size. One drug from this cluster, namely losartan, acts through 
angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and AT1 
or ACE–Ang II–AT1 axis in the renin–angiotensin system (RAS) which is 
a known molecular pathway for end-organ fibrosis [78]. However, 
clinical studies focusing on another blocker, namely valsartan, did not 
report any significant benefits [80]. Thus, comparing drugs based on 
their network similarity could aid in planning clinical trials. A good case 
example of identifying diverging biochemical processes can also be 
found analysing the extended network targets for ARBs and cetirizine 
(an antihistamine drug) which has an interesting gene uniquely 
belonging to a cetirizine cluster. Histidine decarboxylase (HDC) is a 
member of the group II decarboxylase family and converts L-histidine to 

histamine in a pyridoxal phosphate dependent manner. This histamine 
producing enzyme is known to be induced at inflammatory sites of both 
allergic and non-allergic reactions. Since histamine regulates various 
physiologic processes, including neurotransmission, gastric acid secre
tion, smooth muscle tone, and inflammation, its regulatory pathways 
can prove to be therapeutically valuable [129,130]. In addition, cetir
izine and other antihistamines have been tested in COVID-19 clinical 
trials and showed beneficial outcomes [129,131]. Consequently, 
exploring therapeutics use from a network-centric perspective can 
reveal new therapeutic targets based on known drug efficacy and 
comparative studies. This information could be used either to repurpose 
or develop new drugs. 

Integrating clinical studies, patient evaluation, and advanced omics 
analyses can enable pooling and assessing clinical readouts which could 
make not only mono-therapies but also combination treatment more 
effective [5–7]. Moreover, the latter therapeutic strategy might offer a 
better pharmacological intervention ensuring a targeted pathway 
modulation across multiple effectors to avoid disbalanced responses. 
Such views are gaining more support; that is, even though certain 
therapies have shown benefit in subsets of the treatment population, the 
complexity of the viral infection underscores combination therapy use
fulness in increasing treatment efficacy [10]. We discussed an example 
of ambrisentan - a selective ET-A receptor antagonist that has been used 
in combination with SGLT-2 inhibition to treat COVID-19 [81]. Since 
endothelin is a potent vasoconstrictor with pro-inflammatory and 
atherosclerotic action, selectively inhibiting ET-A receptor can be ex
pected to improve pulmonary haemodynamics and oxygenation as well 
as reduce tissue injury. Ambrisentan's high potency and selectivity to
wards ET-A (4000 times greater affinity for the ET-A versus ET-B re
ceptors) have been hypothesised to mitigate adverse effects through ET- 
A receptors, while preserving the potential beneficial vasodilatation of 
NO and prostacyclin which release is mediated by ET-B receptors on 
vascular endothelial cells [81]. To attenuate the injurious effects of 
COVID-19, concomitant SGLT-2 inhibition with dapagliflozin may also 
prove effective to reduce inflammatory cytokines and improve endo
thelial function as well as cardiovascular haemodynamics [81]. As a 
drug class, SGLT-2 inhibitors depend on blood glucose concentration 
and kidney function since their action of lowering blood glucose levels is 
achieved via the kidney independently of insulin secretion and sensi
tivity status. Thus, SGLT-2 inhibition would be expected to reduce 
inflammation and improve in glucose homeostasis, cellular metabolism, 
endothelial function, and cardiovascular haemodynamics. Dapagliflozin 
and ambrisentan networks demonstrate well that while classical phar
macological assessment depends on searching protocols and comparing 
data on a single target (or several known main targets), we can benefit 
from computational pharmacology-oriented data mining and algo
rithmic evaluations. In other words, network-centric approaches allow 
to simultaneously explore multiple targets and their associations across 
the network of interest [19,24,103]. Seeing the value in the extended 
network analyses encouraged us to explore further if we could associate 
specific clusters with cellular processes and pathways as a way to cap
ture specific cluster features and enrich the analytical space. 

4.3. Enrichment analysis offers new pharmacological insights 

Cluster enrichment analysis not only revealed specific cellular pro
cesses based on the cluster's gene composition but also uncovered shared 
similarities (Fig. 4; Suppl. Fig. 5). For example, some genes from cluster 
5 are linked to the ERK cascade which has been suggested as a potential 
therapeutic target in coronavirus infections [89]. Calcium homeostasis 
also appears to be affected by the extended network genes in cluster 5 
(Fig. 4) and since calcium-linked cellular processes have been implicated 
in various COVID-19 outcomes, this could be helpful in narrowing down 
specific clinical strategies [132,133]. Less diverse clusters in terms of 
their seed proteins, namely clusters 1 and 2, also help to illustrate that 
even a small number of main targets can be very important in their 
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process modulation because of their interactome size (Fig. 3). We 
investigated whether the ontology-based process exploration can be 
mapped onto pathways. Using cluster 5 as a case study we identified 
diverse patterns for genes in the cluster. Some genes were mostly shared 
between several pathways, while others dominated across many sig
nalling events. Cenicriviroc served as a good example for a broad 
modulator where several members of the extended network belong to 
the IL-10 signalling pathway. The extensive regulatory potential of 
cenicriviroc has been taken advantage of in clinical management of 
COVID-19 [93]. A different drug from the same cluster, namely HuMax- 
IL8 (experimental antibody inhibiting human IL-8), shares quite a few 
network members with cenicriviroc. IL-8 is a pro-inflammatory cytokine 
involved in neutrophil activation and has been linked to the COVID-19 
pathogenesis. In addition, as SARS CoV-2 has led to an increase in 
complications including Acute Respiratory Distress Syndrome (ARDS), 
the crucial role of IL-8 in lung inflammation has been suggested as a 
possible new therapeutic target to modulate the hyper-inflammatory 
response in ARDS [134,135]. Expanding this analysis with computa
tional pharmacology could greatly increase research translational po
tential and help identify new therapeutic regimens, especially since 
ARDS has limited therapeutic options [135]. Furthermore, some drugs, 
e.g., icatibant or ozanimod, appear to show a potential pathway overlap 
through shared network targets and such information could also be very 
helpful in clinical decisions. Specifically, such comparative analyses can 
help with not only off-target prediction but also finding new therapeutic 
combinations to manage acute and chronic disease progression. As a 
result, our exploration of the drug associated interactome reveals how 
critical it is to understand the broader pharmacological network of a 
drug. Such integrative analyses could help prioritise therapeutic repur
posing and even predict unwanted outcomes. For example, hydroxy
chloroquine, after various clinical trials, was found not to show 
beneficial action and strong recommendations were issued against the 
drug's inclusion in clinical protocols [136]. Our analysis revealed that 
hydroxychloroquine did not have many shared targets in the extended 
network (Fig. 3) and exploring common targets could have helped 
predict some off-target effects or optimize treatment for the most suit
able patient groups. For example, hydroxychloroquine shares several 
extended network nodes with celecoxib (a NSAID) which has known 
cardiotoxic effects and similar issues were found for hydroxy
chloroquine in clinical trials [137]. Understanding drug combination 
use is also integral in the intensive care settings where patients are 
treated with many pharmaceuticals at once. It has been reported that 
between 46 and 90% of patients admitted to the intensive care unit 
(ICU) are exposed to potential drug-drug interactions [138]. 

4.4. miRNAs open new possibilities for therapeutics investigation 

The interactome is only one aspect of the complex cellular features. 
We suggest a new clinically valuable avenue of miRNAs as biomarkers or 
even therapeutic targets in COVID-19. We used the most diverse cluster 
5 (Fig. 3) to explore the non-coding regulatory layer by mining the data 
of validated miRNAs and their regulated genes. We identified a rich 
network of miRNAs known to be involved in the regulation of multiple 
genes from cluster 5 (Suppl. Fig. 6). Evidently, miRNAs have multiple 
pleiotropic effects and could be used as therapeutic targets. Specifically, 
a drug or combination therapy could be used to influence this regulome 
layer by inducing expression or suppression of miRNAs to achieve a 
clinical effect [139]. While reports are limited on the miRNA role in 
COVID-19, it is possible to appreciate their potentially significant 
function [31,99,140]. As a result, using compound target and/or inter
actome data we can extrapolate miRNA involvement and use that to 
guide therapeutic decisions or disease monitoring. It is also necessary to 
stress that seeking only significantly changed expression levels of miR
NAs might lead to missing important clues for the overall pathways and 
processes that may be linked through miRNAs. This is also exemplified 
by miR-150 which lacks noticeable changes in people with COVID-19 

but still regulates and interlinks a number of genes (Suppl. Fig. 6) [141]. 

4.5. Computational pharmacology allows bridging the chemical and 
biological space 

Computational pharmacology analyses and disease-associated pro
cess modelling/investigation can be further enriched by exploring the 
medicinal chemistry space and linking functional parameters with drug 
chemical characteristics. Such analyses could significantly improve our 
therapeutic evaluation strategies and also aid in uncovering broader 
trends leading to specific pharmaceutical action. As we profiled chem
ical features of compounds in COVID-19 investigational studies, we 
immediately identified a high heterogeneity across all pharmaceuticals 
(Fig. 7). Moreover, there was very little overlap between pharmaco
logical action and physicochemical features with the exceptions being 
the steroid and angiotensin receptor blocker groups. This prompted us to 
theorise that a high similarity is not necessary for the COVID-19 drugs as 
the modulation of signalling pathways and/or biological processes is 
most likely achieved through different interactome nodes. This not only 
means that a broader chemical space can be considered as a therapeutic 
option but also that repurposing strategies should take into account the 
interactome of a drug [101–103]. Importantly, such comparative anal
ysis could offer a better combination therapy selection and a more 
robust approach towards clinical and repurposing studies [5,6]. 

Machine and deep learning have been shown to be highly effective 
when identifying lead compounds. Compound fingerprinting and graph 
convolution principles are employed to build neural networks; however, 
these methods do come with shortcomings depending on the neural 
architecture itself and the available data [6,12]. We also saw the 
dependence on chemical training data in our QSAR model designed to 
predict antiviral compound properties that could guide the selection of 
COVID-19 antivirals [142]. While we built two different QSAR models 
(machine learning: LightGBM and a deep learning neural network) both 
of which relied on different compound feature encoding, none of the 
experimentally tested antivirals against COVID-19 Mpro protein were 
identified to have antiviral properties. This contrasted with the results 
for the COVID-19 clinical trial dataset as both QSAR models were suc
cessful in selecting drugs with predicted antiviral properties against 
COVID-19. Some of these identified drugs are known antiviral thera
peutics. We reasoned that these discrepancies underscore the still 
limited chemical space for COVID-19. As modelling required a large 
number of molecules to train, we relied on COVID-19 CAS data (con
taining known and/or predicted antivirals) [50]. Consequently, it is 
likely that enriching the compound set and also including experimental 
data would significantly improve our ability to identify new compounds 
and avoid biases. Moreover, exploring a wider chemical feature space 
(not limited to similar compounds target- and structure-wise) could 
potentially lead to discovering broad action compounds where multi- 
action profile could help in managing more aspects of inflammation 
and reduce tissue damage. 

Overall, compared to de novo drug discovery, repurposing can be an 
attractive option. This is because of the significantly lower development 
risks since drugs have established safety and pharmacological profiles 
allowing a direct entry into phase II clinical trials. Accelerated thera
peutic translation, cost reduction, and possibility to explore combina
tion therapies make therapeutic repurposing especially desirable 
[21,27]. Despite the obvious advantages of drug repurposing, there are 
several major pitfalls. For example, the target population might differ 
significantly from the one that was involved in the original drug clinical 
trials. In addition, our understanding about targets and the interactome 
might be limited which further complicates repurposing [6]. Seeing this 
and some recent controversies, e.g., hydroxychloroquine use, we pro
pose an integrative approach that relies on computational pharma
cology, systems biology, medicinal as well as computational chemistry 
to efficiently evaluate potential therapeutic candidates. A comprehen
sive strategy is critical for the identification of COVID-19 therapeutic 
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solutions and future drug repurposing [20,143]. Chakraborty and col
leagues provide an excellent summary of the conflicting results in 
COVID-19 clinical trials which accentuates the need for better global 
strategies in clinical trials and epidemiological meta-analyses [10,22]. 
Finally, the issue is not just COVID-19, we need to have a better pre
paredness for future pandemics and also learn how to use the existing 
data to advance treatments for other diseases. 

5. Conclusion 

New compound development and drug repurposing need to incor
porate diverse compound screening libraries with a strong understand
ing of their interactome and regulome. Importantly, employing 
computational pharmacology, data mining, systems biology methods, 
and computational chemistry can greatly advance our efforts in identi
fying the key targets and their affected networks. Our study revealed 
that formulating optimal pharmacological intervention options should 
rely on integrative approaches. We explored not only the current trends 
and shortcomings in COVID-19 drug repurposing, but also demonstrated 
the value of new perspectives using computational pharmacology and 
cheminformatics principles. The introduced in-depth analysis revealed 
the importance of expanding clinical studies beyond direct drug-target 
interactions and considering a more complex space of the affected net
works. We also showed a number of interactions and pathways that 
could be exploited when considering combination therapies. The find
ings of miRNAs networks offer a new strategy to search for valuable 
biomarkers or therapeutic management options. Even though compu
tational modelling is a powerful tool in prioritising compounds, it is 
important to include their biological action, experimental results, and 
extended network data to build better predictors. We demonstrated that 
the chemical space for COVID-19 investigational compounds might not 
be broad enough and could benefit from additional experimental evi
dence to create more robust models. Despite limitations in available 
data, it is still possible to extract valuable information that could 
potentially save time and resources by helping to better prioritise 
compounds for in vitro screening. Finally, we strongly advocate for 
taking this opportunity to establish comprehensive practices for today's 
and future infectious diseases by preparing solid analytical frameworks. 
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[26] A. Kanapeckaitė, N. Burokienė, Insights into therapeutic targets and biomarkers 
using integrated multi-’omics’ approaches for dilated and ischemic 
cardiomyopathies, Integr. Biol. (Camb). 13 (5) (2021 May 1) 121–137. Available 
from: https://pubmed.ncbi.nlm.nih.gov/33969404/. 

[27] Y. Zhou, F. Wang, J. Tang, R. Nussinov, F. Cheng, Artificial intelligence in COVID- 
19 drug repurposing, Lancet Digit Heal. 2 (12) (2020 Dec 1) e667–e676. 
Available from: https://pubmed.ncbi.nlm.nih.gov/32984792/. 

[28] M.A. Malik, M.Y. Wani, A.A. Hashmi, Combination therapy: Current status and 
future perspectives, in: Combination Therapy Against Multidrug Resistance, 
Elsevier Inc., 2020, pp. 1–38, https://doi.org/10.1016/B978-0-12-820576- 
1.00001-1. 

[29] D. Flockhart, R.R. Bies, M.R. Gastonguay, S.L. Schwartz, Big Data: Challenges and 
opportunities for clinical pharmacology, Br. J. Clin. Pharmacol. Blackwell 
Publish. Ltd 81 (2016) 804–806. 

[30] R.J. Farr, C.L. Rootes, L.C. Rowntree, T.H.O. Nguyen, L. Hensen, L. Kedzierski, et 
al., Altered microRNA expression in COVID-19 patients enables identification of 
SARS-CoV-2 infection, PLoS Pathog. 17 (7) (2021 Jul 1), e1009759. Available 
from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat. 
1009759. 

[31] M. Fani, M. Zandi, S. Ebrahimi, S. Soltani, S. Abbasi, The role of miRNAs in 
COVID-19 disease, Futur. Virol. 16 (4) (2021 Apr 1) 301–306. Available from: 
/pmc/articles/PMC7989380/. 

[32] J. Hanna, G.S. Hossain, J. Kocerha, The potential for microRNA therapeutics and 
clinical research, Front. Genet. 10 (MAY) (2019) 478. 

[33] X. Bofill-De Ros, S. Gu, Guidelines for the optimal design of miRNA-based 
shRNAs, Methods. 103 (2016 Jul 1) 157–166. 

[34] H.C. Schneider, T. Klabunde, Understanding drugs and diseases by systems 
biology? Bioorg. Med. Chem. Lett. 23 (5) (2013 Mar 1) 1168–1176. 

[35] S. Brogi, T.C. Ramalho, K. Kuca, J.L. Medina-Franco, M. Valko, Editorial: in silico 
methods for drug design and discovery, Front. Chem. 8 (2020 Aug 7) 612. 
Available from: http://faerun.gdb.tools. 

[36] J. Du, J. Guo, D. Kang, Z. Li, G. Wang, J. Wu, et al., New techniques and strategies 
in drug discovery, Chin. Chem. Lett. 31 (7) (2020 Jul 1) 1695–1708. 

[37] Downloads - - Diamond Light Source, Available from: https://www.diamond.ac. 
uk/covid-19/for-scientists/Main-protease-structure-and-XChem/Downloads.html 
, 2022 Jan 11. 

[38] S. Ekins, J. Mestres, B. Testa, In silico pharmacology for drug discovery: methods 
for virtual ligand screening and profiling, Br. J. Pharmacol. 152 (1) (2007 Sep) 9. 
Available from: /pmc/articles/PMC1978274/. 

[39] H. Abi Hussein, C. Geneix, M. Petitjean, A. Borrel, D. Flatters, A.C. Camproux, 
Global vision of druggability issues: applications and perspectives, Drug Discov. 
Today Elsevier Ltd. 22 (2017) 404–415. 

[40] G. Koscielny, P. An, D. Carvalho-Silva, J.A. Cham, L. Fumis, R. Gasparyan, et al., 
Open targets: a platform for therapeutic target identification and validation, 
Nucleic Acids Res. 45 (D1) (2017 Jan 1) D985–D994. Available from: https:// 
www. 

[41] Home - Open Targets, Available from: https://www.opentargets.org/, 2020 Dec 
7. 

[42] PubChem, Available from: https://pubchem.ncbi.nlm.nih.gov/, 2020 Dec 16. 
[43] PubChem COVID-19 Clinical Trials. [2021 Nov 1]. Available from: https:// 

pubchem.ncbi.nlm.nih.gov/#tab=compound&query=covid-19 clinicaltrials. 
[44] STITCH: Chemical Association Networks, Available from: http://stitch.embl.de/, 

2020 Dec 7. 
[45] D. Szklarczyk, A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, et al., 

STRING v11: Protein-protein association networks with increased coverage, 
supporting functional discovery in genome-wide experimental datasets, Nucleic 
Acids Res. 47 (D1) (2019 Jan 8) D607–D613. 

[46] STRING: Functional Protein Association Networks, Available from: https://strin 
g-db.org/, 2021 Nov 1. 

[47] Home - Reactome Pathway Database, Available from: https://reactome.org/, 
2020 Dec 7. 

[48] A. Kanapeckaite, OmicInt package: Exploring omics data and regulatory networks 
using integrative analyses and machine learning, Artif. Intell Life Sci. 1 (2021 Dec 
1), 100025. Available from, https://linkinghub.elsevier.com/retrieve/pii 
/S2667318521000258. 

[49] ChEMBL Database, Available from: https://www.ebi.ac.uk/chembl/, 2021 Dec 
14. 

[50] Download CAS COVID-19 Antiviral Candidate Compounds Dataset | CAS, 
Available from: https://www.cas.org/covid-19-antiviral-compounds-dataset, 
2022 Jan 11. 

[51] RStudio | Open Source & Professional Software for Data Science Teams - RStudio, 
Available from: https://rstudio.com/, 2020 Oct 26. 

[52] Bioconductor - STRINGdb, Available from: https://www.bioconductor.org/pac 
kages/release/bioc/html/STRINGdb.html, 2022 Jan 15. 

[53] Bioconductor - clusterProfiler, Available from: https://bioconductor.org/pac 
kages/release/bioc/html/clusterProfiler.html, 2020 Dec 7. 

[54] enrichGO function - RDocumentation, Available from: https://www.rdocu 
mentation.org/packages/clusterProfiler/versions/3.0.4/topics/enrichGO, 2022 
Aug 22. 

[55] enrichPathway function - RDocumentation, Available from: https://www.rdo 
cumentation.org/packages/ReactomePA/versions/1.16.2/topics/enrichPathway, 
2022 Aug 22. 

[56] Bioconductor - biomaRt, Available from: https://bioconductor.org/packages/r 
elease/bioc/html/biomaRt.html, 2022 Aug 22. 

[57] Welcome to Python.org, Available from: https://www.python.org/, 2022 Aug 22. 
[58] S. Jaeger, S. Fulle, S. Turk, Mol2vec: unsupervised machine learning approach 

with chemical intuition, J. Chem. Inf. Model. 58 (1) (2018) 27–35. 
[59] RDKit, Available from: https://www.rdkit.org/, 2022 Jan 15. 
[60] NumPy, Available from: https://numpy.org/, 2022 Jan 15. 
[61] Pandas - Python Data Analysis Library, Available from: https://pandas.pydata. 

org/, 2022 Jan 15. 
[62] M. Waskom, seaborn: statistical data visualization, J. Open Source Softw. 6 (60) 

(2021 Apr 6) 3021. 
[63] Matplotlib — Visualization with Python, Available from: https://matplotlib.org/, 

2022 Jan 15. 
[64] Chemexpy PyPI, Available from: https://pypi.org/project/chemexpy/, 2022 Jan 

15. 
[65] Scikit-learn: Machine Learning in Python — Scikit-learn 1.0.2 Documentation, 

Available from: https://scikit-learn.org/stable/, 2022 Jan 15. 
[66] lightgbm.LGBMClassifier — LightGBM 3.3.2.99 documentation, Available from: 

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier. 
html, 2022 Aug 22. 

[67] TensorFlow, Available from: https://www.tensorflow.org/, 2022 Jan 15. 
[68] Keras: The Python Deep Learning API, Available from: https://keras.io/, 2022 

Aug 22. 
[69] N. Nosengo, Can you teach old drugs new tricks? Nature. 534 (7607) (2016 Jun 

14) 314–316. Available from: https://pubmed.ncbi.nlm.nih.gov/27306171/. 
[70] C. Wang, W. Lin, H. Playa, S. Sun, K. Cameron, J.K. Buolamwini, Dipyridamole 

analogues as pharmacological inhibitors of equilibrative nucleoside transporters. 
Identification of novel potent and selective inhibitors of the adenosine transporter 
function of human equilibrative nucleoside transporter 4 (hENT4), Biochem. 
Pharmacol. 86 (11) (2013) 1531–1540. Available from: /pmc/articles/ 
PMC3866046/. 

[71] K.F. Aliter, R.A. Al-Horani, Potential Therapeutic Benefits of Dipyridamole in 
COVID-19 Patients, Curr. Pharm. Des. 27 (6) (2021 Oct 1) 866–875. Available 
from: https://pubmed.ncbi.nlm.nih.gov/33001004/. 

[72] D. Hanidziar, K. Baldyga, C.S. Ji, J. Lu, H. Zheng, J. Wiener-Kronish, et al., 
Standard sedation and sedation with isoflurane in mechanically ventilated 
patients with coronavirus Disease 2019, Crit. Care Explor. 3 (3) (2021 Mar 5), 
e0370. Available from: https://journals.lww.com/ccejournal/Fulltext/2021/0 
3000/Standard_Sedation_and_Sedation_With_Isoflurane_in.7.aspx. 

[73] C.J. Witenko, A.J. Littlefield, S. Abedian, A. An, P.S. Barie, K. Berger, The safety 
of continuous infusion propofol in mechanically ventilatedadults with 
Coronavirus Disease 2019, Ann. Pharmacother. 56 (1) (2022). Jan 1;56(1):5. 
Available from: /pmc/articles/PMC8127019/, https://journals.sagepub.com/ 
doi/10.1177/10600280211017315. 

[74] G.J. Nieuwenhuijs-Moeke, J.S. Jainandunsing, Struys MMRF, Sevoflurane, a sigh 
of relief in COVID-19? BJA Br. J. Anaesth. 125 (2) (2020 Aug 1) 118. Available 
from: /pmc/articles/PMC7252148/. 

[75] V. Kaura, P.M. Hopkins, Sevoflurane may not be a complete sigh of relief in 
COVID-19, Br. J. Anaesth. 125 (6) (2020 Dec 1) e487–e488. Available from: 
http://www.bjanaesthesia.org.uk/article/S0007091220307625/fulltext. 

[76] J.A.G. Agúndez, M. Blanca, J.A. Cornejo-García, E. García-Martín, 
Pharmacogenomics of cyclooxygenases, Pharmacogenomics. 16 (5) (2015 Apr 1) 
501–522. Available from: https://pubmed.ncbi.nlm.nih.gov/25916522/. 

[77] J.H. Park, H.K. Lee, Re-analysis of single cell transcriptome reveals that the 
NR3C1-CXCL8-Neutrophil axis determines the severity of COVID-19, Front. 
Immunol. 11 (2020 Aug 28). Available from: https://pubmed.ncbi.nlm.nih.gov/ 
32983174/. 

[78] M. Zeinalian, A. Salari-Jazi, A. Jannesari, H. Khanahmad, A potential protective 
role of losartan against coronavirus-induced lung damage, Infect. Control Hosp. 
Epidemiol. 41 (6) (2020 Jun 1) 1. Available from: /pmc/articles/PMC7137531/. 

[79] M.A. Puskarich, N.W. Cummins, N.E. Ingraham, D.A. Wacker, R.A. Reilkoff, B. 
E. Driver, et al., A multi-center phase II randomized clinical trial of losartan on 
symptomatic outpatients with COVID-19, eClinicalMedicine. 37 (2021 Jul 1) 
100957. Available from: http://www.thelancet.com/article/S25895370210023 
76/fulltext. 

[80] M. de Ligt, M.K.C. Hesselink, J. Jorgensen, J.W.E. Jocken, E.E. Blaak, G. 
H. Goossens, The angiotensin II åtype 1 receptor blocker valsartan in the battle 
against COVID-19, Obesity (Silver Spring) 29 (9) (2021 Sep 1) 1423–1426. 
Available from: https://pubmed.ncbi.nlm.nih.gov/33955183/. 

[81] M. Fisk, M. Althage, S. Moosmang, P.J. Greasley, A.P. Cope, D.R. Jayne, et al., 
Endothelin antagonism and sodium glucose Co-transporter 2 inhibition. A 
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García, J. Porta-Etessam, J. Matías-Guiu, Clinical exacerbation of SARS-CoV2 
infection after fingolimod withdrawal, J. Med. Virol. 93 (1) (2021 Jan 1) 
546–549. Available from: https://pubmed.ncbi.nlm.nih.gov/32644205/. 

[88] M. Plaze, D. Attali, A.-C. Petit, M. Blatzer, E. Simon-Loriere, F. Vinckier, et al., 
Repurposing chlorpromazine to treat COVID-19: The reCoVery study, Encephale. 
46 (3) (2020 Jun 1) 169–172. Available from: http://www.ncbi.nlm.nih.gov/ 
pubmed/32425222. 

[89] J. Kindrachuk, B. Ork, B.J. Hart, S. Mazur, M.R. Holbrook, M.B. Frieman, et al., 
Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for 
Middle East respiratory syndrome coronavirus infection as identified by temporal 
kinome analysis, Antimicrob. Agents Chemother. 59 (2) (2015 Feb 1) 1088–1099. 
Available from: https://pubmed.ncbi.nlm.nih.gov/25487801/. 

[90] T. Iba, J.H. Levy, M. Levi, J. Thachil, Coagulopathy in COVID-19, J. Thromb. 
Haemost. 18 (9) (2020 Sep 1) 2103–2109. Available from: https://pubmed.ncbi. 
nlm.nih.gov/32558075/. 

[91] M. Aggarwal, J. Dass, M. Mahapatra, Hemostatic Abnormalities in COVID-19: An 
Update, Indian J. Hematol. Blood Transfus. 36 (4) (2020 Oct 1) 616–626. 
Available from: https://pubmed.ncbi.nlm.nih.gov/32837053/. 

[92] NIH Begins Large Clinical Trial to Test Immune Modulators for Treatment of 
COVID-19, National Institutes of Health (NIH), 2022 Jan 16. Available from: https 
://www.nih.gov/news-events/news-releases/nih-begins-large-clinical-trial-test- 
immune-modulators-treatment-covid-19. 

[93] D.C. Files, F. Tacke, A. O’Sullivan, P. Dorr, W.G. Ferguson, W.G. Powderly, 
Rationale of using the dual chemokine receptor CCR2/CCR5 inhibitor 
cenicriviroc for the treatment of COVID-19, PLoS Pathog. 18 (6) (2022 Jun 24), 
e1010547. Available from: https://pubmed.ncbi.nlm.nih.gov/35749425/. 

[94] R.J. Shaw, C. Bradbury, S.T. Abrams, G. Wang, C.H. Toh, COVID-19 and 
immunothrombosis: emerging understanding and clinical management, Br. J. 
Haematol. 194 (3) (2021 Aug 1) 518–529. Available from: https://onlinelibrary. 
wiley.com/doi/full/10.1111/bjh.17664. 

[95] COVID-19 Therapeutics Prioritized for Testing in Clinical Trials, National 
Institutes of Health (NIH), 2022 Aug 28. Available from: https://www.nih.gov/r 
esearch-training/medical-research-initiatives/activ/covid-19-therapeutics-pri 
oritized-testing-clinical-trials. 

[96] E. Mansour, F.F. Bueno, J.C. de Lima-Júnior, A. Palma, M. Monfort-Pires, 
B. Bombassaro, et al., Evaluation of the efficacy and safety of icatibant and C1 
esterase/kallikrein inhibitor in severe COVID-19: study protocol for a three- 
armed randomized controlled trial, Trials. 22 (1) (2021 Dec 1). Available from: 
/pmc/articles/PMC7816150/. 
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