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Automatic detection of 39 fundus diseases
and conditions in retinal photographs using
deep neural networks
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Retinal fundus diseases can lead to irreversible visual impairment without timely diagnoses

and appropriate treatments. Single disease-based deep learning algorithms had been

developed for the detection of diabetic retinopathy, age-related macular degeneration, and

glaucoma. Here, we developed a deep learning platform (DLP) capable of detecting multiple

common referable fundus diseases and conditions (39 classes) by using 249,620 fundus

images marked with 275,543 labels from heterogenous sources. Our DLP achieved a

frequency-weighted average F1 score of 0.923, sensitivity of 0.978, specificity of 0.996 and

area under the receiver operating characteristic curve (AUC) of 0.9984 for multi-label

classification in the primary test dataset and reached the average level of retina specialists.

External multihospital test, public data test and tele-reading application also showed high

efficiency for multiple retinal diseases and conditions detection. These results indicate that

our DLP can be applied for retinal fundus disease triage, especially in remote areas around

the world.
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M illions of people in the world are affected by ocular
fundus diseases such as diabetic retinopathy (DR)1, age-
related macular degeneration (AMD)2, retinal vein

occlusion (RVO)3, retinal artery occlusion (RAO)4, glaucoma5,
retinal detachment (RD), and fundus tumors6. Among them, DR,
AMD, and glaucoma are the most common cause of vision
impairment in most populations. Without accurate diagnoses and
timely appropriate treatment7,8, these fundus diseases can lead to
irreversible blurred vision, metamorphopsia, visual field defect, or
even blindness. However, in rural and remote areas, especially in
developing countries, where there is insufficiency in ophthalmic
service and a shortage of ophthalmologists, early detection and
timely referral for treatment may not be available. Notably, fun-
dus photography that provides basic detection of these diseases is
available and affordable in most parts of the world9. A fundus
photo can be handled by non-professorial personnel and deliv-
ered online to major ophthalmic institutions for follow-up.
Artificial intelligence (AI) is able to provide delivery capability.

AI is an established but still rapidly advancing technology,
especially in computer-aided diagnosis of human diseases10. It
has been effectively applied in the detection of Alzheimer’s
disease11, intracranial diseases12, arrhythmia13, skin cancer14,
lung cancer4, mesothelioma15, lymph node metastases of breast
cancer16, and colorectal cancer17. In retinal diseases, deep
learning algorithms for AI-assisted diagnoses have been applied
to screen for DR18,19, AMD20,21, retinopathy of prematurity22,23,
glaucoma24, and papilledema25. These AI-assisted diagnosis sys-
tems mostly focus on the detection of a single retinal disease. In
clinical practice, retinal disease screening of single-disease diag-
nostic algorithm, for example for DR, would not recognize other
fundus diseases such as AMD, glaucoma, RVO, and RAO. In real-
life, especially in remote areas lacking specialized ophthalmolo-
gists, the capability to efficiently detect various types of fundus
diseases is needed. A multi-disease detecting system using fundus
images should be developed to avoid missed diagnoses and
consequently delayed treatment.

In this study, we have developed a multi-disease automatic
detection platform by applying convolutional neural networks
(CNNs) constructed in a customized two-step strategy that can
classify 39 types of common fundus diseases and conditions based
on color fundus images (Supplementary Table 1). We have
established a deep learning platform (DLP) that was trained,
validated, and tested with 249,620 fundus images collected from
multiethnic data sets of multiple hospitals in different parts of
China, a data set from the United States, and four public data sets.
It is capable to predict the probability of each disease and display
heatmaps providing deep learning explainability in real-time.

Results
Data characteristics and system architecture. Fundus images
from 7 diverse data sources were collected for deep learning
algorithm development and validation (Table 1 and Methods:
“Data sets and labeling” section). Among them, the primary data
set for training, validation, and test was collected from the Picture
Archiving and Communication Systems (PACS) at Joint Shantou
International Eye Centre (JSIEC) in China, the Lifeline Express
Diabetic Retinopathy Screening Systems (LEDRS) in China, and
the Eye Picture Archive Communication System (EyePACS) in
the United States. (see Methods: “Data sets and labeling” section).
Primary data set acquisition and processing flow are shown in
Supplementary Figs. 1 and 2. Besides the primary test data sets,
the DLP was further evaluated by external multihospital test,
public data test, and tele-reading application.

In total, 249,620 images marked with 275,543 labels were
collected for algorithm training, validation and tests. Patient

demographics and image characteristics are summarized in
Table 1. Inter-grader agreements and images labeled as
unclassifiable in each data set were analyzed (Supplementary
Tables 2 and 3). The training data set of totally 129,264 images
was collected from JSIEC (n = 74,683), LEDRS (n = 27,463) and
EyePACS (n = 27,118). The validation and tests data sets
contained another 120,356 images that had not been “seen” by
the algorithm during the training process. They consisted of five
parts: (1) Primary validation data set (n = 22,800) collected from
JSIEC (n = 13,247), LEDRS (n= 4787) and EyePACS (n = 4766).
(2) Primary test data set (n = 27,611) collected from JSIEC 2018
(n = 14,502), LEDRS 2018 (n = 7052) and EyePACS (n = 6057).
(3) External multihospital test data sets (n = 60,445) collected
from three hospitals, one in Fujian in southeastern China (n =
39,671), Tibet in western China (n = 14,826) and Xinjiang in
northwestern China (n = 5948). (4) Four publicly available data
sets (n = 3438): Messidor-2 (n = 1748), Indian Diabetic
Retinopathy Image Data set (IDRID) (n = 516), Pathological
Myopia (PALM) (n = 374), and Retinal Fundus Glaucoma
challenge (REFUGE) (n = 800). (5) Tele-reading (n = 6062) was
conducted in seven hospitals located in different parts of China.
The hetero-ethnic characteristics of the test data sets enable
effective assessment of generalization capability of our DLP in
disease classification.

We developed a two-level hierarchical system for the
classification of the 39 types of diseases and conditions
(Supplementary Table 1) with three groups of CNNs and
Mask-RCNN (Supplementary Table 4 and Supplementary Fig. 3)
using data sets of fundus images as described above. The system
was then deployed into the production environment as a platform
for internal testing. The whole data flow and simplified
architecture of the DLP are shown in Supplementary Fig. 1 and
Supplementary Fig. 4. Technical details of algorithms and
implementation are explicated in the Methods: “Architecture of
the DLP” section and Supplementary Methods: “Algorithm
development and the DLP deployment” section.

Image data distribution and results in various classes for each
data set are shown in Supplementary Tables 5–10. Positive
samples of a class were obtained by summing up its false
negatives (FN) and true positives (TP) accordingly. The data sets
were extremely imbalanced and the labels were sparse in some
bigclasses, as indicated by the imbalance ratio of negative samples
vs positive samples (Supplementary Fig. 5).

Performance in primary test. Appearance of the preprocessed
images and heatmaps of examples of diseases and conditions are
shown in Fig. 1. Results of the primary test data set showed that
in the 30-bigclass detection evaluation, we achieved a referable
frequency-weighted average F1 score of 0.923, sensitivity of 0.978,
specificity of 0.996, and AUC of 0.9984 (Table 2). We termed
major diseases or conditions as “bigclass” for convenient classi-
fication and statistical analysis. Details of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) of each
bigclass are shown in Supplementary Table 7. Range of F1 scores
for every bigclass was 0.766–0.983. The highest F1 scores were
achieved in bigclass with obvious features such as RVO (0.983),
maculopathy (0.965), silicon oil in eye (0.964), and laser spots
(0.967). The lowest F1 scores, on the contrary, were obtained in
bigclasses with ambiguous features such as posterior serous/
exudative RD (0.829), optic nerve degeneration (0.852), severe
hypertensive retinopathy (0.829), chorioretinal atrophy/coloboma
(0.861), and preretinal hemorrhage (0.766). Sensitivity and spe-
cificity for detection of referable bigclasses were above 0.942 and
0.979, respectively. ROCs were generated to evaluate the ability of
the DLP to detect every bigclass (Fig. 2a). The DLP achieved an
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area under the ROC greater than 0.99 for all referable bigclasses.
Subset accuracy, which evaluated the fraction of correctly detec-
ted cases with identical label set of prediction and ground-truth,
was 87.98% for the whole primary test data set.

Multi-class classification of subclasses in bigclass 0, 1, 2, 5, 10,
15, and 29 was further evaluated after the 30-bigclass detection
evaluation. F1 score above 0.8 was achieved for all subclasses
except DR1, which was nonreferable DR, with a F1 score of 0.479.
The sensitivity and specificity obtained were greater than 0.8 and
0.9, respectively, for all subclasses except DR1. Details of the other
results for subclass analysis in the primary test data set are shown
in Supplementary Table 11 and Supplementary Fig. 6.

Results of primary training and primary validation data sets for
bigclasses are provided in Supplementary Tables 5 and 6.

Generalization tests on heterogeneous image data sets. To
verify the generalization abilities for the detection of multiple
diseases and conditions, the DLP was further tested with three
heterogeneous data sets collected from hospitals with patients of
different ethnicities and publicly available data sets (Table 1).
Results for F1 score, sensitivity, specificity, and AUC of 30 big-
classes of the multihospital data set are shown in Table 2. We
achieved a referable frequency-weighted average F1 score of 0.920,
sensitivity of 0.971, specificity of 0.998, and AUC of 0.999. Range
of F1 scores for every bigclass was 0.652–0.984. Sensitivity and
specificity for detection of all referable bigclasses were above
0.855 and 0.982, respectively. The DLP achieved an area under
the ROC of greater than 0.99 for all referable bigclasses (Fig. 2b).

A higher subset accuracy (92.62%) for the whole multihospital
data set than that of the primary test data set was obtained. This
may due to the different data distributions of much higher per-
centage of nonreferable images in the multihospital test data set.

After testing with hetero-ethic data sets in China, the
generalization capabilities of our DLP to detect different diseases
and conditions were evaluated with 4 public test data sets in the
single-disease setting, messidor-2, IDRID, PALM, and REFUGE
(Supplementary Table 9). For detecting referable DR, we achieved
a F1 score of 0.944, sensitivity of 0.906, specificity of 0.996 and
AUC of 0.9861 in messidor-2. Performance was weaker in IDRID
with F1 score of 0.875, sensitivity of 0.824, specificity of 0.902 and
AUC of 0.9431. We reviewed the misjudged cases and found the
presence of stains on dirty lens looking like hemorrhage spots as
the main cause of false positive results. For pathological myopia,
higher performance in PALM was achieved with a F1 score of
0.974, sensitivity of 0.958, specificity of 0.988, and AUC of 0.9931.
Performance was moderate for optic nerve degeneration (possible
glaucoma) with a F1 score of 0.651 (0.674), sensitivity of 0.850
(0.813), specificity of 0.915 (0.933), and AUC of 0.9397 when
compared to the top 12 contestant teams in the REFUGE
Challenge26. Labels of all images in the FEFUGE data set were
initially confirmed by multiple examinations including intrao-
cular pressure (IOP), optical coherence tomography (OCT), and
visual field. In early-stage glaucoma, almost no noticeable change
could be detected by fundus images through OCT could show
retinal nerve fiber layer thinning. These cases were missed by the
DLP which was developed based on fundus images only. Without

Table 1 Summary of data sets.

Data sets Agea, mean
(SD), y

Mena, no. (%) No.

Labels Images Subjects Referable (%)

Labels Images Subjects

Training
JSIEC 51.7 (18.2) 18,088 (50.0) 87,594 74,683 36,156 74,940 (85.6) 62,029 (83.1) 31,223 (86.4)
LEDRS 61.6 (10.4) 5485 (44.8) 29,851 27,463 12,236 15,682 (52.5) 13,294 (48.4) 7215 (59.0)
EYEPACS N/A N/A 27,743 27,118 19,751 9194 (33.1) 8569 (31.6) 7333 (37.1)
Total, training 145,188 129,264 68,143 99,816 (68.7) 83,892 (64.9) 45,771 (67.2)

Validation
JSIEC 52.0 (18.2) 3179 (49.7) 15,451 13,247 6392 13,193 (85.4) 10,989 (83.0) 5519 (86.3)
LEDRS 61.3 (10.4) 918 (43.3) 5229 4787 2118 2812 (53.8) 2370 (49.5) 1284 (60.6)
EYEPACS N/A N/A 4857 4766 3475 1518 (31.3) 1427 (29.9) 1229 (35.4)
Total, validation 25,537 22,800 11,985 17,523 (68.6) 14,786 (64.9) 8032 (67.0)

Total, training, and validation 170,725 152,064 80,128 117,339 (68.7) 98,678 (64.9) 53,803 (67.1)
Test

JSIEC 51.1 (19.4) 4005 (49.2) 16,851 14,502 8146 13,778 (81.8) 11,429 (78.8) 6901 (84.7)
LEDRS 64.8 (10.3) 1,313 (39.0) 7455 7052 3364 4239 (56.9) 3836 (54.4) 2080 (61.8)
EYEPACS N/A N/A 6906 6057 5262 5264 (76.2) 4415 (72.9) 3800 (72.2)
Total, test 31,212 27,611 16,772 23,281 (74.6) 19,680 (71.3) 12,781 (76.2)

Total, training, validation,
and test

201,937 179,675 96,900 140,620 (69.6) 118,358 (65.9) 66,584 (68.7)

Multihospital tests
Fujian N/A N/A 41,410 39,671 19,810 14,799 (35.7) 13,060 (32.9) 7200 (36.3)
Tibetb 55.4 (18.1) 3955 (50.3) 15,981 14,826 7864 10,234 (64.0) 9079 (61.2) 5205 (66.2)
Xinjiangb N/A N/A 6263 5948 1669 3923 (62.6) 3608 (60.7) 1016 (60.9)
Total, multihospital test 63,654 60,445 29,343 28,956 (45.5) 25,747 (42.6) 13,421 (45.7)

Public testsc N/A N/A 3438 3438 N/A 1019 (29.6) 1019 (29.6) N/A
Tele-reading categorized N/A N/A 6514 6062 3251 3944 (60.5) 3492 (57.6) 1882 (57.9)
Total, training, validation, test,
multihospital tests, public test,
and tele-reading categorized

275,543 249,620 129,494 174,539 (63.3) 148,616 (59.5) 81,887 (63.2)

aAge and gender information cannot be obtained are marked as “N/A”.
b97.1% subjects of Tibet data set are Tibetan, 13.3% subjects of Xinjiang data set are Uygur.
cPublic tests include four public data sets in single-disease setting: Messidor-2, Indian Diabetic Retinopathy Image Data set (IDRID), Pathological Myopia (PALM), and Retinal Fundus Glaucoma challenge
(REFUGE).
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specific optimization to the data sets of single diseases for
competitions, the overall performance of our multi-label DLP
with single-disease data sets in different distributions was
acceptable. These indicate good generalization capabilities in
our DLP for detecting fundus diseases in heterogeneous images.

Achieving expert performance in comparative test. To further
validate the diagnostic competence of DLP, a comparative test
was conducted between the DLP and five retinal specialists with
more than 10 years of clinical experiences. A comparative test
data set consisting of 922 images was collected from PACS JSIEC
with patient information (711 images collected from February to
December 2018) and selected from the external test data sets
(without patient information) of three hospitals in different

localities of China: Fujian (n = 85), Tibet (n = 74), and Xinjiang
(n = 52). These images had not been “seen” by the DLP and
included various challenging diseases and conditions, which were
arranged by the retina expert panel. The majority decision served
as the reference standard for classification. The five retinal spe-
cialists were requested to complete the whole test independently
as the AI without patient information by selecting different class
labels for each image, followed by an additional test containing
the same JSIEC image data along with patient information. The
final results were the average of the five specialists for every
bigclass.

Detailed results of the comparative test are summarized in
Table 3 and Supplementary Table 12. AUC analysis and ROC of
some bigclasses are shown in Fig. 3. For the whole test without
patient information, the retina specialists achieved a referable

Fig. 1 Examples of preprocessed images and heatmaps. Typical images with one label, two labels, and three labels were selected and shown for heatmaps.
First column: typical preprocessed image of selected images with a resolution of 299 × 299 pixels. Second column: their predictions. Third and fourth
columns: the heatmaps (CAM and Deepsharp) indicating important regions with typical features of diseases discovered by DLP for predictions.
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frequency-weighted average F1 score of 0.954, sensitivity of 0.943,
specificity of 0.998, and subset accuracy of 92.45%. The DLP
obtained a referable frequency-weighted average F1 score of 0.964,
sensitivity of 0.972, specificity of 0.998, and subset accuracy of
92.19%. Though subset accuracy is lower than the retina
specialists, the DLP achieved higher average F1 and sensitivity.
The DLP was more sensitive than human experts on detecting
multiple diseases. However, higher sensitivity for single-label
images may lead to lower subset accuracy. For the JSIEC data set
with patient information, the DLP obtained a referable frequency-
weighted average F1 score of 0.961, sensitivity of 0.968, specificity
of 0.998, and subset accuracy of 91.28%. The average performance
of retina specialists with patient information (referable frequency-
weighted average F1 score of 0.960, sensitivity of 0.95, specificity
of 0.998, and subset accuracy of 92.91%) was enhanced than that
without patient information. Higher subset accuracy than the
DLP was obtained. The performance of the DLP was comparable
to that of the retina specialists who had more than 10 years of
clinical experience.

Tele-reading applications. To verify the automatic detection
efficiency of our DLP for fundus diseases in real-life setting, tele-
reading applications were conducted in 7 primary hospitals or
community health centers located in different parts of China
(Fig. 4). To avoid misjudgment of quality control during the
prediction process, all images were classified into 30 bigclasses,
regardless of the image quality score. Accordingly, images with
low quality score were mainly triaged as blur fundus. Totally 7529

images from 5159 eyes and 3610 subjects were uploaded by the
seven hospitals, among which 1362 images (538 eyes and
341 subjects) were merely detected as “Blur fundus” with prob-
abilities equal to or larger than 95%. They were automatically sent
back for repeat photography by the DLP. In addition, 1311 sub-
jects (1832 eyes, 2105 images) were detected as nonreferable,
which were also sent back directly to their primary hospitals with
a suggestion of “follow-up”. The rest (1958 subjects, 2789 eyes,
4062 images) were referable and further checked by the retina
specialists, who confirmed 66 subjects (93 eyes, 106 images) to be
nonreferable. After tele-reading application, these nonreferable
cases were also reviewed by the retina specialists, and 11 subjects
were then confirmed to be referable cases. These missed diag-
nosed cases were yellow-white spots (4 subjects), chorioretinal
atrophy (1 subjects), and DR2 (6 subjects) with a few hemorrhage
spots, which were not urgent for the referral. Thus, the DLP
achieved a sensitivity of 0.994 and specificity of 0.952 for detec-
tion of referable in subject-based. However, there were 105
referable images that could not be categorized as any of the dis-
eases and conditions listed in Supplementary Table 1 by the
retinal specialists after the triage. They were omitted from the
results of Supplementary Table 10. These images had rare con-
ditions or unclear ophthalmic features. Details of classification
results of categorized images for tele-reading application of our
DLP in the seven hospitals for primary health care are sum-
marized in Supplementary Table 10. The DLP achieved a refer-
able frequency-weighted average F1 score of 0.913, sensitivity of
0.948, specificity of 0.997, and AUC of 0.9949. The subset accu-
racy for the tele-reading applications was 91.41%, comparable to

Fig. 2 ROC and AUC of DLP for detection of bigclasses in primary test and multihospital test data sets. a ROC curves and AUC for detecting every
bigclass in primary test were calculated and plotted. Different colors of ROC curves corresponding to different AUC of each disease and condition are
listed. b ROC curves and AUC for detecting every bigclasses in multihospital test. Source data are provided as a Source Data file.
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that of the external multihospital test. These indicate the high
efficiency of our DLP for triage of fundus diseases in the primary
hospitals.

Discussion
To our knowledge, this is the first report to show up to 39 types of
eye diseases and conditions that can be detected by deep learning
algorithms in retinal fundus photography at an accuracy level
compatible with retina specialists. For single retinal disease, a
number of studies conducted on DR screening reported high
sensitivity (>90%), specificity (>90%), and AUC (>0.95)27–29.
Ting et al.18 reported a DLS developed and validated with about
half a million images from multiethnic communities that were
capable of screening not only DR but also possibly for glaucoma
and AMD18. Automatic detection of ten classes of retinal fundus
diseases has been reported, but with a small data set of images
and low accuracy30. The capability of a DLP to detect multiple
retinal diseases will greatly enhance the efficiency and cost-
effectiveness of prompt diagnosis and treatment of patients
especially in remote areas lacking ophthalmologists. This study
provides a methodology with proven validation and tele-reading
applications that would enhance ophthalmic service.

This DLP was trained with three diverse image data sets.
Images of the JSIEC data set were obtained with consistently high
quality of clear lesions, which ensured the DLP of learning the
specific features of different diseases and conditions. The LEDRS
data set31 was collected from 13 hospitals across mainland China
and stored images with varying qualities by different types of
fundus camera. It, therefore, is useful for the analysis of diverse
images. Images from EYEPACS32, a publicly available data set
collected mainly from Caucasians, together with other ethnic
groups from different regions of the United States, further
enhanced the diversities of the data sources.

In clinical screening application, a diagnostic procedure for
single diseases would be able to detect only individual diseases.
Using our DLP for multiple diseases and conditions, images
triaged as nonreferable can be marked as cases with no need for
further referral. On the other hand, images triaged as referable
need additional confirmation by ophthalmologists. If the images
are detected as disease classes, the ophthalmologists will make
final diagnoses with references from the DLP. If the images are
detected only as condition classes, the ophthalmologists will have
to determine whether additional examinations are needed to
confirm the diagnosis. Patients with unclear fundus can be
detected as blur fundus for repeat photography or referral.
Categorization based on common retinal diseases and fundus
features enables detection of a wide spectrum of diseases, con-
ditions, and unidentified diseases. If an image containing per-
ceptible lesions cannot be classified as any of the pre-defined
classes, it will be diagnosed as one of the referable classes. In
addition, images with multiple morbidities can also be detected by
our DLP in multi-label setting based on the assumption of
independent probabilities of different classes.

The DLP that we have developed in this study is capable of
automatically detecting almost all common fundus diseases and
conditions (Supplementary Table 1) with a high F1 score, sensi-
tivity, and specificity. We obtained higher AUCs, mostly >0.996,
in both primary tests and multihospital tests in multi-label setting
(Table 2) when compared with those attained from the public
data sets or with reported studies for detecting single diseases,
with reported AUC ranging 0.889–0.983 for referable DR18, 0.940
for large drusen21, 0.986 for DR33 and 0.986 for glaucomatous
optic neuropathy34. Our apparently better performance was likely
due to the extreme imbalance in the distribution of our data set.
We used a multi-label setting, which included 30 bigclasses.

Labels were very sparse and most samples belonged only to one
label. The class imbalance ratios ranged from 0.7 to 4028.7 in our
data sets (Supplementary Fig. 5). Consequently, ROC and AUC
can be over-optimistic and even unreliable in these situations35,36.
High AUC results were also reported in a study using a multi-
label setting with high imbalance ratios37. Therefore, F1 scores
should be more suitable for the evaluation of the performance of
the algorithms for multi-label settings with extreme imbalance
ratios. Another possible explanation is that during the labeling
procedure, some uncategorized images were discarded because of
poor image quality or uncertain features as determined by the
retina expert panel38. The final results of AUC could thus be high.

To achieve a high F1 score, sensitivity, and specificity, we
applied a customized two-step strategy to construct deep learning
algorithms as described in the “Methods” section. For bigclass
classifications, features for different diseases and conditions, such
as flame-shade hemorrhage, chorioretinal atrophy, retinal
detachment, myelinated nerve fiber, and laser spots, were clear
and obvious. Therefore, traditional models with medium resolu-
tion (299 × 299 pixels) should be adequate to obtain satisfactory
results. Accordingly, this DLP achieved higher sensitivity and
specificity than previous studies, which mainly focused on the
grading of a single disease, such as DR28 or AMD39. Large models
with higher resolution (448 × 448 pixels) were used to separate
DR1 from normal fundus images, which may differ in only one
single microaneurysm. To distinguish possible glaucoma and
optic atrophy, small models with a resolution of 112 × 112 pixels
were applied after optic disc area segmentation and ROI crop-
ping. In addition, we used dynamic data resampling and weighted
cross-entropy loss function to resolve the imbalances of classes,
while test time image augmentation and model ensembling have
improved accuracy and robustness.

How a deep neural network makes predictions has been
regarded as a black-box issue that may hinder clinicians to apply
deep learning for clinical work40. In this study, we provide a
modified CAM and DeepShap simultaneously to allow the
interpretability of predicted results for every fundus image
(Fig. 1). Though quantitative evaluation on the performance of
heatmaps was difficult when there were multiple diseases and
features, such facilities were capable to show how the DLP makes
decisions by explicit fundus features including hemorrhages,
exudates, hyperemia, and pale disc. Therefore, clinicians were
able to “see” the lesion areas from the DLP and verify whether the
DLP has used “appropriate” features for diagnosis. We have made
quantitative analysis for bigclass 10 (optic nerve degeneration)
true positive samples, which showed 100% (1,054 images) of their
corresponding heatmaps were focused on the optic disc areas that
were highly consistent with expert domain knowledge.

This study has several limitations. First, unlike common dis-
eases such as DR, there is no universal diagnostic standard or
consensus for reference of most fundus diseases if based only on
fundus images. We, therefore, set up imaging reference standards
according to fundus signs described in EyeWiki and textbooks,
which were then reviewed by the retina expert panel for the final
agreement. Moreover, there is also few publicly available standard
image data sets of most fundus diseases for validation.

Second, though the DLP has been trained for up to 39 types of
common diseases and conditions, it has not covered all fundus
diseases and conditions. While common diseases, such as BRVO,
CRVO, RD, DR, AMD, and glaucoma, with a large patient
population and image data set, are convenient for deep feature
learning, rare diseases are not practical to be given separate
classes for deep feature pattern recognition. Though common
feature-based classes partly render the detection of some rare
diseases as nonreferable, other rare or unknown diseases (such as
rare ocular tumors) remained difficult to be accurately identified
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without sufficient image data for effective training. Adding an
“others” class can be an effective way to combat this problem.
However, due to high intra-class variation and low inter-class
variations, it also reduces the ability to detect images of known
classes.

The third limitation was the existence of overlaps between
classes such as referable DR and Hard exudates. Multi-label
classification based on Binary Relevance was used to tackle both
label overlaps and class overlaps. In order to eliminate class
overlaps, some of these 39 classes should be further decomposed.

Fourthly, only image classification and weakly image segmen-
tation (used for CAM) were implemented in the DLP. Therefore,
lesion areas such as exudates, hemorrhages, and cotton-wool
spots could not be accurately located.

Fifthly, automatic diagnosis of DR1 is difficult since its only
feature, microaneurysms, are presented as very small red dots
even in high-resolution fundus images. Most previous studies did
not report statistical results for DR118,27,28. In a recent study on
full grading of DR, results on DR1 detection were limited41. DR1
detection was unsatisfactory by our DLP, although we have
customized designed big resolution classification models to cope
with microaneurysms. Further work to detect DR1 by AI is
warranted.

Lastly, this DLP provides diagnoses only based on fundus
photography, which is just one component of comprehensive eye
examinations. But it was designed and trained for the detection of
multiple fundus diseases. Its performance would be less reliable

than experts on diseases with subtle changes, such as referable DR
only with tiny hard exudates or hemorrhage spot (Fig. 3). Con-
firmative diagnoses of fundus diseases, especially occult changes,
require integrated medical history and full ophthalmoscopic
examinations such as visual acuity, slit-lamp examination, OCT,
and fundus fluorescence angiography.

In this study of retinal fundus images from multiple data
sources with 39 types of fundus diseases and conditions, we have
established a DLP with high F1 score, sensitivity, specificity, and
AUC for detection of multiple fundus diseases and conditions. It
can be used in remote areas reliably and efficiently. We have thus
extended the application of AI for one or several diseases to the
whole spectrum of common fundus diseases and conditions,
indicating the use of this platform for retinal fundus disease
screening and triage, especially in remote areas around the world.

Methods
Classification. All fundus images were labeled with 39 bigclasses/subclasses of
diseases and conditions (Supplementary Table 1) according to the retinal signs
described in EyeWiki, which is an online medical wiki encyclopedia launched in
July 2010 by ophthalmologists with support by the American Academy of
Ophthalmology42, and cited in standard textbooks43,44. Common fundus diseases
with distinct retinal characteristics recognizable by fundus images were classified as
independent bigclasses. These included RVO, RAO, epiretinal membrane (ERM),
rhegmatogenous retinal detachment (RD), macular hole (MH), pathological
myopia, severe hypertensive retinopathy, peripheral retinal degeneration/break and
myelinated nerve fiber. Some diseases shared similar characteristics and were not
readily distinguishable according to fundus image only. For instance, hard exudate,
sub-retinal hemorrhage, neovascularization, pigment epithelial detachment and

Fig. 3 Performance of DLP in comparative test data set compare to retina experts. Examples of ROC curves and AUC for detecting referable DR,
rhegmatogenous RD, ERM, optic nerve degeneration, disc swelling and elevation, and cotton-wool spots in comparative test data set were calculated and
plotted (blue curves for all images, and green curves for JSIEC images). Performance of individual retina expert (more than 10 years’ clinical experiences in
the retina specialty) is indicated by the crosses, and averaged expert performance by dots. Blue and green crosses/dots denote performance without
patient information and red crosses/dots denote performance with patient information. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25138-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4828 | https://doi.org/10.1038/s41467-021-25138-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


macular atrophy can be found in wet AMD, PCV, choroidal neovascularization,
macular atrophy, retinal angiomatous proliferation, and idiopathic macular tel-
angiectasia. We clustered them together and classified as the condition of macu-
lopathy. Likewise, conditions causing optic disc swelling and elevation, such as
papillitis, anterior ischemic optic neuropathy, papilledema, and pseudopapilloe-
dema were classified as disc swelling and elevation. Other clustered conditions
included optic nerve degeneration, posterior serous/exudative RD dragged disc,
congenital abnormal disc, and fundus neoplasm. Some bigclasses were classified
according to common features such as massive hard exudates, yellow-white spots/
flecks, cotton-wool spots, vessel tortuosity, chorioretinal atrophy, coloboma,
fibrosis, and preretinal hemorrhage. Cases of rare diseases with these features could
be included in such bigclasses, which were thus sufficiently large in number for
deep feature pattern recognition. Post-treatment conditions such as laser spots and
silicon oil in the eye were included to recognize images of patients after surgery. It
also helped to identify cases after surgery that required follow-up. Blurred fundus
images, in which more than half of the image area could be obscured, were applied
to train the deep learning algorithm, so that referrals for additional fundus pho-
tography or transfer to ophthalmic specialists could be promptly arranged.

Bigclasses that might overlap with each other were restricted to specific criteria.
For instance, ERM was restricted within the vessel arch, while the fibrosis must be

across or outside the vessel arch. DR grading was performed according to the
guidelines for diabetic eye care by the International Council of Ophthalmology
(ICO)45,46. All DR images were initially divided into non-referable DR (DR1, mild
nonproliferative DR) and referable DR (RDR), which was defined as a severity level
of moderate nonproliferative DR or worse and/or referable diabetic macular edema
(DME). Moderate nonproliferative DR was further separated from RDR as DR2.
Severe nonproliferative DR and proliferative DR were grouped as DR3. Referable
DME was evaluated based on the presence of hard exudates at the posterior pole of
the retinal images.

According to the referring criteria, patients with normal fundus, tessellated
fundus, DR1, and large optic cup were not immediately referred to
ophthalmologists. In addition, DR1 was not readily identified by the small models
with lower resolution as the first step of diagnosis. Therefore, these conditions were
clustered as a nonreferable class, and each of these conditions was defined as a
subclass. In addition, diseases and conditions with similar signs were also clustered
as a class, such as DR2 and DR3, BRVO and CRVO, CSCR and VKH disease,
possible glaucoma and optic atrophy, retinitis pigmentosa (RP), and Bietti’s
crystalline dystrophy, as well as blurred fundus image with and without suspected
PDR. After clustering, 39 types of diseases and conditions were divided into 30
bigclasses and 16 subclasses. A class identity number (ID) was given to each class
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Fig. 4 Tele-reading application of the DLP. a Images were uploaded from seven hospitals for primary care located in different parts of China. b Images
were rejected and sent back for repeat photography if merely detected as “Blur fundus” with probabilities equal to or larger than 95%. c–f Referral results
were calculated in subject-based. Subjects were regarded as nonreferable if no image was detected as referable, otherwise, they were regarded as referable
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could not be categorized as any of the diseases and conditions enlisted in Supplementary Table 1. Subjects were counted as unclassifiable only if all their
images were judged as unclassifiable.
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(Supplementary Table 1), which was composed of two parts: the number prior to
the decimal point (0–29) denoting the 30 bigclasses, the number post to the
decimal point denoting the subclasses.

Data sets and labeling. Fundus images from seven diverse data sources were
collected for deep learning algorithm development and validation (Table 1).
Image collection and the research protocol were in compliance with all relevant
ethical regulations for studies involving human subjects and approved by the
Human Ethics Committee of JSIEC, who also waived the informed consent from
patients due to anonymity according to the Regulations for Ethical Review of
Biomedical Research Involving Human of China. The primary data set for
training, validation, and test was collected from the Picture Archiving and
Communication Systems (PACS) at JSIEC in China, the Lifeline Express Dia-
betic Retinopathy Screening Systems (LEDRS) in China, and the Eye Picture
Archive Communication System (EyePACS) Kaggle in the United States. The
JSIEC data set was collected from PACS JSIEC between September 2009 and
December 2018. The images were taken by a ZEISS FF450 Plus IR Fundus
Camera (2009–2013) and Topcon TRC-50DX Mydriatic Retinal Camera
(2013–2018) in a 35–50° field setting. The LEDRS data set had all posterior
fundus images obtained from LEDRS, which is a multihospital-based program
across mainland China31. The data were uploaded between April 2014 and
December 2018 from 13 hospitals located in different parts of China (Guilin
City Second Hospital, Jilin City Chinese Traditional and Western Medicine
Hospital, Jinan City Lixia District People’s Hospital, Luoyang City Third Hos-
pital, Luzhou City Red Cross Hospital, Huhehaote Neimengu Province People
Hospital, Zhanjiang City Second Hospital, Zhengzhou City Second Hospital,
Beihai People’s Hospital, Zhoukou City Eye Hospital, Nanyang City Ninth
People’s Hospital, Chongqing Wanzhou District People’s Hospital, Liuzhou Red
Cross Hospital). The EyePACS images were macular-centered fundus images
obtained from the EyePACS public data set (EyePACS LLC, Berkeley, CA)32,
which is a tele-reading program for diabetic retinopathy screening in commu-
nity clinics across the United States. These images were acquired from different
makes and models of cameras with varied features and specifications. Such
variations in input images enhance the generalization capability of the
algorithm.

Primary data set acquisition and processing flow are shown in Supplementary
Fig. 1 and Supplementary Fig. 2. Fundus images from JSIEC were exported and
primarily classified by searching PACS with the nomenclature of fundus diseases
listed in Supplementary Table 1. Images collected from LEDRS31 were exported
according to their graded records (five grades) marked by trained retina specialists
through an internet-based system, followed by clustering into four classes based on
the DR grading criteria as described previously. All images collected from various
data sources were initially screened by an automatic quality control algorithm.
Images scoring lower than 80 (0–100) were discarded. Totally 41,056 images
(JSIEC 9126, LEDRS 16,523, EYEPACS 15,407) were excluded before the labeling
procedure. To ensure the accuracy of classification by the deep learning algorithms,
the images were labeled manually by 20 licensed ophthalmologists in China before
algorithm training, validation, and testing. The ophthalmologists were separated
into ten groups. Each group had a senior retina specialist with more than 7 years’
clinical experience and an unspecialized ophthalmologist having trained for over 3
years. Images were initially labeled by unspecialized ophthalmologists, then
confirmed by senior retina specialists. Images that were agreed by the specialists
were applied for deep learning directly. Otherwise, images were transferred to a
retina expert panel of five senior retina specialists for final decision. Besides, we
have added referable labels (observation, routine, semi-urgent, urgent) to all
categories of diseases and conditions. For “blur fundus”, an additional suggestion
for “repeat photography” was given (Supplementary Table 1). Unclassifiable images
were excluded, which were firstly judged by unspecialized ophthalmologists and
senior retina specialists and further confirmed by the retina experts
(Supplementary Table 3). They either had poor image quality or uncertain
features38, or were rare diseases that did not belong to the 39 categories
(Supplementary Fig. 2).

After labeling, image data from JSIEC and LEDRS were divided into two parts
according to the collecting date. The part before 2018 was randomly split into a
training set (85%) and validation set (15%) of specific patients. Therefore, no
image from the same patient appeared in both the training and the validation
data sets. The other part within 2018 was applied as a test data set, which has
excluded those cases imaged before 2018. Same partition in patient-based for
images from EyePACS was also conducted but randomly without information of
the collection date. Apart from the primary test, the DLP was further tested with
three external hetero-ethnic data sets from different parts of China: Fujian in
southeastern China (Xiamen Kehong Eye Hospital), Tibet in western China
(Mentseekhang, Traditional Tibetan Hospital), and Xinjiang in northwestern
China (DuShanZi People’s Hospital). In Fujian, all study subjects were of Han
ethnicity, while in the Tibet and Xinjiang data sets there were 97.1% Tibetan and
13.3% Uyghur ethnicity, respectively. The labeling procedure was the same as
that for the primary data sets. Furthermore, the DLP had been tested with four
public data sets in a single-disease setting: Messidor-2, Indian Diabetic
Retinopathy Image Data set (IDRID), PALM, and Retinal Fundus Glaucoma
challenge (REFUGE)26. The Messidor-2 data set was collected from four French

eye institutions, which has been widely used for benchmarking the performance
of automatic diabetic retinopathy detection27,47. The majority rule was applied
for labeling the Messidor-2 data set by the retina expert panel. The IDRID data
set was established for “Diabetic Retinopathy: Segmentation and Grading
Challenge” workshop at IEEE International Symposium on Biomedical Imaging
(ISBI-2018). PALM was a challenging event of ISBI-2019 that focused on the
development of algorithms for the diagnosis of pathological myopia by fundus
photos. REFUGE was a competition as part of the Ophthalmic Medical Image
Analysis (OMIA) workshop at MICCAI 2018, which provided a data set of
fundus images with clinical glaucoma labels based on a comprehensive
evaluation of clinical records, including follow-up fundus images, IOP
measurements, OCT images, and visual fields26.

To evaluate the efficiency of our DLP in actual application for fundus diseases
triage, tele-reading applications were conducted in seven primary hospitals for
primary health care or community health centers between July 2019 and May 2020.
These hospitals or centers belonged to the JSIEC-Specialized Treatment
Combination (STC), which included Balinzuoqi Hospital of Traditional Mongolian
Medicine and Chinese Medicine (Inner Mongolia), Hainan Tibetan Autonomous
Prefecture People’s Hospital (Qinghai), Nyingchi People’s Hospital (Tibet),
DuShanzi People’s Hospital (Xinjiang), Sanrao Community Health center
(Guangdong), Huizhai Community Health center (Guangdong), Zhongshan Torch
Development Zone Hospital (Guangdong). Images from these hospitals for
primary health care were sent through the Internet to JSIEC, which were then
automatically detected by the DLP and a graphic report was generated. Reports
were directly sent back to the primary hospitals if no referable disease was detected.
Suggestions of “rephotograph” were also given if images were merely detected as
“Blur fundus” with probabilities equal to or larger than 95%. Otherwise, images and
the corresponding reports were sent to retina specialists for confirmation before
sending back to the JSTC hospitals. Processing flow for tele-reading application are
shown in Fig. 4. To obtain the statistical results, all upload images were reviewed by
the retina specialists after the triage in the tele-reading applications.

In this study, totally 249,620 images were included for training, validation, and
tests, image data sets distributions in various bigclasses and subclasses are shown in
Supplementary Tables 5–11. The data sets show extreme imbalance and the labels
were very sparse in some bigclasses, the imbalance ratio of negative samples vs
positive samples ranged from 1.8 to 956.5 in the primary training data sets
(Supplementary Fig. 5)48.

Architecture of the DLP. The whole data flow and simplified architecture of the
DLP are shown in Supplementary Figs. 1 and 4. Accompanied with the image
processing methods, 3 groups of CNNs and a Mask-RCNN (Supplementary
Table 4) were applied to construct a two-level hierarchical system for the classi-
fication of the 39 types of diseases and conditions. Image quality of each input
image was initially evaluated. After being further preprocessed, fundus images were
then applied to the multi-label classification of 30 bigclasses. Images classified to
bigclass 0, 1, 2, 5, 10, 15, and 29 were further classified to subclasses with CNNs. To
increase the diagnostic accuracy, the optic disc areas of images for bigclass 10 were
identified and cropped out for multi-class classification (2 classes) of possible
glaucoma and optic atrophy using customized designed CNNs (Supplementary
Fig. 3) for small input image size (112 × 112). During the training processes,
dynamic data resampling (Algorithm 1, Supplementary information), real time
image augmentation and transfer learning were used. Probability values and two
types of heatmaps, Class activation maps (CAM) and Deepshap, were obtained by
CNNs. After being fully trained and validated, all CNNs models were deployed into
production environment for internal testing. Technical details of algorithms and
implementation are explicated in the Supplementary Methods: “Algorithm devel-
opment and the DLP deployment” section.

Statistical analysis. Statistical analysis was performed on bigclasses and subclasses
separately to evaluate the performance of the DLP. For every class in the primary
data sets (Training, Validation, and Test), multi-label classification evaluation was
conducted by obtaining the true negative (TN), false positive (FP), false negative
(FN), true positive (TP), F1 score, sensitivity, specificity at binary decision
thresholds, and calculating the ROC analysis and AUC by giving their 95% con-
fidence intervals (CIs)13,48. For the aggregate measure of the DLP performance on
referable bigclasses, we computed the class frequency-weighted arithmetic mean for
the F1 score, sensitivity, specificity, and the AUC13. Two-sided 95% CIs were
calculated with Delong’s method for AUC using the open-source package pROC
(version 1.14.0)49. We evaluated the detection accuracy on every image by calcu-
lating the subset accuracy, which provided the scale of samples having identical
labels between DLP prediction and the ground-truth labels48. Binary classification
analysis of subclasses (ID 0, 1, 2, 5, 10, 15, 29) were assessed to obtain similar
statistical parameters to multi-label classification13,48. Three parallel binary clas-
sifications in nonreferable (four subclasses) were conducted to detect the prob-
abilities of the tessellated fundus, large optic cup, and DR1, respectively, against the
normal subclass. Performance of the multi-label classification was further tested
with external multihospital data sets (Fujian, Tibet, and Xinjiang), the publically
available data sets (Messidor-2, IDRID, PALM, and REFUGE), retina expert
comparison, and tele-reading applications.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data set from EYEPACS Kaggle for training, validation, and test is available at https://
www.kaggle.com/c/diabetic-retinopathy-detection. Public data sets for tests are available
at Messidor-2: https://www.adcis.net/en/third-party/messidor2/, IDRID: https://idrid.
grand-challenge.org/, REFUGE: https://refuge.grand-challenge.org/, PALM: https://palm.
grand-challenge.org/. Other data sets supporting the findings of the current study are not
publicly available due to the confidentiality policy of the National Health Commission of
China and institutional patient privacy regulation. But they are available from the
corresponding author upon request. The data can be accessed for the purpose of
reproducing the results and/or further academic and AI-related research activities from
the corresponding author M.Z. upon request within 10 working days. Source data are
provided with this paper.

Code availability
The source codes are available on Github: for image preprocessing, https://github.com/
linchundan88/Fundus-image-preprocessing50; for web application (https://github.com/
linchundan88/fundus_multiple_diseases_web50); and for training, validation, test and
RPC (remote procedure call) service, https://github.com/linchundan88/
fundus_multiple_diseases50.
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