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Renal proximal tubular cells are the most energy-demanding cells in the body. The ATP 
that they use is mostly produced in their mitochondrial and peroxisomal compartments, 
by the oxidation of fatty acids. When those cells are placed under a biological stress, 
such as a transient hypoxia, fatty acid oxidation (FAO) is shut down for a period of 
time that outlasts injury, and carbohydrate oxidation does not take over. Facing those 
metabolic constraints, surviving tubular epithelial cells exhibit a phenotypic switch that 
includes cytoskeletal rearrangement and production of extracellular matrix proteins, 
most probably contributing to acute kidney injury-induced renal fibrogenesis, thence to 
the development of chronic kidney disease. Here, we review experimental evidence that 
dysregulation of FAO profoundly affects the fate of tubular epithelial cells, by promoting 
epithelial-to-mesenchymal transition, inflammation, and eventually interstitial fibrosis. 
Restoring physiological production of energy is undoubtedly a possible therapeutic 
approach to unlock the mesenchymal reprograming of tubular epithelial cells in the 
kidney. In this respect, the benefit of the use of fibrates is uncertain, but new drugs that 
could specifically target this metabolic pathway, and, hopefully, attenuate renal fibrosis 
merit future research.
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introduction

Renal fibrosis is the final common pathway to all chronic kidney diseases (CKD), suggesting that a 
biological switch is activated in any context of injury, suppressing noble renal functions long-term 
and reactivating embryonic-like mesenchymal ones (1). Such a switch would obviously be a major 
source of new therapeutics.

Although the consequence of renal fibrosis is the loss of epithelial functions, it is defined 
morphologically in organs by an expansion of the connective tissue (swelling of interstitial myofi-
broblasts and excess of deposition of extracellular matrix). At the tubular cell scale, it consists 
of an atrophic type lesion with a thickening of basement membranes and a flattened epithelium, 
suggesting dedifferentiation. However, evidence has accumulated to show that proximal tubular 
epithelial cells (PTC) are not uninvolved in the process of interstitial fibrogenesis: placed under 
biological stress, they can undergo phenotypic changes, acquire active mesenchymal functions, 
and even proliferate (2), and hence, contributing to the synthesis of extracellular matrix proteins 
and perpetuating fibrosis (3, 4). As epithelial cells have two equilibrium states (epithelial during 
homeostasis, mesenchymal in pathological situations), some authors often refer to this bi-stability 
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as epithelial-to-mesenchymal transition (EMT) (5), analogous 
with the profound phenotypic changes observed in primary 
epiblasts during embryogenesis (or at the edge of a carcinoma). 
However, the term is confusing, since in embryos and tumors, 
EMT is essential to disperse cells. Whether EMT becomes so 
intense in adult fibrotic kidneys that epithelial cells leave their 
tubular structure and provide de novo myofibroblasts has been 
vigorously debated (6, 7). Over the last decade, experimental 
research has shown that pericytes, not epithelial cells, are consid-
ered the most significant source of such de novo myofibroblasts 
(8), and the contribution of EMT in organ fibrogenesis is seen as 
local rather than diffuse, i.e., relevant within tubular structures 
(9). However, the process in humans is unknown, and EMT-like 
biological changes might significantly contribute, even at the 
local level.

Hypoxia is one of the many biological stresses that may 
tip the balance toward a mesenchymal program. Segment 3 
renal PTC (the pars recta, located at the corticomedullary 
junction) in particular are very hypoxia sensitive. This is 
because of a combination of the locally lowest oxygen pres-
sure in this anatomic segment on the one hand (10, 11), with 
a high-energy consumption linked to highly specialized ATP-
consuming transporters on the other (12, 13). Like most of 
the highly metabolic cells, the preferred energy fuel is the 
one with the highest ATP production: fatty acid oxidation 
(FAO) (14). The aim of this review is to provide an insight 
into how down-regulation of FAO observed during acute 
kidney injury (AKI) – not only during ischemic AKI but also 
in other experimental conditions – precedes EMT and consti-
tutes a major alteration of cell metabolism, which drives the 
mesenchymal transition. Drugs promoting or restoring FAO 
are therefore promising.

AKi as a Trigger of Renal Fibrogenesis: 
A shift in the Paradigm

Recently, the concept of AKI has been redefined. This term now 
encompasses a range of renal impairment, from even small 
changes in function (serum creatinine or urinary output) to the 
necessity for renal replacement therapy. AKI can be secondary 
to a large spectrum of causes. Histological features of AKI often 
include lesions of acute tubular necrosis (ATN), a renal lesion that 
was long thought to be fully reversible. However, this paradigm 
shifted some years ago toward the notion that the repair of ATN 
could be “maladaptive” and initiate fibrogenesis at a molecular 
level, even when morphology had (at least transiently) returned to 
normal (15). Similarly, increasing evidence in kidney transplanta-
tion suggests that ischemic episodes are connected to transplant 
fibrosis (16). Mechanisms at stake in the interconnection between 
AKI and CKD are an intense area of research. At present, three 
major abnormalities have been found to be associated with the 
fibrotic outcome of a transient AKI: (a) the epigenetic silencing of 
RASAL1, a proliferation inhibitor, in myofibroblasts; (b) the cell 
cycle arrest in G2/M in tubular epithelial cells (the G2/M phase is 
where the epithelial cell function is closer to a mesenchymal one); 
and (c) down-regulation of FAO in tubular epithelial cells (14, 17, 
18). These mechanisms are not exclusive of each other.

Fatty Acid Oxidation: A Brief description

A fatty acid (FA) is a carboxylic acid with a long aliphatic (as 
opposed to aromatic) tail. It can be produced by FA synthesis 
or by hydrolysis of triglycerides or phospholipids; conversely, 
a triglyceride is a storage (triester) form of FA. Triglyceride 
overload leads to lipid droplet formation. Historical studies by 
Weidemann and Krebs were the first to report that in dog kidneys 
these droplets can be used in case of scarcity. Thus, FAO may help 
PTC to adapt to energy demand (19).

Fatty acid oxidation occurs in the mitochondrial and per-
oxisomal compartments. FAs must first be supplied, either by 
extracellular uptake through the FA transport protein CD36 (20), 
or by in situ cytosolic synthesis, or by the deacylation of cellular 
phospholipids under the action of phospholipase A2 (PLA2). 
Second, FAs has to be transported from the cytosol to the respec-
tive organelles in order to be oxidized and provide the cell with 
ATP (Figure 1). The outer membranes of the mitochondrion and 
the peroxisome are not permeable to long-chain FA, so FAs need 
to use a specific transporter called the carnitine shuttle. For this to 
occur, they need to be “activated” by coenzyme A in the cytosol, 
under the action of an acyl-CoA synthetase, which is located on 
the outer membrane of the organelle. The resulting long-chain 
acyl-CoA products will then interact with a carnitine molecule to 
regenerate coenzyme A and produce a long-chain acyl carnitine 
(LCAC), to which the outer membrane is readily permeable. This 
step also requires the rate-limiting enzyme of the carnitine shuttle, 
the carnitine palmitoyl-transferase 1 (CPT-1), similarly located 
on the outer membrane. LCAC is eventually able to cross the inner 
(impermeable) membrane thanks to the carnitine-acyl-carnitine 
translocase. The carnitine palmitoyl-transferase 2 then ensures 
a reverse reaction regenerating the carnitine molecule using 
coenzyme A, resulting again in an acyl-CoA product, which will 
undergo β-oxidation in the peroxisome and the mitochondrion. 
The system is complex but still economic in that the carnitine 
molecule will be transported back to the cytoplasm by the same 
shuttle. Oxidation (the loss of an electron) then occurs because 
electron carriers flavine adenine dinucleotide (FAD) and nicotine 
adenosine dinucleotide (NAD) will accept an electron from acyl-
CoA, and hence, be reduced to FADH and NADH, respectively. 
Since these reactions occur close to the inner membrane, where 
the electron transfer chain is located, FAD and NAD are instantly 
regenerated. The term β-oxidation refers to the position of the 
carbon group being oxidized. The energy yield of FA β-oxidation 
is very high, with an average of 106 ATP equivalents per FA, as 
opposed to 36 during the oxidation of carbohydrates.

energy Metabolism in Renal Proximal 
Tubular cells during AKi

Several studies have reported on a triglyceride overload fol-
lowing endotoxic, toxic, and ischemic kidney injury (21, 22). 
FA accumulation is observed after ischemic AKI (23), most 
probably because of a lack of oxidative substrates to accomplish 
FAO (24). In the mitochondrion, the rate- controlling step of 
the FAO is the oxidative reaction catalyzed by 3-hydroxyacyl-
CoA dehydrogenase. As explained above, and in Figure  1A,  
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FiguRe 1 | Fatty acid (FA) metabolism in renal PTc before (A) and after (B) acute kidney injury.  
 (Continued)
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FA may enter the cell either at the apical or at the baso-lateral side, free or 
albumin bound. They may also be produced after hydrolysis of membrane 
phospholipids, by phospholipase A2. Intracellular FA is then routed to anabolic 
or catabolic pathways; FA is stored in the global triglyceride pool or oxidized in 
mitochondria or peroxisome to produce ATP. The carnitine shuttle gives access 
to the matrix of these two organelles. FAO enzymes are positively retro-
controlled by FA accumulation at the transcriptional level by the activation of 
SREBP1c and PPAR-α. On (B), red and green arrows indicate what is being 
down-regulated (down arrows) or up-regulated (up arrows) during AKI and 

fibrosis, respectively. Abbreviations: FA, fatty acid; CoA, CoenzymeA; ACoA, 
acyl-CoenzymeA; Alb, albumin; SREBP, sterol regulatory element-binding 
protein-1c; PPAR-α, peroxisome proliferator activated receptor-alpha; MAPK, 
mitogen-activated protein kinase; FAO, fatty acid oxidation; MPL, membrane 
phospholipid; ROS, reactive oxygen species; NAD, nicotine adenosine 
dinucleotide; RC, respiratory chain; PLA2, phospholipase A2; TG, triglyceride; 
TGF-β1, transforming growth factor β1; ADP, adenosine diphosphate; ATP, 
adenosine triphosphate; TNF α, tumor necrosis factor α; MCP-1, monocyte 
chemo-attractant protein-1.

FiguRe 1 | continued
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this enzyme requires NAD as oxidant under its oxidized form 
(NAD+), which is regenerated by the respiratory chain located 
in the inner mitochondrial membrane in normoxic conditions, 
as oxygen acts as the terminal electron acceptor. Likewise, 
acyl-CoA oxidase, the key enzyme for β-oxidation in the per-
oxisome, uses oxygen as a substrate to perform FAO. Therefore, 
hypoxia dramatically decreases the NAD+/NADH ratio. Short 
of fundamental substrates for the critical steps of FAO, FAO 
also dramatically decreases. Reperfusion should theoretically 
lead to the restoration of a functional FAO in the aftermath of 
an acute cellular stress. However, Gulati et al. demonstrated that 
in the peroxisome compartment, FAO enzymes were not only 
inhibited during the ischemic phase but also during reperfu-
sion, because of a proteolytic degradation process, particularly 
affecting the acyl-CoA oxidase (25). In mitochondria, ischemia/
reperfusion injury (IRI) also leads to a decline in the activity 
of CPT-1, the rate-limiting enzyme of the carnitine shuttle; 
therefore, cutting off FA supplies in the mitochondrial matrix 
(26). Feldkamp et al. also observed that PTC isolated from rab-
bit kidneys exhibit a free FA accumulation during hypoxia and 
reperfusion, and an ATP decrease during hypoxia that outlasts 
re-oxygenation (27). Although it is reasonable to think that in 
the absence of its usual fuel (FA), PTC would turn to glucose 
oxidation to produce ATP even at a lower rate, and resume 
even minimal epithelial functions, the sustained alteration of 
FAO is not followed by such a take over in the context of AKI, 
either in  vitro or in  vivo (14). With prolonged ATP shortage, 
proliferation and mesenchymal reprograming of epithelial cells 
could thus be an energy efficient route to survival. Resetting the 
tools for ATP production, and in particular for FAO, is thus a 
promising approach. Of note, whether this metabolic pathway 
is generally necessary for pericytes, or more particularly enables 
them to maintain a stable phenotype instead of becoming fibro-
blasts, is not known.

Resetting Fatty Acid Oxidation After AKi

Peroxisome proliferator activated receptor-alpha (PPAR-α) is a 
transcription factor predominantly expressed in metabolically 
very active tissues, such as renal PTC, and has been shown to 
control FAO. In homeostasis, endogenous levels of FA act directly 
on PPAR-α as natural activators of this ligand-activated recep-
tor superfamily member. PPAR-α increases the transcription 
of genes encoding FAO enzymes, and also acts upstream by 
stimulating cellular FA uptake through the modulation of the FA 
translocase CD36 (28). Conversely, during AKI, PPAR-α mRNA, 
and its DNA binding activity were found to decrease, as was the 

availability of its tissue specific co-activator PPAR-γ co-activator-
1a (PPARGC1A) (29–31). Kang et al. have reported that trans-
forming growth factor β1 (TGF-β1), a major player in kidney 
fibrosis, and a master inducer of EMT, can inhibit PPAR-α and 
PPARGC1A, key transcription factors of FAO genes. It logically 
results in a down-regulation of CPT-1 and triglyceride overload. 
How TGF-β1 suppresses PPAR-α, and PPARGC1A seems to be 
epigenetically regulated. MicroRNA-21 (miR-21), a downstream 
target of Smad3 (32), is able to silence PPAR-α (33). Strikingly, 
anti-miR-21 failed to suppress renal fibrosis in PPAR-α−/− mice, 
incidentally underlining the major role of PPAR-α/FAO in the 
process of renal fibrogenesis. In addition, chromatin immuno-
precipitation (CHiP) studies revealed that Smad3 can bind to an 
intronic area of the PPARGC1A promoter, at a position where 
the DNA is enriched in the histone mark H3K4me1 (read: mono-
methylation of lysine 4 in histone 3, a mark usually associated 
with activation of transcription). By overlapping with this region, 
Smad3 could thus impede epigenetic activation of PPARGC1A 
(14) (Figure 2).

Fatty Acid Oxidation and  
epithelial-to-Mesenchymal Transition

A genomic study of hepatocellular carcinomas showed that down-
regulation of critical genes involved in FAO (hydroxyl-acyl-CoA 
dehydrogenase and acyl-coA oxidase) correlates to a “dedifferen-
tiation” state of tumoral tissue, which also involves up-regulation 
of SNAIL, a major regulator of EMT (34). More recently, a study 
revealed in a human renal cell line (HK2) that lipid accumula-
tion and FAO decrease precede glucose-induced morphological 
changes by 48 h, in addition to the cytoskeletal switch typical of 
EMT [loss of E-cadherin and acquisition of alpha-smooth muscle 
actin (α-SMA)]. Although this does not prove a causal relation-
ship, it is interesting to note that the silencing of acetyl-coA 
carboxylase 2 (ACC2), the enzyme catalyzing the carboxylation 
of acetyl-coA into malonyl-coA, a potent inhibitor of CPT-1, 
abrogated glucose-induced morphological changes, cytoskeletal 
switch, and increased the rate of FA (35). Kang et al. showed that 
a global down-regulation of genes involved in FA metabolism 
was also found ex vivo in human fibrotic kidneys compared 
to controls. They also reported that PTC treated by the CPT-1 
inhibitor Etomoxir undergo morphologic and genomic changes, 
with the expression of more mesenchymal genes, such as ACTA2 
(encoding α-SMA), VIM encoding vimentin, an intermediate 
filament, and COL1A1 and COL3A1 encoding fibrillary collagens 
(14). Thus, accumulation of lipids and/or decreased FAO could 
participate in the mesenchymal reprograming of epithelial cells 
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FiguRe 2 | Transforming growth factor-β1/sMAd3 mediated-regulation 
of FAO. TGF-β1 is up-regulated after acute kidney injury, which activates 
SMAD3, which in turn can bind to an intronic region of the PPARGC1A gene. 
SMAD3 binding overlaps with the active enhancer histone tail modification 
H3K4me1 of this sequence, resulting in the blocking of the progression 
transcription machinery. In addition, this region is also annotated as an active 
enhancer in human kidney PTC (14). SMAD3 can also target PPAR-α, the other 

key regulator gene of FAO, through microRNA (miR-21) overexpression. 
miR-21 silences PPAR-α by recognition of an octamer sequence 
complementary to miR-21 seed region in the 3′UTR of PPAR-α mRNA (32). 
These two mechanisms cooperate in the acquisition of a pro-fibrotic 
phenotype. Abbreviations: PPAR-α, peroxisome proliferator activated 
receptor-alpha; PPARGC1A, PPAR-γ co-activator-1a; RISC, RNA-induced 
silencing complex; TGF-β1, transforming growth factor β1.
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in the kidney, a non-lipogenic tissue. We will now briefly discuss 
why the former, taken alone, is not considered a sufficient trigger 
of EMT.

Renal Fibrosis, Fatty Acids, and 
inflammation

“Lipotoxicity” is defined by FA accumulation on non-adipose 
tissues. Lipid accumulation reflects an imbalance between FA 
utilization and FA supplies, as in the case of FAO inhibition, and 
because of triglyceride buffer FA excess, overload is often visible 
as lipid droplets. In human diseases as well as in animal models, 
lipid deposition has repeatedly been observed in PTC (36) (in 
glomerulonephritis models, for example, glomerular injury 
allows PTC to reabsorb albumin/FA complexes, eventually result-
ing in cell FA accumulation).

Fatty acid accumulation could play a role in the systemic 
manifestations of “metabolic” pathologies, such as diabetes 

mellitus and obesity, where free or albumin-bound FA blood 
levels are increased (37), CD36 is overexpressed due to glucose 
exposure, and FA synthesis also increases [in OVE26 and Akita 
type 1 diabetic mice, animals exhibit an increase in sterol regula-
tory element-binding protein-1c (SREBP-1c) mRNA, a protein 
known to up-regulate FA synthase and acetyl-coA carboxylase]. 
This does not necessarily increase FAO; however, for example, 
acetyl-coA carboxylase inhibits FAO, and malonyl-coA inhibits 
CPT-1, so overall excess in FA might eventually inhibit FAO 
(38, 39). This hypothesis is also supported by protection of 
SREBP1c KO from high-fat diet-associated tubulo-interstitial 
injuries (38).

In addition, excess of FA may impact epithelial cells indepen-
dently from the FAO pathway. Albumin-bound FAs have been 
reported to activate PPAR-δ, dose-dependently, and alter mito-
chondrial function, leading to cytochrome c release and caspase 
3 activation (40, 41), and in vivo, to enhance tubular inflamma-
tion via a pro-inflammatory metabolite (42). Soumura et al. also 
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showed that palmitic acid treatment induces an up- regulation 
of the expression of monocyte chemo-attractant protein-1  
(MCP-1) and leads to activation of two pro-inflammatory 
pathways thanks to phosphorylation of MAPKs (ERK, p38, 
and JNK) and IκB, thus promoting the nuclear translocation 
of NF-κB (43). Katsoulieris et al. not only corroborated these 
results but also demonstrated that palmitic acid overload in a 
renal PTC model induces endoplasmic reticulum (ER) stress 
(44). ER stress, activated by unfolded or misfolded proteins 
or protein trafficking, is a well-known phenomenon in the 
development and progression of kidney disease. In this case, 
palmitic acid can cause ER stress by H2O2 production and C/
EBP homologous protein (CHOP) expression (44). Oxidative 
and ER stress, and apoptosis unite to create a pro-inflammatory 
state in the vicinity of renal PTC (45). Last, knocking-out the 
scavenger receptor CD36 results in a reduction of activated 
NF-κB and oxidative stress level (46) in mice subjected to 
unilateral ureteral obstruction and a high-fat diet. Overall, 
lipotoxicity probably exists and contributes to epithelial injury, 
either directly through the activation of an apoptotic signal 
or indirectly by promoting the influx of inflammatory cells, a 
major factor in fibrosis.

Nevertheless, there is some doubt regarding the importance 
of lipid overload per se. Although cell-specific overexpression of 
CD36 in tubular epithelial cells from mice leads to lipid accumu-
lation by the age of 8 weeks, it is not sufficient to drive spontane-
ous renal fibrogenesis, and more importantly, it does not enhance 
the susceptibility to renal fibrosis in two different animal models 
(diabetic nephropathy and folic acid nephropathy) (14). Within 
epithelial cells, it is thus thought that peroxisomal/mitochondrial 
defects in energy production are more detrimental than the lipid 
accumulation in the cytoplasm.

PPAR-α as new Therapeutic Target

Proximal tubular epithelial cell-specific PPAR-α overexpres-
sion in mice was found to be sufficient to maintain FAO and 
conferred protection against IRI (47). Agonists of PPAR-α have 
been proposed for therapeutic use to prevent cisplatin-induced 
AKI, free FA accumulation, and ischemia–reperfusion injury 
(30, 48, 49). The first class tested was fibrates, with mixed results. 
Bezafibrate displays a protective effect against apoptosis in a 
cellular model and attenuates intracellular free FA accumula-
tion (48). Takahashi et al. showed in a high-fat diet model that 
pre-treatment with clofibrate at a low dose (but not at a high 
dose) protects against free FA toxicity (30). PPAR-α agonists 
administered 5  days before injury in a rat model of renal IRI 
were found to regulate acyl-coA oxidase at the transcriptional 
and protein levels and to attenuate tubular necrosis. In a bilat-
eral ischemia rat model, it has also been reported that PPAR-α 
agonists, clofibrate, fenofibrate, and WY14643, reduce renal 
dysfunction and inflammation related to IRI (49, 50). Of note, 
in the case of fenofibrate, protective effect was lost in PPAR-α−/− 
(49, 51). The effect of these reno-protective mechanisms was 
partially elucidated by Tanaka and co-workers, who demon-
strated in a high-fat diet mice model that fenofibrate not only 

enhances lipolysis by overexpressing CPT-1, acyl-coA oxidase, 
and medium-chain acyl-CoA dehydrogenase but also inhibits 
the expression of the pro-fibrotic factors plasminogen activa-
tor inhibitor-1 (PAI-1) and MCP-1 (52). In a hypertension rat 
model fed with a high-fat diet, fenofibrate treatment induced 
PPAR-α expression and decreased apoptosis (53). Despite 
these promising data, the efficacy of fibrates in the clinic is so 
far limited to the reduction of albuminuria in type 2 diabetic 
patients. However, this data should be interpreted with caution, 
since the primary endpoint of the study was not fulfilled. No 
additional benefit was demonstrated with Gemfibrozil in two 
different large cohort studies (54, 55). Importantly, however, a 
recent meta-analysis concluded that fibrates played a preventive 
role in cardiovascular events in CKD patients, and confirmed 
albuminuria reduction (56). The effects of fibrates on the pro-
gression rate of CKD are still unknown since no study has yet 
been designed for this primary outcome (57).

Another approach to increase FAO would be to facilitate the 
transport of FA into the mitochondrial matrix. A treatment com-
bining carnitine and 5-aminoimidazole-4-carboxyamide ribonu-
cleoside (AICAR), which indirectly activates CPT-1 through the 
adenosine monophosphate-activated protein kinase (AMPK), 
was found to improve renal function after IRI, suggesting that 
FAO can be artificially stimulated (58). Propionyl l-carnitine 
also seems to be a promising candidate in IRI lesion prevention, 
through refeeding the carnitine shuttle and indirectly the Krebs 
cycle (59).

conclusion

Fatty acid oxidation is unsurprisingly shut down during oxygen 
deprivation, a major cause of AKI. The observation that FAO does 
not properly resume after the injury suggests that tubular epithe-
lial cells have to cope with a sustained lack of energy (Figure 1B). 
This could be one reason among others why cells switch from 
a highly demanding epithelial phenotype, to a more economi-
cal, mesenchymal one, and why even a transient AKI increases 
the risk of developing CKD. Lipid accumulation resulting from 
FAO stunning probably also contributes indirectly to enhanced 
fibrogenesis, by promoting inflammation. It is reasonable to 
assume that unlocking the state of metabolic sideration of PTC 
would permit the rescue of an epithelial phenotype, and reversion 
to pro-fibrotic mesenchymal functions. Playing a major role in 
the regulation of FAO, the PPAR-α/PPARGC1A ensemble is a 
reasonable therapeutic target for the future.
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