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Introduction
Mitofusins are mitochondrial outer membrane GTPases required 

for mitochondrial fusion (Chan, 2006). Although yeast have one 

mitofusin, Fzo1 (Okamoto and Shaw, 2005), mammals contain 

two mitofusins, Mfn1 and Mfn2 (Santel and Fuller, 2001; Rojo 

et al., 2002; Chen et al., 2003). In the absence of either Mfn1 or 

Mfn2, cells have greatly reduced levels of mitochondrial fusion, 

and the imbalance of fusion and fi ssion events leads to mito-

chondrial fragmentation (Chen et al., 2003). In the absence 

of both Mfn1 and Mfn2, no mitochondrial fusion can occur, 

leading to severe mitochondrial and cellular dysfunction 

(Chen et al., 2005). Moreover, mitochondrial dynamics play an 

 important role in apoptosis (Youle and Karbowski, 2005), and 

maintenance of mitochondrial fusion has been linked to protection 

against apoptosis (Olichon et al., 2003; Sugioka et al., 2004; 

Neuspiel et al., 2005).

Mutations in Mfn2 cause Charcot-Marie-Tooth disease 

(CMT) type 2A, an autosomal dominant peripheral neuropathy 

(Zuchner et al., 2004). Most types of CMT disease involve 

Schwann cell dysfunction, resulting in the demyelination of 

peripheral nerves. However, CMT2A is an axonal form in 

which the axons of the longest sensory and motor nerves are 

selectively affected (Zuchner and Vance, 2005). There is cur-

rently no effective treatment for this disease. Interestingly, 

 another neurodegenerative disease, dominant optic atrophy, is 

caused by mutations in OPA1 (Alexander et al., 2000; Delettre 

et al., 2000), a mitochondrial intermembrane space protein that 

is also necessary for mitochondrial fusion. The sensitivity of 

neurons to mutations in Mfn2 and OPA1 suggests that such 

cells are particularly dependent on mitochondrial dynamics, 

which likely impacts the recruitment of mitochondria to 

 extended neuronal processes (Chen and Chan, 2006). Indeed, the 

disruption of mitochondrial dynamics has been experimentally 

linked to neuronal dysfunction (Stowers et al., 2002; Li et al., 

2004; Guo et al., 2005; Verstreken et al., 2005).

Several issues regarding mitofusin function and its rela-

tion to neurodegenerative disease remain poorly understood. 

First, it is unclear to what extent there is functional interplay 

between Mfn1 and Mfn2 during mitochondrial fusion. In 

 experiments with Mfn1- or Mfn2-null cells, either mitofusin 

can functionally replace the other, indicating functional 

redun dancy (Chen et al., 2003, 2005). However, some studies 
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sug gest distinct pathways or mechanisms for Mfn1 versus Mfn2 

(Cipolat et al., 2004; Ishihara et al., 2004). OPA1 action has 

been reported to depend on Mfn1 but not Mfn2 (Cipolat et al., 

2004). An in vitro study indicates that overexpressed Mfn1 is 

more effective than Mfn2 in tethering mitochondria, an effect 

that is correlated with a higher rate of GTP hydrolysis for Mfn1 

(Ishihara et al., 2004). Second, Mfn1 and Mfn2 have been 

shown to physically associate with each other (Chen et al., 

2003; Eura et al., 2003), but the functional signifi cance of such 

heterooligomeric complexes is poorly understood. Finally, it is 

unknown why Mfn2 mutations in CMT2A cause such highly 

cell type–specifi c defects. Patients with CMT2A show defi cits 

in the longest sensory and motor peripheral nerves, with a sub-

set showing additional degeneration in the optic nerve (Zuchner 

and Vance, 2005). The length-dependent degeneration of 

 peripheral nerves likely refl ects an inherent challenge of neu-

rons to supply functional mitochondria to the nerve terminals, 

but it remains unclear why primarily the peripheral and optic 

nerves are affected.

In this study, we have analyzed Mfn2 disease alleles that 

cause CMT2A. We fi nd that most of these mutants are not func-

tional for fusion when allowed to form only homotypic com-

plexes. However, these Mfn2 mutants can be complemented 

through the formation of heterotypic complexes with wild-type 

Mfn1. These results emphasize the close interplay between 

Mfn1 and Mfn2 in the mitochondrial fusion reaction, demon-

strate the functional importance of Mfn1–Mfn2 heterooligo-

meric complexes, and provide insights into the pathogenesis of 

Mfn2-dependent neuropathy.

Results
Many Mfn2 CMT2A alleles fail to rescue 
mitochondrial morphology in double 
Mfn-null cells
We have previously generated mouse embryonic fi broblast 

(MEF) cell lines with null mutations in both Mfn1 and Mfn2 

(double Mfn-null cells; Koshiba et al., 2004; Chen et al., 2005). 

These cell lines enable straightforward structure-function anal-

ysis of mouse mitofusins. Human and mouse Mfn2 are 95% 

identical, and all of the residues that were found mutated in the 

original CMT2A study (Zuchner et al., 2004) are conserved in 

mouse Mfn2. In the present study, we introduced nine of the 

originally reported point mutations into mouse Mfn2; these in-

clude mutations occurring immediately before the GTPase domain 

(V69F and L76P), within the GTPase domain (R94Q, R94W, 

Figure 1. Functional analysis of Mfn2 CMT2A alleles. 
(A) Domain structure of Mfn2 with the GTPase, hydrophobic hep-
tad repeat (HR), and transmembrane regions (TM) indicated. 
A sequence alignment of human Mfn2 with mouse Mfn2 and 
Mfn1 is shown for the regions surrounding CMT2A point 
 mutations. Note that the residues mutated in CMT2A disease are 
conserved between human and mouse Mfn2. The horizontal 
gray bar indicates the GTPase G1 motif. (B) Representative 
images of double Mfn-null cells expressing myc-tagged Mfn2 
at a low multiplicity of infection. Mitochondria are visualized 
by matrix-targeted EGFP (green), and Mfn2-expressing cells 
are identifi ed by immunofl uorescence against the myc epitope 
(red). Note mitochondrial aggregation induced by the CMT2A 
allele L76P. Bar, 10 μm. (C) Summary of mitochondrial pro-
fi les when Mfn2 CMT2A alleles are expressed in wild-type 
MEFs (left two columns) and double Mfn-null MEFs (right two 
columns). In each case, infected cells were scored for mito-
chondrial morphology, and the three categories of tubular mito-
chondria (Fig. S1, A and B; available at http://www.jcb.org/
cgi/content/full/jcb.200611080/DC1) were added to yield 
the percentage of cells with tubular mitochondria. Mitochon-
drial aggregation was independently scored. More than 
150 cells were scored for each experiment. As additional ref-
erence points, using the same scoring criteria, we fi nd that 
0% of Mfn1-null cells and 10% of Mfn2-null cells have tubular 
mitochondria (see controls in Fig. 6, C and D). 
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T105M, P251A, R274Q, and R280H), and in a C-terminal heptad 

repeat region (W740S; Fig. 1 A). By expressing these disease 

alleles in wild-type and double Mfn-null MEFs, we could 

 assess their subcellular localization, effects on mitochondrial 

morphology, and ability to mediate mitochondrial fusion.

Mock-infected wild-type MEFs have a range of mito-

chondrial profi les, but the vast majority of cells show consider-

able amounts of tubular mitochondria (Fig. 1 C and Fig. S1 A, 

available at http://www.jcb.org/cgi/content/full/jcb.200611080/

DC1). The expression of wild-type Mfn2 or the GTPase mutant 

Mfn2K109A by retroviral transduction did not affect mitochon-

drial morphology. We found that all of the CMT2A mutants 

properly localized to mitochondria as determined by immuno-

fl uorescence. However, seven of the nine CMT2A alleles (all 

except Mfn2V69F and Mfn2R274Q) caused substantial mitochon-

drial aggregation when cells were infected at a high multiplicity 

of infection (Fig. S2). At low infection rates, most infected cells 

have only one proviral copy and express about fourfold Mfn2 

compared with endogenous Mfn2 in wild-type cells (Fig. S3). 

Under these conditions, only Mfn2L76P, Mfn2T105M, and 

 Mfn2W740S caused high levels of mitochondrial aggregation 

(Fig. 1 C). In contrast, such mitochondrial aggregation was not 

found in cells expressing wild-type Mfn2 and was found only in 

a few cells expressing Mfn2K109A. This mitochondrial aggregation 

phenotype may refl ect the aberration of Mfn2 function by 

CMT2A mutations; however, the effect is clearly dosage depen-

dent and is not observed at physiological expression levels (see 

Fig. 4). Therefore, its relevance to CMT2A disease remains to 

be determined.

To evaluate the Mfn2 CMT2A alleles for mitochondrial 

fusion activity, we expressed them in double Mfn-null cells. 

Cells lacking mitofusins are fully defi cient for mitochondrial 

fusion and show completely fragmented mitochondrial mor-

phology (Chen et al., 2005). The expression of wild-type Mfn2 

restored mitochondrial fusion, resulting in tubular mitochon-

drial morphology (Fig. 1, B and C; and Fig. S1 B). In contrast, 

the GTPase mutant Mfn2K109A behaved as a complete loss of 

function allele, showing no ability to restore mitochondrial 

 tubules. The CMT2A mutants Mfn2R94Q, Mfn2R94W, Mfn2T105M, 

Mfn2P251A, and Mfn2R280H are similarly unable to promote mito-

chondrial tubules in double Mfn-null cells. In contrast, cells 

 expressing Mfn2V69F, Mfn2L76P, Mfn2R274Q, or Mfn2W740S showed 

a considerable restoration of mitochondrial tubules. Therefore, 

more than half of the CMT2A mutants are nonfunctional.

Nonrescuing CMT2A alleles lack 
mitochondrial fusion activity
To defi nitively evaluate the fusion activity of CMT2A alleles, 

we tested them in a polyethylene glycol (PEG) mitochondrial 

fusion assay. In this assay, double Mfn-null cells containing 

 either mitochondrially targeted EGFP or mito-DsRed were each 

infected with retrovirus expressing a CMT2A allele. Hybrids 

between the two cell lines were scored for mitochondrial fusion. 

Cell hybrids that formed between double Mfn-null cells or cells 

expressing Mfn2K109A never showed mitochondrial fusion (Fig. 2). 

In contrast, the expression of wild-type Mfn2 resulted in 

 extensive mitochondrial fusion: 75% of the cell hybrids exhibited 

a complete overlay of EGFP and DsRed (scored as full fusion) 

or a nearly complete overlay with some singly labeled mito-

chondria remaining (scored as extensive fusion). 20% of these 

hybrids had no colabeled mitochondria (scored as no fusion) 

and invariably had fragmented mitochondria. These hybrids 

likely arose from uninfected cells. When clonal infected cell 

lines were used (Koshiba et al., 2004), all cell hybrids showed 

extensive mitochondrial fusion.

We found excellent agreement between the ability of a 

CMT2A allele to restore mitochondrial tubules to double Mfn-

null cells and their fusion activity in the PEG assay. The Mfn2 

CMT2A alleles Mfn2V69F, Mfn2L76P, Mfn2R274Q, and Mfn2W740S 

induced fl uorophore mixing as effi ciently as wild-type Mfn2, 

indicating that they are highly functional. In contrast, mutants 

Mfn2R94Q, Mfn2R94W, Mfn2T105M, Mfn2P251A, and Mfn2R280H were 

all completely defi cient for mitochondrial fusion. Interestingly, 

the fi ve nonfunctional alleles are all in positions that are 

Figure 2. Lack of mitochondrial fusion activity in many 
CMT2A alleles. Double Mfn-null cells expressing either mito-
DsRed or mito-EFGP were infected with the same Mfn2 construct. 
The PEG fusion assay was used to evaluate mitochondrial 
 fusion activity in cell hybrids formed from such cells. (A) Rep-
resentative merged images of cell hybrids. No fusion is 
 detected with mock-, Mfn2K109A-, or Mfn2R94Q-infected cells. 
Extensive fusion is observed with wild-type Mfn2 and 
 Mfn2L76P. Bar, 10 μm. (B) Quantitation of mitochondrial 
 fusion in cell hybrids. More than 200 cell hybrids were 
scored per experiment.
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 conserved between Mfn1 and Mfn2. Three of the four func-

tional alleles are in nonconserved positions.

Endogenous Mfn1 functionally complements 
the CMT2A mutant Mfn2R94Q to induce 
mitochondrial fusion
Our PEG fusion assays showed that Mfn2R94Q, along with four 

other CMT2A alleles, has no mitochondrial fusion activity in 

double Mfn-null cells. This allele is particularly interesting 

 because position 94 is the most commonly mutated residue found 

in CMT2A. Multiple clinical studies have found familial or de 

novo mutations of residue 94 to either Q or W (Zuchner et al., 

2004, 2006; Kijima et al., 2005; Chung et al., 2006; Verhoeven 

et al., 2006). To defi nitively study the in vivo properties of this 

allele, we used homologous recombination to place the R94Q 

mutation into the endogenous mouse Mfn2 locus in embryonic 

stem (ES) cells (Fig. 3, A–D). For positive selection, the tar-

geting construct contained a neomycin expression cassette 

fl anked by loxP sites. After the generation of mice containing 

the knockin allele, Cre-mediated recombination was used to 

excise the neomycin cassette in vivo, resulting in an MFN2 

 locus containing the R94Q mutation and a short loxP scar located 

in the adjacent intron (Fig. 3, A and D). We mated mice hetero-

zygous for the Mfn2R94Q allele, and homozygous embryos were 

used to derive Mfn2R94Q homozygous MEF cell lines.

Our molecular analyses indicate that these cell lines ex-

press no wild-type Mfn2 while expressing endogenous levels of 

Mfn2R94Q (Fig. 3, E and F). To confi rm the expression of 

 Mfn2R94Q in these cell lines, we used RT-PCR to analyze Mfn2 

RNA transcripts. We amplifi ed exon 5 (which encodes residue 

94) and the adjoining sequences of Mfn2 cDNA by PCR. The 

presence of the R94Q mutation within the amplifi ed cDNA frag-

ment was diagnosed by digestion with the restriction  enzyme 

MspA1I, which cuts uniquely at a site introduced by the R94Q 

mutation. As expected, the cDNA fragment was amplifi ed from 

cDNA of wild-type and Mfn2R94Q homozygous cells but not 

Mfn2-null cells (Fig. 3 E). The cDNA from wild-type cells is 

completely resistant to MspA1I digestion, whereas the cDNA 

from Mfn2R94Q homozygous cells was completely digested by 

MspA1I, demonstrating that all Mfn2 transcripts contain the R94Q 

mutation. Having confi rmed mRNA expression of the mutant 

 allele, we next confi rmed protein expression. Immunoblot analysis 

indicated that endogenous levels of Mfn1 and Mfn2 are present in 

wild-type and Mfn2R94Q homozygous cell lines (Fig. 3 F).

Given that Mfn2R94Q has no fusion activity in double Mfn-

null cells (Figs. 1 and 2), we expected Mfn2R94Q homozygous cells 

to have fragmented mitochondria similar to those found in Mfn2-

null cells (Chen et al., 2003, 2005). Surprisingly, the scoring of 

 mitochondrial profi les indicated that most Mfn2R94Q homozygous 

cells have predominantly tubular mitochondria; this is in striking 

contrast to Mfn2-null cells, which have extensive mitochondrial 

fragmentation (Fig. 4, A and B). In addition, we did not fi nd any 

mitochondrial aggregation in the Mfn2R94Q homozygous cell line.

Therefore, although Mfn2R94Q behaves as a null allele 

when expressed in double Mfn-null cells, it is clearly highly 

functional in our homozygous knockin cells. In evaluating 

these results, it is important to consider the total complement 

Figure 3. Construction of MEFs containing homozygous Mfn2R94Q knockin 
mutations. (A) Schematic of Mfn2 targeting construct and strategy. A portion 
of the Mfn2 genomic locus containing exons 4–6 is shown on top based 
on Ensembl transcript ID ENSMUST00000030884 (www.ensembl.org). 
The knockin targeting vector below contains the R94Q mutation (*) 
placed in exon 5 as well as a fl oxed neomycin cassette for positive selec-
tion and a diphtheria toxin cassette (DTA) for negative selection. Homo-
logous recombination in ES cells leads to the confi guration in the third line, 
which can be detected by PCR using the A and B pairs of primers (trian-
gles), as shown in B and C. Mice were generated with the targeted ES 
cells, and Cre recombination in vivo was used to excise the neomycin cas-
sette, leading to the bottom confi guration containing the R94Q mutation 
and loxP scar (arrowhead). (B) PCR screen of ES cells using primer set A 
for detection of the correct targeting of the left arm. Four ES cell clones are 
shown; the fi rst two clones are positive. Because the 5′ primer is outside the 
targeting construct, only correctly targeted clones will yield the desired PCR 
product. (C) PCR screen of ES cells using primer set B for detection of the 
correct targeting of the right arm. The same two ES cell clones are positive. 
Note that the 3′ primer is outside the targeting construct. (D) PCR screen of 
Mfn2 genomic structure after in vivo Cre-mediated excision of the PGK-
 neomycin cassette. Excision leaves behind a 140-bp loxP scar as dia-
grammed. Three sets of PCR reactions were used to confi rm the presence 
of the loxP scar in Mfn2R94Q homozygous MEFs (lane 2) but not wild-type 
MEFs (lane 1). (E) Genotype assay for Mfn2 transcripts. The schematic on 
top shows the genomic Mfn2 locus containing exons 4–6. Exon 5 encodes 
residue 94. A cDNA fragment was amplifi ed using the indicated primers 
in exons 4 and 6. cDNA amplifi cation and restriction digestion was per-
formed on fi rst-strand cDNA from wild-type (+/+), Mfn2R94Q–Mfn2R94Q, 
and Mfn2-null cells. In the Mfn2R94Q cDNA, the engineered R94Q mutation 
(*) introduces an MspA1I site, resulting in cleavage of the 233-bp PCR 
product into 146- and 87-bp fragments. (F) Expression of Mfn1 and the 
Mfn2R94Q allele at endogenous levels. Postnuclear whole cell lysates from 
the  indicated MEFs were separated by SDS-PAGE and immunoblotted 
with an anti-Mfn2 (top) or Mfn1 antibody (middle). β-actin was used as a 
loading control (bottom).
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of mitofusins in each cellular context because Mfn1 and Mfn2 

can form both homooligomeric (Mfn1–Mfn1 or Mfn2–Mfn2) 

and heterooligomeric (Mfn1–Mfn2) complexes (Chen et al., 

2003; Eura et al., 2003). When Mfn2R94Q is expressed in dou-

ble Mfn-null cells, only Mfn2R94Q–Mfn2R94Q homooligomeric 

complexes can be formed, and such complexes are clearly 

 inactive for mitochondrial fusion. In Mfn2R94Q homozygous 

knockin cells, endogenous Mfn1 is still present (Fig. 3 F). 

Therefore, three possible complexes can be formed: Mfn1–

Mfn1, Mfn1–Mfn2R94Q, and Mfn2R94Q–Mfn2R94Q (Fig. 4 A). 

The phenotype of Mfn2-null cells (which contain only Mfn1–

Mfn1 homooligomeric complexes) indicates that endogenous 

levels of Mfn1–Mfn1 complexes alone are not suffi cient to 

promote tubular mitochondria. Given that Mfn2R94Q–Mfn2R94Q 

complexes are nonfunctional (Fig. 2), these results strongly 

suggest that Mfn2R94Q can cooperate with Mfn1 to form 

Mfn1–Mfn2R94Q complexes capable of promoting fusion.

Mfn2 CMT2A mutants physically associate 
with wild-type Mfn1 and Mfn2
If this model of complementation is correct, Mfn2R94Q should 

be able to physically associate with wild-type Mfn1. We tested 

whether the Mfn2 CMT2A mutants could coimmunoprecipi-

tate with wild-type Mfn1 and Mfn2. In MEFs, all of the Mfn2 

CMT2A mutants associated with Mfn1 at normal levels with 

the exception of Mfn2T105M, which showed lower levels (Fig. 

5 A). Similarly, the Mfn2 CMT2A mutants associated with 

Mfn2, although at slightly reduced levels compared with wild-

type Mfn2. Again, Mfn2T105M had low binding. It should be 

noted that when analogous immunoprecipitation experiments 

were performed in transfected 293T cells, the reduction in 

 Mfn2T105M binding was subtle (unpublished data). Therefore, 

although Mfn2T105M has reduced binding to wild-type Mfn1 

and Mfn2, this defect is not observed at high expression levels. 

The engineered GTPase mutant Mfn2K109A, which interacted 

strongly with Mfn1, interacted poorly with Mfn2. These results 

suggest that the mutant Mfn2 molecules can interact with 

wild-type Mfn1 and Mfn2 and can potentially participate in or 

modify the fusion reaction.

Mfn1 but not Mfn2 complements CMT2A 
alleles to induce mitochondrial fusion
To learn more about the complementation of Mfn1 and  Mfn2R94Q 

and whether this is a unique property of the Mfn2R94Q allele, 

we tested all of the nonfunctional Mfn2 CMT2A alleles for 

complementation with wild-type Mfn1 and Mfn2. We expressed 

alleles Mfn2R94Q, Mfn2R94W, Mfn2T105M, Mfn2P251A, and Mfn2R280H 

in either Mfn2- or Mfn1-null cells and scored mitochondrial 

profi les. Most Mfn2-null cells have fragmented  mitochondrial 

morphology, with only �13% of the cells having short mito-

chondrial tubules. The expression of wild-type Mfn2 in these 

cells restores normal tubular mitochondrial morphology 

(Fig. 6, A and C). Remarkably, the expression of each of the fi ve 

CMT2A alleles into Mfn2-null cells resulted in extensive mito-

chondrial tubulation. The GTPase mutant Mfn2K109A was also 

able to induce mitochondrial tubulation, although its effect was 

considerably weaker than that of the CMT2A alleles. Because 

Mfn2-null cells contain Mfn1, the expression of CMT2A alleles 

in Mfn2-null cells results in the formation of three possible 

complexes: Mfn1–Mfn1, Mfn1–Mfn2CMT2A, and Mfn2CMT2A–

Mfn2CMT2A (Fig. 6 A). These results strongly support and 

 generalize our interpretation of the Mfn2R94Q homozygous 

Figure 4. Tubular mitochondria in Mfn2R94Q–Mfn2R94Q cells. (A) Represent-
ative images of mitochondrial morphology in wild-type (+/+), Mfn2R94Q–
Mfn2R94Q, and Mfn2-null (−/−) cells. Mitochondria were visualized by 
MitoTracker red staining. Below each cell, the potential mitofusin oligomers 
are listed. Bar, 10 μm. (B) Quantitation of mitochondrial morphology. For 
each cell line, 100 cells were scored in three independent experiments. 
 Error bars indicate SD.

Figure 5. Physical association of mutant Mfn2 with 
wild-type Mfn1 and Mfn2. (A) Myc-tagged Mfn2 
mutants were expressed in double Mfn-null cell lines 
stably expressing HA-tagged Mfn1. Anti-myc immuno-
precipitates (myc IP) and postnuclear lysates (lysate) 
were analyzed by Western blotting with anti-myc 
and anti-HA antibodies. Mock (−) or Drp1-myc–
 infected cells were used as negative controls. The 
relative load of the immunoprecipitates was 14 
times that of the lysates. (B) Same as in A except 
performed in double Mfn-null cell lines stably 
 expressing HA-tagged Mfn2. Positions of the Mfn2-
myc and Drp1-myc bands and positions of molecular 
mass markers (given in kilodaltons) are indicated.
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knockin cell line: Mfn2 disease alleles can cooperate with Mfn1 

to promote fusion activity. This activity is likely mediated 

by Mfn1–Mfn2CMT2A heterooligomers. Because even mutant 

 Mfn2K109A shows a low level of complementation with Mfn1, 

Mfn2 need not have GTPase activity to cooperate with Mfn1.

In contrast, the expression of mutants Mfn2R94Q, Mfn2R94W, 

Mfn2T105M, Mfn2P251A, and Mfn2R280H in Mfn1-null cells did not 

induce tubulation (Fig. 6, B and D). Mfn1-null cells expressing 

these alleles had extensively fragmented mitochondria. In this 

experiment, only Mfn2 complexes can be formed: Mfn2–Mfn2, 

Mfn2CMT2A–Mfn2CMT2A, and Mfn2–Mfn2CMT2A (Fig. 6 B). 

Therefore, in contrast to Mfn1–Mfn2CMT2A complexes, Mfn2–

Mfn2CMT2A complexes do not appear to be competent for fusion.

Complementation between mutant 
Mfn2 and Mfn1 in trans
The aforementioned experiments demonstrate that Mfn1 can 

complement Mfn2 CMT2A alleles. By the nature of the experi-

ment, it is impossible to know whether the complementation is 

occurring on the same mitochondria (in cis), between adjacent 

mitochondria (in trans), or both. To test whether the nonfunc-

tional Mfn2 mutants can support fusion with wild-type mito-

chondria in trans, we returned to the PEG cell hybrid assay for 

mitochondrial fusion. In this assay, mitochondria from double 

Mfn-null cells cannot fuse with mitochondria from wild-type 

cells, indicating a requirement for mitofusins on adjacent mito-

chondria (Koshiba et al., 2004; Chen et al., 2005). We expressed 

Mfn2 alleles in double Mfn-null cells and assessed mitochon-

drial fusion in cell hybrids with wild-type cells. In this experi-

mental scheme, Mfn2CMT2A–Mfn2CMT2A complexes present on 

one set of mitochondria are tested for fusion with mitochondria 

containing a full complement of wild-type mitofusin complexes 

(Mfn1–Mfn1, Mfn2–Mfn2, and Mfn1–Mfn2 complexes). As 

expected, when double Mfn-null cells expressing wild-type 

Mfn2 were fused with wild-type cells, we found extensive co-

labeling of mitochondria (Fig. 7 B). Moreover, the Mfn2 CMT2A 

alleles Mfn2R94Q, Mfn2R94W, Mfn2P251A, and Mfn2R280H induce 

readily detectable but moderate levels of fusion that are lower 

than those of wild-type Mfn2 but are much more than those of 

Mfn2K109A (Fig. 7, A and B). However, the Mfn2T105M allele 

 allows essentially no mitochondrial fusion. These results indicate 

that most Mfn2 CMT2A mutants can function in trans with 

wild-type mitofusin complexes.

To determine whether this complementation is caused by 

interactions with wild-type Mfn1–Mfn1 or Mfn2–Mfn2 

 complexes, we next tested the Mfn2 CMT2A alleles in mito-

chondrial fusion assays with Mfn2-null and Mfn1-null cells.  

Mfn2 mutants Mfn2R94Q, Mfn2R94W, Mfn2P251A, and Mfn2R280H 

Figure 6. Mfn1 but not Mfn2 complements Mfn2 CMT2A 
 alleles. (A and B) Representative images of mitochondrial 
morphology in Mfn2-null (A) or Mfn1-null MEFs (B) expressing 
myc-tagged Mfn2 alleles. Mitochondria are visualized by 
 mitochondrially targeted EGFP (green), and the infected cells 
are detected by anti-myc immunofl uorescence (red). Note that 
Mfn2R94Q promotes tubulation in Mfn2-null but not Mfn1-null 
MEFs. The potential mitofusin complexes in each experiment 
are listed on the right, with the CMT2A mutant molecule indi-
cated by Mfn2*. Bars, 10 μm. (C and D) Quantitation of 
 mitochondrial morphology in Mfn2- (C) and Mfn1-null MEFs (D) 
expressing Mfn2 CMT2A alleles. In Mfn1-null MEFs, very 
short mitochondrial tubules were scored as fragmented. 150 
cells were scored in two independent experiments. Error bars 
indicate SD.
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promoted moderate levels of mitochondrial fusion in cell 

 hybrids with Mfn2-null cells (Fig. 7, A and C). In contrast, the 

same mutants induced no mitochondrial fusion in hybrids with 

Mfn1-null cells (Fig. 7, A and D). These results demonstrate 

that most Mfn2CMT2A alleles can promote fusion when exposed 

to membranes containing Mfn1 but not Mfn2. As expected from 

its failure to promote fusion with wild-type mitochondria, 

Mfn2T105M showed no fusion activity with either the Mfn2- or 

Mfn1-null cells.

Discussion
The Mfn1–Mfn2 heterooligomeric 
complex is an important regulator 
of mitochondrial dynamics
Previous immunoprecipitation studies indicated that Mfn1 and 

Mfn2 form heterooligomeric complexes (Chen et al., 2003; Eura 

et al., 2003). However, most functional studies have focused on 

Mfn1 or Mfn2 in isolation, and, therefore, we have little infor-

mation on the functional importance of the heterooligomeric 

complex. The only direct demonstration that this complex is 

functional comes from the observation that cell hybrids between 

Mfn1- and Mfn2-null cells show low levels of mitochondrial 

 fusion, suggesting that Mfn1–Mfn2 heterotypic complexes formed 

in trans have fusion activities that are roughly comparable with 

homooligomeric Mfn1 or Mfn2 complexes alone (Chen et al., 

2005). Our current study of Mfn2 disease alleles reveals an inti-

mate interplay between Mfn1 and Mfn2 in mediating mitochon-

drial fusion. A subset of Mfn2 disease alleles lack mitochondrial 

fusion activity in isolation but show substantial fusion activity in 

the presence of Mfn1. In addition, PEG fusion assays (Fig. 7) 

indicate that this cooperation between Mfn1 and mutant Mfn2 at 

least partially occurs through interactions in trans. Such close 

physical and functional interactions between Mfn1 and Mfn2 

support the view that they have similar biochemical functions 

during mitochondrial membrane fusion. These results highlight 

the importance of heterooligomeric Mfn1–Mfn2 complexes in 

the control of mitochondrial dynamics.

Our study greatly extends a different type of complemen-

tation demonstrated in the yeast mitofusin Fzo1p. Fzo1p dem-

onstrates strong complementation between specifi c pairs of null 

alleles, resulting in the restoration of mitochondrial tubules 

(Griffi n and Chan, 2006). For example, an fzo1 mutant contain-

ing a GTPase mutation can cooperate with an fzo1 mutant con-

taining a heptad repeat mutation to promote mitochondrial 

fusion. Such complementation refl ects the oligomeric nature of 

mitofusin complexes and indicates that each subunit of the 

oligomer need not be fully functional to provide function to the 

complex. However, this previous study (Griffi n and Chan, 2006) 

was limited to Fzo1 homooligomeric complexes, unlike the het-

erooligomeric complexes studied here. Indeed, we have not 

been able to demonstrate a similar type of complementation in 

Mfn1 or Mfn2 homooligomeric complexes (unpublished data).

Functional heterogeneity of CMT2A alleles
Our results reveal some functional heterogeneity in Mfn2 

 mutants that underlie CMT2A disease. The Mfn2T105M allele 

Figure 7. Mfn1 complements Mfn2 CMT2A mutants in trans. (A) Double 
Mfn-null MEFs expressing mitochondrial DsRed and Mfn2R94Q were fused 
to wild-type cells (left), Mfn2-null cells (middle), or Mfn1-null cells (right). As 
indicated by the green circles, the latter three cell lines expressed mitochon-
drial EGFP. For each cell line, all potential mitofusin oligomers are listed 
under the horizontal line. Colabeled mitochondrial tubules (indicated with 
arrows) are clearly observed in cell hybrids with wild-type and Mfn2-null 
cells but not with Mfn1-null cells. Bar, 10 μm. (B–D) Double Mfn-null cells 
expressing the indicated Mfn2 mutant were assayed for mitochondrial 
 fusion in cell hybrids with wild-type cells (B), Mfn2-null cells (C), and Mfn1-
null cells (D). For each PEG fusion assay, at least 200 cell hybrids 
were scored.
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behaved somewhat differently from the other nonfunctional 

 alleles. Mfn2T105M, like the other nonfunctional alleles, could be 

complemented by wild-type Mfn1. However, it showed reduced 

physical interactions with Mfn1 and did not show complemen-

tation with Mfn1 in trans. Presumably, Mfn2T105M can be com-

plemented by Mfn1 in cis but not in trans.

Over half of the CMT2A alleles are nonfunctional in dou-

ble Mfn-null cells, but the rest show substantial fusion activity. 

More sensitive assays will be necessary to understand how the 

functional alleles affect mitochondrial dynamics. Some of the 

functional alleles caused severe mitochondrial aggregation 

when overexpressed. Future studies will determine the physio-

logical signifi cance of this phenotype.

Implications for pathogenesis 
and treatment of CMT2A
Our results have important implications for understanding the 

pathogenesis of CMT2A, especially because four of the fi ve 

nonfunctional mutant alleles described in this study (Mfn2R94Q, 

Mfn2R94W, Mfn2T105M, and Mfn2R280H) are among the most com-

monly identifi ed Mfn2 mutations (Zuchner et al., 2004, 2006; 

Kijima et al., 2005; Lawson et al., 2005; Chung et al., 2006; 

Verhoeven et al., 2006). In contrast to the broad expression pat-

tern of Mfn2, one of the remarkable features of CMT2A disease 

is its apparent cell type specifi city. In most patients, the clinical 

features are restricted to the motor and sensory neurons of the 

peripheral nervous system. In a subset of patients (designated as 

hereditary motor and sensory neuropathy type VI), the optic 

nerve is additionally affected (Zuchner et al., 2006). A recent 

study has suggested possible involvement of the central ner-

vous system (Chung et al., 2006). This clinical picture suggests 

that most cells in CMT2A patients likely have only mild pertur-

bations in mitochondrial dynamics. Moreover, in a typical 

patient, only the longest peripheral sensory and motor neurons 

are  affected. This length dependence suggests that even in 

the  peripheral nervous system, the defects in mitochondrial 

 dynamics are not catastrophic because only the neurons with the 

highest demands for precise control of mitochondrial fusion 

are damaged.

Our studies of the Mfn2R94Q knockin mice are ongoing, 

but initial observations support the conclusion that CMT2A dis-

ease results from a mild perturbation in mitochondrial  dynamics. 

Thus far, we have not observed a neurological phenotype in the 

heterozygous knockin mice. The lack of an obvious peripheral 

neuropathy in these mice may refl ect the fact that motor neurons 

in mice are much shorter than in humans, where their extreme 

length likely places more stringent requirements on the precise 

regulation of mitochondrial fusion. Although Mfn2-null ani-

mals die in utero, Mfn2R94Q homozygous animals are born live 

and die at �3 wk of age. The much milder phenotype of 

 Mfn2R94Q homozygous animals compared with Mfn2-null ani-

mals further supports our conclusion that Mfn2R94Q can be 

 partially complemented by endogenous Mfn1. Mfn2R94Q homo-

zygous animals have severe movement defects (unpublished data), 

and we are currently analyzing the basis for this phenotype.

In considering the effects of Mfn2 mutations, our results 

indicate that the full complement of mitofusins in any given cell 

type is the most relevant parameter in determining the dysfunc-

tion of mitochondrial fusion. This concept is clearly illustrated 

in our analysis of Mfn2 CMT2A mutations in MEFs. When 

 Mfn2R94Q is expressed in double Mfn-null cells, it is completely 

defi cient for fusion activity, indicating that homooligomeric 

Mfn2R94Q complexes are nonfunctional. In contrast, MEFs con-

taining homozygous Mfn2R94Q knockin mutations show only 

mild defects in mitochondrial morphology, a phenotype that is 

quite different from the extensive mitochondrial fragmentation 

observed in Mfn2-null MEFs. This observation indicates that in 

the presence of endogenous wild-type Mfn1, Mfn2R94Q is actu-

ally highly functional. By expressing Mfn2R94Q and other  mutant 

alleles in Mfn1-null versus Mfn2-null cells, we found that wild-

type Mfn1 but not Mfn2 can cooperate with mutant Mfn2 to 

promote mitochondrial fusion.

These results suggest that the widespread expression pat-

tern of Mfn1 (Rojo et al., 2002; Santel et al., 2003) protects 

 mitochondrial dynamics in most cells in CMT2A patients carrying 

nonfunctional alleles of Mfn2. CMT2A is an autosomal domi-

nant disease, with patients carrying one mutant and one wild-

type allele of Mfn2. In cell types that express Mfn1, Mfn1 

homooligomeric complexes would be normal, and Mfn1–Mfn2 

heterooligomeric complexes would also be largely normal as a 

result of the cooperation between Mfn1 and mutant Mfn2 (Fig. 8). 

For Mfn2 homooligomeric complexes, Mfn2wt–Mfn2wt com-

plexes would be functional, whereas Mfn2wt–Mfn2CMT2A and 

Mfn2CMT2A–Mfn2CMT2A complexes would be nonfunctional. 

Therefore, of the three classes of mitofusin complexes, only a 

subset of one class is nonfunctional, resulting in mild mitochon-

drial fusion defects in most cells. In cell types with low or no 

Mfn1 expression, the full complement of mitofusin complexes 

consists primarily of Mfn2 homotypic complexes. In relative 

terms, such cells would experience a severe loss of mito-

chondrial fusion because the majority of mitofusin com-

plexes (Mfn2wt–Mfn2CMT2A and Mfn2CMT2A–Mfn2CMT2A) lack 

mitochondrial fusion activity. Therefore, we propose that in 

CMT2A disease, the widespread expression pattern of Mfn1 

serves to protect  mitochondrial fusion in most cells through 

Figure 8. Mfn1 complements mutant Mfn2 to preserve mitochondrial 
 fusion in most CMT2A cells. (A) In most wild-type cell types, there are three 
classes of mitofusin complexes (I, II, and III) that maintain mitochondria in 
a highly dynamic state. (B) CMT2A patients are heterozygous for a mutant 
Mfn2 allele (designated Mfn2*). In most cells, defects in mitochondrial 
 dynamics are mild because only a subset of class III complexes are nonfunc-
tional (highlighted in black). In contrast, cells expressing little or no Mfn1 
would suffer a large decline in mitochondrial fusion activity. Such cells con-
tain only class III complexes, and the majority of these are nonfunctional.
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 heterooligomeric complex formation with mutant Mfn2. 

 Peripheral nerves may contain little or no Mfn1 expression to 

compensate for mutant Mfn2. The resulting defects in mito-

chondrial dynamics coupled with the extreme length of these 

neurons lead to neuronal dysfunction and axon degeneration.

Our results emphasize the close interplay between Mfn1 

and Mfn2 and the importance of the Mfn1–Mfn2 heterooligo-

mer complex in control of mitochondrial fusion. Finally, our 

results suggest that an important area of future study is the reg-

ulation of Mfn1 levels. Methods to increase Mfn1 expression 

in the peripheral nervous system may benefi t CMT2A patients 

by promoting the complementation of mitochondrial fusion.

Materials and methods
Cloning and retroviral transduction
The mitofusin 7xMyc and 3xHA constructs were described previously 
(Chen et al., 2003). The CMT2A point mutations were introduced to Mfn2-
7xMyc in pcDNA3.1 by PCR with primers encoding the mutations. After 
cloning, the entire amplifi ed region was verifi ed by sequencing. The  mutant 
cDNAs were then cloned into the retroviral construct pCLBW, and viral 
 supernatant was produced and collected as described previously (Chen 
et al., 2003).

Immunofl uorescence
Immunofl uorescence against Mfn2-7xMyc was performed as described 
previously (Chen et al., 2003). In brief, cells were grown on poly-L-lysine–
treated coverslips, fi xed in formalin, permeabilized with 0.1% Triton X-100 
in PBS, and blocked with 5% bovine calf serum in PBS. The 9E10 primary 
antibody was detected with a Cy3-labeled secondary antibody. Coverslips 
were mounted with GelMount and imaged with a plan NeoFluar 63× NA 
1.25 oil immersion objective (Carl Zeiss MicroImaging, Inc.) on a laser-
scanning confocal microscope (model 410; Carl Zeiss MicroImaging, 
Inc.). Images were acquired with LSM software (version 1; Carl Zeiss 
 MicroImaging, Inc.) and pseudocolored in Photoshop CS (Adobe). Mito-
chondria were visualized by mitochondrially targeted GFP or DsRed as 
previously described (Chen et al., 2005). In other cases, mitochondria 
were stained using 150 nM MitoTracker red CMXRos (Invitrogen) and post-
fi xed in acetone.

PEG fusion assay
PEG fusion assays were performed in the presence of cycloheximide as 
 described previously (Chen et al., 2003, 2005). Cell hybrids were fi xed 
7 h after PEG treatment. The mitochondrial GFP signal was enhanced 
by incubation with an anti-GFP antibody conjugated to AlexaFluor488 
(Invitrogen).

Derivation of Mfn2R94Q homozygous MEFs
The two arms of the targeting construct were derived from Mfn2 genomic 
sequence (129/SvJ background) and subcloned into the targeting vector 
pPGKneobpAlox2PGKDTA. Before subcloning of the left arm, the R94Q 
mutation was engineered into exon 5 by PCR. The targeting construct was 
verifi ed by DNA sequencing. The linearized targeting construct was elec-
troporated into low-passage 129/SvEv ES cells as described previously 
(Chen et al., 2003). Correctly targeted ES clones were identifi ed by PCR 
using the primer sets A and B depicted in Fig. 3 A. Chimeric mice were 
generated by the injection of ES cells into C57BL/6 blastocysts. After con-
fi rmation of germline transmission, the fl oxed neomycin cassette was 
 removed by mating the knockin mice with the EIIA-cre deletor line (Lakso 
et al., 1996). Heterozygous knockin animals were mated, and MEFs were 
derived from day 10.5 embryos as described previously (Chen et al., 
2003). Homozygous embryos were identifi ed by PCR genotyping of extra-
embryonic membranes. Wild-type, Mfn1-null, Mfn2-null, and Mfn2R94Q–
Mfn2R94Q MEFs were cultured in DME containing 10% bovine calf serum, 
1 mM L-glutamine, and penicillin/streptomycin. Double Mfn-null MEFs were 
cultured with 10% FCS in place of bovine calf serum.

RNA isolation and RT-PCR
MEFs were resuspended directly in 800 μl STAT-60 (IsoTex Diagnostics, 
Inc.), and RNA was isolated according to the manufacturer’s instructions. 
cDNA was generated by fi rst-strand synthesis on total RNA using oligo(dT) 

and Superscript II RT (Invitrogen). A cDNA fragment containing exon 5 was 
subsequently amplifi ed (primers 5′-G G G G C C T A C A T C C A A G A G A G -3′ 
and 5′-G C A G A A C T T T G T C C C A G A G C -3′). This product was digested 
overnight at 37°C with MspA1I.

MEF lysates
MEF cell lysates were prepared from confl uent 6-cm plates. For protein 
 lysates, cells were washed once with PBS and resuspended in 400 μl lysis 
buffer (150 mM NaCl, 50 mM Tris, pH 8.0, 4 mM MgCl2, 1% Triton 
X-100, and protease inhibitor cocktail [Roche]). Nuclei were removed by 
centrifugation, and postnuclear lysates were quantifi ed with a protein 
 assay (Bio-Rad Laboratories). 12 μg of each sample was separated by an 
8% SDS-PAGE and immunoblotted with an anti-Mfn2 antibody (Sigma-
 Aldrich), an anti-Mfn1 antibody (Chen et al., 2003), or anti–β-actin as a 
loading control. Mitofusin antibodies (diluted 1:1,000) were detected 
by HRP-conjugated secondary antibodies and ECL detection reagents 
(GE Healthcare).

Coimmunoprecipitation assay
Double Mfn-null cells were infected with retrovirus encoding Mfn1-3xHA or 
Mfn2-3xHA. Infected cells were selected by culture in media containing 
bovine calf serum, which does not support uninfected double Mfn-null cells. 
Each cell line was subsequently infected with virus encoding Mfn2-7xMyc 
constructs or Drp1-7xMyc. Postnuclear lysates were generated as  described 
above for MEFs (5–6 d after infection) and were immunoprecipitated with 
9E10 antibody coupled to protein A–Sepharose beads. HA.11 (Covance) 
and 9E10 antibodies were used for immunoblotting.

Online supplemental material
Fig. S1 shows the mitochondrial profi les of MEFs expressing Mfn2 CMT2A 
 alleles; this data is summarized in Fig. 1 C. Fig. S2 shows mitochondrial 
aggregation in MEFs highly overexpressing Mfn2 CMT2A alleles. Fig. S3 
shows that at low infection rates, recombinant Mfn2 is present at approxi-
mately fourfold the level of endogenous Mfn2. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200611080/DC1.
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