
Neurobiology of Stress 22 (2023) 100515

Available online 11 January 2023
2352-2895/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Effects of neuromodulation on cognitive and emotional responses to 
psychosocial stressors in healthy humans 

Tabitha E.H. Moses, Elizabeth Gray, Nicholas Mischel, Mark K. Greenwald * 

Dept. of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, Detroit, MI, USA   

A R T I C L E  I N F O   

Handling Editor: Dr R Victoria Risbrough  

Keywords: 
Neuromodulation 
Stress 
Intervention 
rTMS 
tDCS 

A B S T R A C T   

Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. 
Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic- 
pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending 
on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and 
safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may 
occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and 
how the body regulates these responses can provide insight into ways that psychobiological reactivity can be 
modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into 
these interventions may provide further insights into the brain circuits that modulate stress reactivity. This re-
view focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in 
altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, 
it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will 
emphasize populations with no known pathology and consider how these results may translate to those with 
psychiatric pathologies.   

1. Stress regulation 

1.1. Overview 

Stress is one of the most significant contributors to 21st century 
health problems. Stress reactivity occurs via multiple mechanisms 
(McEwen, 2007). In humans, stressors represent any threat to 
well-being, or any real or perceived disruption of physiological ho-
meostasis (Goldstein and McEwen, 2002; Myers et al., 2012). Homeo-
stasis is regulated by multiple brainstem nuclei that respond during 
departure from physiologic set-point (Chrousos and Gold, 1992; Park 
et al., 2020). Physiologic stressors (e.g. injury, exercise) often affect 
physiologic set-points, such as temperature, blood volume, blood pres-
sure, and pH (Davies, 2016). Psychosocial stressors (e.g. public 
speaking) disrupt homeostasis indirectly by perturbing emotional bal-
ance, which then modifies physiological responses (McKlveen et al., 
2013, 2015). In contrast to disruptions of physiological homeostasis, 
responses to psychosocial stressors begin in higher brain regions such as 
the prefrontal cortex (PFC) and inter-connected limbic nuclei. Despite 

this difference in origin, there is considerable overlap between the 
physiological systems and neurotransmitters involved in both physio-
logical and psychosocial stress responses (Ulrich-Lai and Herman, 
2009). 

Responses to stressors are produced by the sympatho-adreno- 
medullary (SAM) axis and hypothalamic-pituitary-adrenocortical 
(HPA) axis. The SAM-axis mediates immediate responses to stressors 
(within seconds) via increased sympathetic nervous system (SNS) acti-
vation and decreased parasympathetic nervous system (PNS) activation 
(Carlson and Kraus, 2021; McCorry, 2007). The most abundant SNS 
neurotransmitters in the body are norepinephrine (NE) and epinephrine 
(E), which activate adrenergic receptors (Baak, 2001), and produce ef-
fects that depend on receptor subtype(s) and effector organ. Consistent 
acute responses include increased respiration, increased heart rate, 
blood pressure, and pupil dilation (Guyenet, 2006; Guyenet et al., 2013; 
Jänig, 2006; Molina, 2005; Ziemssen and Siepmann, 2019). In contrast 
to immediate SAM responses, HPA-axis responses occur over minutes to 
hours. During HPA axis activation, the adrenal cortex releases gluco-
corticoids, especially cortisol (Keller-Wood and Dallman, 1984). 
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Glucocorticoids act on glucocorticoid receptors, ubiquitous throughout 
the brain and periphery, which regulate genes involved in development, 
inflammation, and immune response (Dickerson and Kemeny, 2004; 
Kadmiel and Cidlowski, 2013; Uchoa et al., 2014). Effects of glucocor-
ticoids occur in two stages (Joëls et al., 2012). Immediate effects peak 
20–30 min after stressor onset and reflect glucocorticoid binding to 
membrane-bound receptors, which induces rapid, non-genomic effects 
such as alterations in adrenergic receptor trafficking to the membrane 
(Joëls et al., 2013). Delayed genomic effects occur due to glucocorticoid 
binding to cytoplasmic receptors; these effects begin >1 h after stress 
onset and continue for several hours resulting in changes in gene tran-
scription and translation (Groeneweg et al., 2012; Hermans et al., 2014). 

1.2. Acute stress in humans 

1.2.1. Neural regulation of acute stress response 
The various neural mechanisms associated with acute stress are 

detailed elsewhere (Dedovic et al., 2009a; Herman et al., 2012; Myers 
et al., 2012; Shirazi et al., 2015; Ulrich-Lai and Herman, 2009). Here, we 
briefly outline key brain regions that regulate acute stress responses to 
provide a foundation for discussing the effects of neuromodulation. 
Neural regulation and responses to stressors may differ based on the 
stressor type; due to the substantial impact of psychosocial stressors on 
people with psychiatric disorders, this narrative review will focus on 
mechanisms that are relevant to psychosocial stressors in healthy per-
sons (see Table 1 for a list of key psychosocial stressors). We know that 
neural responses to stressors can vary depending on underlying patho-
physiology; therefore, it is important to review these mechanisms in 
healthy persons to ensure a thorough understanding of how different 
pathophysiology impacts these responses. Although SAM and HPA re-
sponses are differentially controlled, there is overlap in their regulation 
at a neural level, and changes in one system are typically mirrored by 
changes in the other. 

The neural stress response can be broadly viewed as consisting of 
three levels of regulation (Ulrich-Lai and Herman, 2009). Fig. 1 shows 
details of key regions involved in this regulatory system. The first ‘bot-
tom-up’ stage is monitored via the brainstem, which responds to signals 
of homeostatic imbalance, e.g. pain and inflammation (Myers et al., 
2017; Petrovic et al., 2004; Salcido et al., 2018). Some imbalances can 
be life-threatening (e.g. hemorrhage) so immediate response is required 
and reflex arcs control rapid initial SNS responses (Ziemssen and Siep-
mann, 2019). Brainstem connections to sites in the midbrain and fore-
brain integrate, modulate, and monitor SAM responses (Herman et al., 
2005; McKlveen et al., 2013, 2015; Ross and Van Bockstaele, 2020; 
Ulrich-Lai and Herman, 2009). 

The hypothalamus plays a major role in the second or ‘middle- 
management’ level of psychosocially-mediated SAM and HPA responses 
(Ulrich-Lai and Herman, 2009). The hypothalamus and bed nucleus of 
the stria terminalis (BNST) are key integrators at this level. The BNST is 
a grey matter structure within the extended amygdala, which is a relay 
site for HPA-axis responses (Crestani et al., 2013; Dumont, 2009; Lebow 
and Chen, 2016). Limbic modulation of the HPA-axis is primarily 
mediated by BNST subregions that serve distinct roles in the stress 
response (Choi et al., 2007; Herman et al., 2003). 

There is a complex interplay between signals that modulate SAM and 
HPA-axis basal tone and responses to stressors. Whereas the hypothal-
amus and BNST integrate these signals, forebrain areas including the 
PFC, amygdala, and hippocampus are responsible for ‘top-down’ regu-
lation of these responses (Herman et al., 2005; Ulrich-Lai and Herman, 
2009). These forebrain areas process higher-order sensory inputs 
alongside ascending inputs and modulate responses to physiological and 
psychological stressors. As psychosocial stressors indirectly influence 
physiological measures of homeostasis, there is no recognition of ‘psy-
chosocial stress’ via brainstem pathways; however, SAM and HPA cir-
cuits are activated. Outputs from limbic areas such as the amygdala and 
hippocampus converge on subcortical sites responsible for ‘middle 

management’ of stress responses and their roles depend on the subre-
gion activated and stressor type (Dayas et al., 1999, 2001; Herman and 
Mueller, 2006; Prewitt and Herman, 1997; Sawchenko et al., 2000; Xu 
et al., 1999). 

Neural systems that regulate stress responding can be divided by the 
type of activity that is regulated (SAM or HPA-axis), type of stress 
recognized (physical vs. psychological), and direction of regulation 
(activation or inhibition) (Choi et al., 2007; Herman et al., 2003, 2005; 
Jacobson and Sapolsky, 1991; Pacak, 2000; Sawchenko et al., 2000; 
Ulrich-Lai and Herman, 2009). Importantly for this discussion, psycho-
social stressors have a primarily ‘top-down’ effect, wherein forebrain 
areas process the stressful experiences first, resulting in indirect alter-
ation of physiological measures of homeostasis. This top-down initiation 
of the stress response highlights an important mechanism through which 
neuromodulation could be used to modulate these stress responses. With 
this broad understanding of stressor response and regulation, we next 
focus on experimental induction of acute stress and its direct effects on 
physiological and psychological responses. 

1.2.2. Importance of managing responses to stressors 
Physiological responses to stressors can promote survival and safety, 

but can also produce negative psychobiological effects and facilitate 
development or exacerbation of psychiatric disorders (Jacobson, 2014; 
McEwen and Morrison, 2013; Pacák and Palkovits, 2001). Chronic 
stress-response activation through prolonged or repeated exposures can 
induce a different, sometimes opposite, series of effects. Although the 
role of chronic stress in psychiatric disorders and pathological behavior 
is integral to understanding stress reactivity, it is covered elsewhere 
(Conrad, 2010; Conrad et al., 2017; Herman, 2013; Lupien et al., 2018; 
Picard et al., 2021; Vyas et al., 2016). 

This review focuses on the effects of acute psychosocial stressors and 
the potential for neuromodulation to alter reactivity to these stressors, 
thereby providing insights into the brain circuits that modulate stress 
reactivity. Considerable research into stress interventions focuses on 
treating or preventing pathology, but it is important to first understand 
these mechanisms in non-clinical populations; therefore, this review will 
emphasize populations with no known pathology and consider how 
these results may translate to those with different psychiatric 
pathologies. 

2. Effects of acute stressors 

2.1. Types of experimental stress 

To investigate the effects of acute stressors on human physiological 
and behavioral responses, it is necessary to identify experimental in-
terventions that recapitulate effects of ecological stress. Notably, studies 
show that destruction of ascending brainstem catecholaminergic neu-
rons significantly reduces HPA-axis responses to stressors that cause 
physiological homeostatic imbalance; however, this destruction does not 
alter HPA-axis response to psychological stress, which illuminates 
distinct regulation of stress reactivity (Herman et al., 2003; Ritter et al., 
2003). Psychosocial stress arises from the psychological need to be 
affiliated with others and is therefore defined as any type of social 
threat, which includes social evaluation, social exclusion, social defeat, 
and goal-focused performance evaluation (Kogler et al., 2015). 

The development of reliable experimental psychological stressors is 
complicated because, compared to physical stressors, there is substantial 
interindividual response variability. Although precise methods of psy-
chosocial stress induction vary, Table 1 shows the most common types of 
psychosocial stressor and their effects. The most experimentally ad-
vantageous psychosocial stress-induction procedures should induce 
stress responses (i.e. be effective) for the majority of the population. In 
general, evaluation of the efficacy of psychosocial stress induction fo-
cuses on key markers of SAM and HPA-axis activity: serum ACTH, 
cortisol, and catecholamines (Clemens Kirschbaum et al., 1993; Mutti 
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Table 1 
Overview of methods and effects of common psychosocial stressors used to experimentally induce stress in human subjects.  

Stressor Category Stressor Description Control Approximate 
Duration 

Effects of Stressor on Evidence of 
Habituation on: 

Affect/Cognition Physiology  

Trier Social 
Stress Test 
(TSST) 

Public speaking, 
mental arithmetic, 
anticipation, social 
evaluation 

1. Prepare speech to 
give to a panel of judges 

Friendly TSST Stressor: 10 
min 
anticipation, 10 
min test 

Affective: ↓ 
mood, ↑ stress 
and anxiety 

SAM: ↑ HR & BP, 
inconsistent HRV 
findings 

Affect/Behavior: 
No change in 
subjective stress 

2. Present speech to a 
panel of assessors   

↑ salivary 
α-amylase, plasma 
adrenaline & 
noradrenaline 

Physiology: ↓ 
HRV, HR, and HPA 
response; no change 
in SAM response 

3. Mental arithmetic 
task in front of judges 

Effects: 30–60 
min 

Cognitive: 
Impaired 
working 
memory, 
cognitive 
flexibility, and 
cognitive 
inhibition 

HPA-Axis: ↑ 
cortisol & ACTH 

NOTE: modified 
rTSST created for 
repeated use 

Critical 
Feedback 

Social evaluation Participants receive 
negative feedback 
during a trial, ranging 
from after completion 
of a task to self-criticism 

Neutral or positive 
feedback 

Stressor: 8 min Affective: ↓ 
mood, ↑ stress 
and anxiety 

SAM: ↓ HRV Affect/Behavior: ? 

Effects: ~15 
min 

Cognitive: ? HPA-Axis: No 
effect on cortisol 

Physiology: ? 

Paced Auditory 
Serial Addition 
Task (PASAT) 

Mental arithmetic 1. Participants listen to 
audio recording and are 
given a number about 
every 3 s 

N/A Stressor: Up to 
5 min 

Affective: ↑ 
stress and anxiety 

SAM: ↑ HR & BP, ↓ 
HRV 

Affect/Behavior: ↓ 
stress & anxiety 

2. Must add the number 
they most recently 
heard with the one 
heard before 

Effects: 20–30 
mina 

Cognitive: 
Impaired 
working 
memory, no 
effect on 
cognitive 
inhibition 

HPA Axis: No 
cortisol response 

Physiology: No 
change in 
cardiovascular 
reactivity 

Cyberball Social exclusion 1. Participants play an 
online ball/frisbee 
tossing game with 
fictitious others where 
they are typically "left 
out" 

Inclusion or fair 
play 

Stressor: 3 min 
per condition 

Affective: ↓ 
mood and ↑ 
anxiety 

SAM: ↑ HR & BP, ↑ 
respiratory rate & 
skin conductance, 
↑ salivary 
α-amylase 

Affect/Behavior: ? 

2. Complete 
questionnaire 
afterwards about how 
they felt during the 
game 

Effects: 15–45 
mina 

Cognitive: 
Impaired 
working memory 

HPA-Axis: ↑ 
salivary cortisol 

Physiology: ? 

Iowa Singing 
Social Stress 
Test (I-SSST) 

Public "speaking", 
social evaluation 

1. Participants 
presented with a series 
of neutral messages on 
a screen, with 1-min 
intervals between each 
message block 

N/A Stressor: ~15 
min total, 20 s 
singing 

Affective: ↓ 
mood, ↑ stress 
and anxiety 

SAM: ↑ HR, no 
effect on BP 
↑ in skin 
conductance; 
overall ↑ SAM 
activity 

Affect/Behavior: ? 

2. Last message block 
instructs the participant 
to sing out loud 

Effects: 30–45 
min 

Cognitive: ? HPA-Axis: ↑ 
salivary cortisol 

Physiology: No 
effect on cortisol 
response 

Simple Singing 
Stress Test 
(SSST) 

Public "speaking", 
social evaluation 

1. Participant told to 
think of a song to sing to 
experimenter, given 60- 
sec to prepare 

Reading lyrics out 
loud 

Stressor: ~5 
min 

Affective: ↑ 
stress and anxiety 

SAM: ↑ HR & BP, ↑ 
respiratory rate & 
skin conductance 

Affect/Behavior: ? 

2. Participant recorded 
singing to experimenter     
3. Portions of recording 
are played back 

Effects: ~45 
min 

Cognitive: ? HPA-Axis: ↑ 
salivary cortisol 

Physiology: ? 

4. Participants 
informed that they 
would have to sing 
again at the end and be 
assessed     

Socially 
Evaluated 
Cold-Pressor 
Group Tests 
(SECPT) 

Physiologically 
challenging, Social 
evaluation 

While being recorded, 
participant instructed 
to submerge hand into 
ice water while silently 
staring into camera 
until told to stop 

Warm water, no 
videotaping, 
duration is 
disclosed 

Stressor: 3 min Affective: ↓ 
mood, ↑ stress 

SAM: ↑ HR & BP, Affect/Behavior: 
No effect on 
subjective stress 

Effects: 60 min Cognitive: 
Impaired 
working memory 

HPA-Axis: ↑ 
cortisol & HPA axis 
activation 

Physiology: ↓ HR 
reactivity, no effect 
on BP or cortisol 

(continued on next page) 
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et al., 1989). Meta-analysis of psychological stress induction suggests 
the Trier Social Stress Test (TSST) may be the most reliable when 
considering these biomarkers (Allen et al., 2014; Birkett, 2011; Dick-
erson and Kemeny, 2004). However, neuroimaging studies demonstrate 
that different types of psychosocial stress induction may activate 
different neural regions depending on the type of threat, which provides 
some insight into the complexity of stress-related responses (Noack 
et al., 2019). Studies that have examined subjective measures of stressor 
effects (e.g. drug craving) across different populations have found 
varying results (Sinha, 2009; Sinha et al., 1999, 2011). These findings 
suggest optimal stress-induction methods may differ depending on the 
population and the outcomes of interest. 

Despite improvements upon experimental methods of stress induc-
tion, one concern with both physical and psychosocial stressors is their 
inconsistency (Harris et al., 2005; Liu et al., 2017; Skoluda et al., 2015; 
Takai et al., 2004; van Stegeren et al., 2008). Although these methods 
have improved our basic understanding of stress responses, their utility 
is limited as effects of each stressor vary between and within subjects. 

Giles et al. (2014) compared responses to three commonly-used stressors 
(TSST, cold pressor test [CPT], and mental arithmetic) and found 
different biobehavioral responses to each stressor (Giles et al., 2014). 
This inconsistency between different stressors has been replicated in 
multiple contexts (Singh et al., 1999; Skoluda et al., 2015). As suggested 
by Skoluda et al., 2015) some of these differential responses may be 
partly due to distinct profiles of HPA and SAM activation. Furthermore, 
discordant findings between physiological indices (e.g. serum cortisol) 
and subjective indices (e.g. perceived stress), is unsurprising given the 
different ways in which the responses to stressors are regulated 
(Campbell and Ehlert, 2012). Discrepant outcomes between tasks and 
other major limitations such as lack of placebo-control, brief duration of 
effect, inability to manipulate stressor severity, and habituation 
contribute to disparate findings and small effect sizes reported in 
meta-analyses (Boesch et al., 2014; Gerra et al., 2001; Shields et al., 
2016a). 

Although there are limitations to experimentally-induced psycho-
social stress and discrepancies between physiological and behavioral 

Table 1 (continued ) 

Stressor Category Stressor Description Control Approximate 
Duration 

Effects of Stressor on Evidence of 
Habituation on: 

Affect/Cognition Physiology  

and cognitive 
inhibition 

Montreal 
Imaging Stress 
Task (MIST) 

Mental arithmetic, 
Social evaluation 

1. Participants 
complete a series of 
mental arithmetic tasks 
with induced failure 
algorithm 

Lack of social 
evaluative threat 
(e.g. no negative 
feedback) 

Stressor: 2–6 
min per run 

Affective: ↓ 
mood, ↑ stress 
and anxiety 

SAM: ↑ HR & BP, ↓ 
HRV ↑ stress- 
induced dopamine 
release; ↑ skin 
conductance 

Affect/Behavior: 
No effect on mood 
or stress 
Physiology: ↓ in 
HR and HRV 
reactivity, ↓ HPA- 
axis 

2. Social evaluative 
threat presented by the 
investigator and within 
the program 

Effects: ~45 
mina 

Cognitive: 
Impaired 
memory 
retrieval, no 
effect on short- 
term memory 

HPA-Axis: ↑ 
cortisola 

NOTE: modified 
rMIST created for 
repeated use 

Maastricht Acute 
Stress Test 
(MAST) 

Physiologically 
challenging, Social 
evaluation 

1.5-min preparation 
phase 

Lukewarm water; 
Simple counting, 
no negative 
feedback 

Stressor: 5 min 
preparation, 10 
min exposure 

Affective: ↓ 
mood, ↑ stress 
and anxiety 

SAM: ↑ HR & BP, Affect/Behavior: 
No effect on stress 
or mood 

2. Five SECPT-like trials 
from 60 to 90 s 

Effects: ~30 
min 

Cognitive: No 
effect on working 
memory 

↑ salivary α 
-amylase  

3. Between immersion 
trials, TSST-like mental 
arithmetic trials with 
negative feedback   

HPA-Axis: ↑ 
salivary cortisol 

Physiology: No 
effects on 
α-amylase or 
cortisol 

Yale 
Interpersonal 
Stressor Task 
(YIPS) 

Social evaluation, 
Social exclusion 

1. Discussion on a given 
topic presented by the 
experimenter to 
participant and 2 
confederates 

Given page of 
randomly typed 
letters and asked 
to circle every fifth 
"e" for 5 min 

Stressor: Exp. 
#1: 5 min 
discussion 

Affective: ↓ 
mood, ↑ stress 
and anxiety 

SAM: ↑ HR & BP Affect/Behavior: ? 

2. During discussion, 
confederates employ 
exclusion techniques 
against the participant 

Exp. #2: 15 min    

3. Participant 
completed BSPQ 

Effects: ~30 
min 

Cognitive: ? HPA-Axis: ↑ 
salivary cortisol 

Physiology: ? 

“?” indicates published data on these outcomes could not be identified by the authors at this time. 
Abbreviations: HR: heart rate, HRV: heart rate variability, BP: blood pressure, ACTH: adrenocorticotropic hormone, HPA-axis: hypothalamic-pituitary-adrenocortical 
axis, SAM: sympatho-adreno-medullary axis. 
References: TSST: Allen et al. (2014), 2017; Giles et al. (2014); Clemens Kirschbaum et al., 1993; Labuschagne et al. (2019); Narvaez Linares et al. (2020); N Y L Oei 
et al. (2006); Plessow et al. (2011), Critical Feedback: Chris Baeken et al., 2018; Chida and Hamer (2008); De Raedt et al. (2017); Nummenmaa and Niemi (2004), 
PASAT: Bachmann et al. (2019); Diehr et al. (1998); Gallagher et al. (2018); Hendrawan et al. (2012); Lockwood et al. (2004); Mathias et al. (2004); Tombaugh (2006), 
Cyberball: Eres et al. (2021); Helpman et al. (2017); K. D. Williams and Jarvis (2006); Williamson et al. (2018); Zadro et al. (2004); Zöller et al. (2010), I-SSST and 
SSST: Brouwer et al. (2018); Brouwer and Hogervorst (2014); Jump and Dockray (2021); Le et al. (2021); Reschke-Hernández et al. (2017); Sequeira et al. (2021); van 
der Mee et al. (2020); SECPT: Boyle et al. (2016); Giles et al. (2014); Meir Drexler et al. (2017); Minkley et al. (2014); Schwabe and Schächinger (2018), MIST: De 
Calheiros Velozo et al. (2021); Dedovic et al. (2005); Dedovic, D’Aguiar et al., 2009; Nair et al. (2020); Nitschke et al. (2020); Noack et al. (2019), MAST: Bali and Jaggi 
(2015); Meyer et al. (2013); C. W.E.M. Quaedflieg et al. (2017); Conny W.E.M. Quaedflieg et al. (2013); Shilton et al. (2017); Smeets et al. (2012), YIPS: Stroud et al. 
(2000); Zwolinski (2008).. 

a indicates that effects were measured up to this time. 
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responses to these varying methods of inducing stress, all approaches 
have advanced understanding of the effects of acute stressors on phys-
iological, behavioral, and cognitive outcomes. Next, we will evaluate 
effects of acute stressors on cognitive, and emotional outcomes and the 
theorized mechanisms for these effects. 

2.2. Effects of stressors on 

2.2.1. Neural activity 
Characterizing neurophysiological responses to acute stressors may 

help explain certain cognitive and behavioral changes that occur under 
stress. Neural effects of stressors differ considerably depending on 
multiple factors including stress type and study population (Dedovic 
et al., 2009b; Noack et al., 2019; Wang et al., 2007); therefore, this re-
view presents data only from healthy subjects unless otherwise speci-
fied. A condensed but comprehensive way to explore the CNS response 

to acute stressors is by reviewing key neural networks. The triple model 
of acute stress highlights three neural networks that play key roles in 
cognitive functioning (Menon, 2011). Fig. 2 illustrates the associated 
nodes of each network and their responses to acute stressors; each 
network will be briefly discussed (for an exhaustive review see: (van 
Oort et al., 2017). 

The Default Mode Network (DMN) is active during rest and is 
important for self-referential mental activity (Menon, 2011; Raichle 
et al., 2001). The DMN consistently shows deactivation during 
goal-directed cognitive tasks (Hermans et al., 2014); this switch from 
DMN to other networks (e.g. Central Executive Network) appears to be 
mediated by resting activity in the fronto-insular cortex (rFIC) (Srid-
haran et al., 2008). Although the DMN is not typically considered in-
tegral to the stress response, neuroimaging studies demonstrate that 
under stress, there is consistent activation of the DMN (van Oort et al., 
2017). Stress-induced DMN activation occurs even during situations of 

Fig. 1. Overview of key levels involved in neural 
regulation of responses to acute stressors 
Abbreviations: mPFC: medial prefrontal cortex, 
vmPFC: ventromedial prefrontal cortex, dmPFC: dor-
somedial prefrontal cortex, dlPFC: dorsolateral pre-
frontal cortex, ACC: anterior cingulate cortex, BNST: 
bed nucleus of the stria terminalis, Amy: amygdala, 
HIP: hippocampus, Hypo: hypothalamus, PVN: para-
ventricular nucleus of the hypothalamus, CRF: 
corticotropin-releasing factor, BHM: brainstem ho-
meostatic monitors, MO: medulla oblongata, PAN: 
pre-autonomic neurons.   

Fig. 2. Major neural networks and their roles at 
baseline and after exposure to psychosocial stressors 
Abbreviations: mPFC: medial prefrontal cortex, IPL: 
inferior parietal lobule, PCC: posterior cingulate cor-
tex, dmPFC: dorsomedial prefrontal cortex, dlPFC: 
dorsolateral prefrontal cortex, FEF: frontal eye fields, 
PPC: posterior parietal cortex, dACC: dorsal anterior 
cingulate cortex, IC: insular cortex Amy: amygdala, 
TP: temporal pole.   
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high cognitive demand when it would normally deactivate (Hermans 
et al., 2014). Given the current understanding that large-scale neural 
networks may compete for limited neural resources, excess DMN activity 
could contribute to stress-related cognitive deficits (Fox et al., 2009). 
Analyses of functional connectivity during stress induction have found 
that stressors increase nodal connectivity within the DMN as well as 
between the DMN and the Salience Network, which correlates with 
subjective stress response (Maron-Katz et al., 2016; Quaedflieg et al., 
2015; Vaisvaser et al., 2013). 

The Salience Network (SN) integrates threat detection and response 
to ensure survival during unsafe situations (Corbetta et al., 2008; Seeley 
et al., 2007). The SN reliably responds to salient stimuli, including 
stressors (Kober et al., 2008), with an immediate increase in amygdala 
activity (Oei et al., 2012; van Marle et al., 2009). High levels of cate-
cholamines released in the amygdala and other limbic regions increase 
neuronal excitability (de Kloet et al., 2005), vital for detecting threats 
and regulating arousal and vigilance (Phelps and LeDoux, 2005). Other 
regions of the SN, e.g. thalamus and insula, demonstrate increased ce-
rebral blood flow during acute stress, which positively correlates with 
subjective anxiety (Cameron et al., 2000). Acute stressors also increase 
activity in other regions of the SN, correlating with peripheral bio-
markers such as heart rate variability and blood pressure (Ahs et al., 
2009; Gianaros et al., 2008; Hermans et al., 2011; Pruessner et al., 2008; 
Wager et al., 2009). There may also be changes in functional connec-
tivity between the SN and the DMN in response to stressors and these 
connectivity changes may in turn influence the activity of the Central 
Executive Network (Clewett et al., 2013). 

The Central Executive Network (CEN) is based in frontoparietal brain 
regions and plays a pivotal role in executive function, learning, and 
attention; it is reliably activated during cognitively demanding tasks 
(Menon, 2011; Sridharan et al., 2008). The specific functional connec-
tivity between nodes within the CEN may correspond to different facets 
of executive functioning (Nomi et al., 2017). Stress can impair activation 
of nodes within the CEN (van Oort et al., 2017). Acute stressors have 
been shown to reduce dorsolateral PFC (dlPFC) activation and impair 
task performance during certain executive function tasks (Qin et al., 
2009; Schwabe et al., 2012; van Stegeren et al., 2010; Woodcock et al., 
2019). This CEN deactivation is accompanied by failure to suppress 
DMN activity (Qin et al., 2009), and is partly mediated by activity of 
catecholamines in the PFC (Arnsten, 2009, 2015; Devilbiss et al., 2012). 
Furthermore, concurrent activation of the HPA-axis accentuates the 
negative effects of catecholamines on prefrontal nodes of the CEN 
(Myers et al., 2012). Notably, the effects of HPA-axis activation differ 
based on the time from initial stressor; specifically, longer-term genomic 
effects of glucocorticoids may actually improve dlPFC functioning in 
response to an acute stressor (Joëls et al., 2012; Yuen et al., 2009). 
Details of these long-term effects exceed the scope of this review, but are 
a reminder that baseline SAM and HPA-axis activity and responsiveness 
modulate individual responses to acute stressors. 

Although these three neural networks do not represent all neural 
responses to acute stressors, they highlight key regions implicated in 
behavioral and emotional responses to stressors; specifically, executive 
functioning and emotional reactivity. 

2.2.2. Cognitive functioning: executive function 
Executive functioning (EF) refers to a complex set of neurocognitive 

processes that coordinate planning and goal-directed behavior (Suchy, 
2009). Multiple domains of EF can be grouped into three overarching 
categories: working memory, cognitive inhibition, and cognitive flexi-
bility (Diamond, 2013). Analysis of evidence surrounding effects of 
acute stressors on various facets of EF exceeds the scope of this review 
and study findings are heterogeneous (see: Klier and Buratto, 2020; 
Plieger and Reuter, 2020; Shields et al., 2015; Shields et al., 2016b). 
Meta-analyses of stressor effects on EF identified significant impair-
ments in working memory, cognitive flexibility, and cognitive inhibition 
(i.e. interference control) but enhanced response inhibition after stress 

(Girotti et al., 2018; Shields et al., 2016). Studies find that different types 
of stressors variably influence facets of EF across populations (Deme-
triou et al., 2021; Girotti et al., 2018; Woon et al., 2017). Several pos-
sibilities underlie these differences. Some discrepancies between studies 
may be due to methodological inconsistencies, including mode of stress 
induction, assessment timing, and outcome measures (Becker and 
Rohleder, 2019; Henckens et al., 2011; Shields et al., 2015). Analyses of 
neural mechanisms by which stressors impact EF suggest a possible 
“inverted U′′ relationship between stress and EF, whereby moderate 
levels of stress may enhance EF, compared to very low levels (e.g. 
sedation or fatigue) and very high levels (Chamberlain et al., 2006; 
Lupien and McEwen, 1997; Sandi, 2013). These findings support the-
ories that individual differences (see section 2.3) may drastically impact 
responses to stressors. Notably, these disparate findings also demon-
strate the importance of investigating the effects of stress on EF domains 
separately. Prior reviews have highlighted neural correlates of these 
three categories of EF–working memory, cognitive inhibition, and 
cognitive flexibility–and the effects of stressors on relevant outcomes 
(Arnsten, 2009, 2015; Braem and Egner, 2018; Collette and Van der 
Linden, 2002; Funahashi, 2017; Kim et al., 2017; Shields et al., 2016; 
Uddin, 2021; Zhang et al., 2017). 

The effects of acute stressors on working memory are perhaps the 
best characterized. Working memory refers to the ability to maintain 
and update information (Chai et al., 2018). For details of neural mech-
anisms involved in working memory, see Chai et al., 2018 and Funa-
hashi (2017). In considering the effect of stressors, we must evaluate 
how stress impacts brain regions implicated in working memory; 
detailed mechanisms are elucidated by Arnsten (2009) and Arnsten 
(2015). It is theorized that exposure to an acute stressor may impair 
working memory performance by deactivating the dlPFC and entire CEN 
network. Studies in healthy subjects generally support these theories 
with the majority finding that physical, psychological, and pharmaco-
logical stressors impair dlPFC-dependent measures of working memory 
(Girotti et al., 2018; Shields et al., 2016; Woodcock et al., 2019). 

Cognitive inhibition refers to a person’s ability to inhibit certain 
actions (i.e. response inhibition) or thoughts (i.e. interference control) 
by focusing on task-relevant information or engaging in goal-directed, 
rather than habitual, behavior. For details of neural mechanisms 
involved in cognitive inhibition, see (Chambers et al., 2009; Wager 
et al., 2005; Zhang et al., 2018). The effects of acute stressors on 
cognitive inhibition are less well-characterized than the effects on 
working memory, but the evidence suggests that acute stressors may 
enhance response inhibition and impair cognitive inhibition (Shields 
et al., 2016). Although some data suggest cognitive and response inhi-
bition are part of the same process, other evidence suggests these two 
types of inhibition may be dissociated in certain circumstances and 
pathologies (Friedman and Miyake, 2004; Johnstone et al., 2009). This 
differential effect of acute stressors on types of inhibition may result 
from how stressors can reallocate neural resources to focus attention on 
the cause of the stressor (LeBlanc, 2009; Plessow et al., 2011). Reallo-
cation of cognitive resources would generally impair most types of EF, 
whereas selective attention would be improved (Schwabe et al., 2013; 
Shields et al., 2016); however, not all studies support this hypothesis 
(Sänger et al., 2014). 

Cognitive flexibility refers to the ability to easily change between 
different rules or ways of thinking. For details of neural mechanisms 
involved in cognitive flexibility, see (Ionescu, 2012; Uddin, 2021; Wang 
et al., 2017). The effects of acute stressors on cognitive flexibility have 
been studied least of all EF domains; however, there are consistent 
findings suggesting that acute stressors impair cognitive flexibility 
(Shields et al., 2016). The effects of acute stressors on cognitive flexi-
bility seem to be partly mediated by impairing PFC activity (Kalia et al., 
2018) and modulated by SNS activation and not cortisol (Lapiz and 
Morilak, 2006; Marko and Riečanský, 2018; Shields et al., 2015). Spe-
cifically, stress-induced activation of the locus 
coeruleus-norepinephrine (LC-NE) system increases arousal and NE 
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release in the PFC. Medications that block effects of NE (e.g. sympa-
tholytics) appear to block the deleterious effects of acute stressors on 
cognitive flexibility (Alexander et al., 2007; Girotti et al., 2018). 

While acute stressors may impact other cognitive outcomes such as 
declarative memory (Ballan and Gabay, 2020; Cohen et al., 2020), 
learning (Becker and Rohleder, 2020; Wirz et al., 2018) and long-term 
memory (Henckens et al., 2009; Klier and Buratto, 2020), these major 
domains of EF are important in various aspects of healthy and patho-
logical behavior and serve as useful markers for investigating effects of 
stressors on cognitive function. The PFC plays a major role in EF; 
however, specific PFC subregions and their related neural pathways 
differ depending on the domain of EF. Furthermore, the ways in which 
acute stressors impact EF and through which pathway (i.e. SNS or 
HPA-axis) varies, depending on the neural region and outcome 
measured. Although this section did not elaborate specific mechanisms 
behind these varying responses, this overview sets the stage for 
exploring how neuromodulation can modulate the effects of acute 
stressors on EF. 

2.2.3. Emotional reactivity 
Mood and emotional reactivity are key outcomes in therapeutic ap-

plications of stress amelioration. When exposed to stressors, individuals 
experience increased anxiety and negative affect (Campbell and Ehlert, 
2012; Zapater-Fajarí et al., 2021). Negative mood and emotions caused 
by stressors are associated with a variety of additional negative out-
comes (Du et al., 2018; Ford et al., 2018; Young et al., 2019). Although 
emotions can be described in various ways, they can generally be 
considered to be automatic psychobiological responses to real or imag-
ined situations (Gross and Feldman Barrett, 2011). In one popular 
model, each basic emotion is considered to be a combination of different 
degrees of valence and arousal (Posner et al., 2009; Russell, 1980; Zald, 
2003) wherein valence is defined as the (un)pleasantness of affective 
state and arousal reflects the level of mobilization towards or away from 
a particular stimuli (Lang and Davis, 2006). A stimulus that induces a 
strong negative response would be considered to have low valence and 
high arousal rating. Emotions are distinct from other related affective 
states, e.g. mood has a longer duration than an emotion and is usually 
not related directly to a specific event (Balzarotti et al., 2017; Gross, 
2015). Although the specific definitions of affective states are not clearly 
agreed upon, affect may be considered as an overarching category for 

specific types of psychological states that can include: emotions, mood, 
and stress response (Gross, 2015; Russell, 2003). Despite the fact that 
stress responses are considered distinct from emotional states, one event 
can trigger both a stress response and a negative emotional state; this 
indicates there is considerable overlap between affective responses and, 
consequently, overlap between neural regions involved in these 
responses. 

2.2.3.1. Mechanisms of emotional responses. Initially, the limbic system 
was considered responsible for emotional responses, whereas the PFC 
was responsible for higher-level cognition. This is now understood to be 
an overly simplistic approach, but the limbic system does play a key role 
in emotional responses (LeDoux, 2000). Within the PFC, the orbito-
frontal (OFC) and ventromedial PFC (vmPFC) are associated with 
regulation of emotion (Arnsten et al., 2015). The vmPFC and anterior 
cingulate cortex (ACC) project to structures involved in limbic regula-
tion, including the amygdala, ventral striatum, hypothalamus, and 
brainstem (Arnsten et al., 2015). It may also be possible to separate 
neural regions involved in emotion response based on valence and 
arousal networks (Posner et al., 2009). Extensive research has outlined 
the roles of specific SN nodes in emotional responses and regulation; 
Fig. 3 represents a synthesis of the literature on this topic (Anderson and 
Phelps, 2002; Arnsten et al., 2015; Davidson, 2002; Lang et al., 1998; 
Likhtik, 2005; Morris, 1998; Phan et al., 2004; Posner et al., 2009; Quirk 
et al., 2003; Richter-Levin, 2004; Thayer, 2006; Zald, 2003) and illus-
trates the roles of these neural regions in emotional responses, how they 
may be impacted by acute stressors, and the implications of this 
knowledge for interventions (e.g. neuromodulation). 

The amygdala plays a key role in evaluating and responding to 
stimuli of high emotional salience, i.e. with very low or very high 
valence (Sergerie et al., 2008; Zald, 2003). It projects to higher-order 
sensory areas, the PFC, and hippocampus, enabling it to modulate re-
sponses to emotionally salient situations (Anderson and Phelps, 2001). 
Humans preferentially attend to stimuli of high emotional salience, 
including stressors; thus, one is more likely to focus longer on an 
unpleasant/stressful situation than a neutral one. This attentional 
modulation is primarily controlled by the amygdala (Aston-Jones et al., 
1996; Lang and Davis, 2006; Morris, 1998; Zald, 2003). Exposure to 
aversive stimuli, including stressors, across any sensory modality leads 
to increased amygdala activation; these aversive stimuli may induce 

Fig. 3. Neural mechanisms of emotional responses 
and implications for neuromodulation interventions 
Abbreviations: PFC: prefrontal cortex, CeA: central 
nucleus of the amygdala, NE: noradrenergic, Chol: 
cholinergic, ACh: acetylcholine, HIP: hippocampus, 
VAA: visual association area, Amy: amygdala, dlPFC: 
dorsolateral prefrontal cortex, dlPFC: dorsolateral 
prefrontal cortex, ACC: anterior cingulate cortex, abs: 
absolute, NIBS: Non-invasive brain stimulation.   
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feelings of disgust, anxiety, or ill-defined negative state (Zald, 2003). 
This increased amygdala response occurs to both psychological stressors 
(e.g. unpleasant images) and physical stressors (e.g. hypercapnia) 
(Brannan et al., 2001; Evans et al., 2002; Irwin et al., 1996; Lane et al., 
1997). Although the amygdala modulates emotional responses, it may 
not be necessary for consciously evaluating and reporting subjective 
emotional experiences (Anderson and Phelps, 2002). 

While the amygdala acts as a gate-keeper for processing emotionally 
salient stimuli, the understanding and subjective experiences of 
emotional responses would not be possible without prefrontal regions 
including the vmPFC and ACC. The vmPFC and ACC are integral for 
subjective evaluation of emotional states and have consistently 
demonstrated increased activation in response to aversive stimuli, 
findings that correlate with reports of subjective negative emotions 
(Phan et al., 2004). Evidence suggests the vmPFC regulates the amyg-
dalar response to emotional stimuli to ensure affective responses are not 
excessive (Garcia et al., 1999; Ochsner et al., 2002; Posner et al., 2009). 
The amygdala is under tonic inhibitory control from the vmPFC, so 
changes in vmPFC activity can modulate output of the amygdala 
(Davidson, 2000; Thayer, 2006; Thayer et al., 2012). Stimuli with high 
arousal ratings (positive or negative valence) are associated with 
increased neural activity in the vmPFC and dACC, whereas activity in 
the dlPFC is correlated only with negative valence (i.e. aversive stimuli). 
Activity in the dlPFC inversely correlates with arousal ratings (as ac-
tivity in the dlPFC increases and arousal levels decrease), which suggests 
the dlPFC exerts inhibitory control of arousal (Posner et al., 2009). 

The importance of PFC subregions in subjective emotional responses 
and inhibitory control over autonomic arousal responses provides in-
sights into how stressors may negatively impact responses to emotion-
ally salient stimuli. In fact, the same neurochemical stress responses that 
can impair dlPFC function and working memory can actually strengthen 
amygdalar emotional responses. Thus, stress may switch control of 
behavior from the ‘thoughtful PFC’ to the more habitual, conditioned 
responses of the amygdala (Arnsten, 2009). 

2.2.3.2. Emotional regulation. Importantly, while a situation–stressful 
or otherwise–may generate an emotional response, the way an indi-
vidual evaluates (subconsciously and consciously) the situation, in light 
of their experiences, along with their innate biology modifies the final 
quality and magnitude of responding (Hooley and Gotlib, 2000; Zuck-
erman, 1999). Altering the ways in which a person experiences a situ-
ation can change the emotional response; these changes can occur 
through emotion regulation (Gross, 1999). Emotion regulation is 
distinct from emotion generation and is a critical skill. Emotion regu-
lation is associated not only with changes to the immediate response to 
an event, but also with changes to how the event is encoded in memory 
(Hayes et al., 2010). Evidence suggests there are two key networks 
involved in cognitive reappraisal (Wager et al., 2008). The first involves 
the amygdala and other regions associated with negative emotional 
states whereas the second involves the nucleus accumbens and ventral 
striatum and is more associated with memory and action. Activity within 
the vlPFC appears to be correlated with activity in both of these net-
works, suggesting that the vlPFC plays a key role in emotion regulation 
and cognitive reappraisal (Wager et al., 2008). Effective emotion regu-
lation is associated with enhanced psychological well-being and 
improved ability to cope with and respond to acute stressors (Balzarotti 
et al., 2016; Gross and Feldman Barrett, 2011; Gross and John, 2003; 
Haga et al., 2009). 

This overview of mechanisms of emotion generation and regulation 
provides a foundational understanding that clarifies our use of these 
outcomes in studies of stress responses. It is clear that acutely stressful 
situations can lead to functional alterations resulting in increased 
responsiveness to stressors. Not only does the immediate response to 
acute stressors increase SAM activation and attention to negative, 
arousing stimuli but in some situations, it may also impair PFC activity, 

leading to emotion dysregulation. It is important to note that these re-
sponses to acute stressors are not inherently negative and are part of a 
complex series of adaptive processes that occur to protect the individual; 
nonetheless, these responses may occur inappropriately, especially 
among certain populations already exposed to chronic stressors or under 
psychological distress, resulting in maladaptive behavioral responses. 
Although this section did not discuss these mechanisms in detail, it 
demonstrates certain alternations that may occur under acute stress and 
offers insights into ways that interventions might be used to reduce 
adverse effects of acute stressors when they occur. The final step before 
we can discuss these potential interventions is to recognize how certain 
independent variables may impact these results and how this can 
complicate our understanding of the efficacy of these interventions. 

2.3. Independent factors affecting stress response 

It is evident that even among healthy subjects there is significant 
variation in responses to different types of stressors (e.g. psychological 
vs. physical). In addition to individual differences in the stress response 
itself, there are differences in many outcomes that may be measured (e. 
g. physiological, cognitive, and behavioral changes). This review does 
not consider all sources of variation, but offers a cursory overview of 
trait and state factors that may modify physiological and behavioral 
responses to stressors (for reviews, see: Kudielka et al., 2009; Sep et al., 
2020). These variables can impact the specific stressor response, base-
line activity, and outcomes in EF or emotional response tasks. These 
variables can be broadly divided into two groups: trait and state 
variables. 

Key trait variables include sex/gender, age, life experiences, per-
sonality, and genetics. Sex differences have been found in stress re-
sponses both at the level of hormonal release and how stressors alter 
physiological and behavioral outcomes (McEwen et al., 2016; Merz and 
Wolf, 2017; Shields et al., 2016). Age also affects individual responses to 
stressors and relevant outcome measures. There are significant changes 
in neural development over time, which continue throughout adulthood 
(Brindle et al., 2014; Foley and Kirschbaum, 2010). Furthermore, new 
experiences (which come with age) also affect the stressor response. 
Even among healthy adults, some have experienced trauma or other 
adverse experiences during childhood or adolescence, which may not 
have led to overt psychopathology but may impact aspects of person-
ality, including ways that the person responds to stressors (Raymond 
et al., 2021). Personality traits may also impact how a person perceives 
and responds to stressful stimuli. Studies have found that neuroticism, 
extraversion, and openness are associated with differing physiological, 
cognitive, and subjective responses to acute stressors (Hughes et al., 
2011; Oswald et al., 2006; Schneider, 2004; Williams et al., 2009; Wirtz 
et al., 2007; Xin et al., 2017). Finally, genetics play an integral role in 
every aspect of human development and evidence suggests that many 
aspects of the stressor response are highly heritable, including SAM 
activity (Finley et al., 2004; Mueller et al., 2012), HPA-activity (Dedic 
et al., 2018; Derijk et al., 2008; Federenko et al., 2004; Tucker-Drob 
et al., 2017), and cardiovascular responses to stressors (Wright et al., 
2007; Wu et al., 2010). 

Key state variables include time of day, sleep, medications and drugs, 
psychological state, diet, and exercise. There is clear evidence that HPA- 
axis responses to acute stressors are time-dependent, with cortisol 
release following a circadian cycle (Chan and Debono, 2010; Oster et al., 
2017); however, the evidence is less straightforward for SAM responses 
(Dunn and Taylor, 2014; Hissen et al., 2015; Scheer et al., 2010; Vitale 
et al., 2019). Sleep can also impact all of the outcomes discussed thus far, 
including response to stressors. Poor sleep quality or decreased sleep 
duration is associated with negative mood and increased rates of 
depression (Fang et al., 2021), rendering an individual more susceptible 
to acute stressors. Poor sleep is associated with HPA-axis dysregulation 
and exaggerated stress reactivity (Goodin et al., 2012; Massar et al., 
2017). Sleep can affect a person’s mood and mindset, how they respond 
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to stressors, and individual coping strategies can play a major role in the 
physiological, cognitive, and psychological effects of stressors (Crum 
et al., 2013; Radtke et al., 2020; Spada et al., 2008). Additionally, food 
and medications a person ingests may impact many outcomes discussed. 
It is clear how medications that interact directly with the SAM or 
HPA-axis can affect the response to an acute stressor; however, many 
other medications can also alter the stressor response (Brody et al., 
2002; Kudielka et al., 2004; Kuhlmann and Wolf, 2005). Medications are 
not the only substances that impact responses to acute stressors. Most 
recreational drugs impact SAM and HPA-axis activity (al’Absi, 2006a; 
Fuxe et al., 1989; Kirschbaum et al., 1993; Lovallo et al., 1996, 2006; 
Matta et al., 1998; Shepard et al., 2000). Energy consumption, type of 
diet, and time of food ingestion all play a role in regulating HPA-axis 
responses to stressors (Gonzalez-Bono et al., 2002; Kirschbaum et al., 
1997; Rohleder and Kirschbaum, 2007; Uçar et al., 2021). The role of 
physical activity on responses to acute stressors is complex with con-
flicting results; there is evidence that effects of physical activity may 
differ depending on the outcomes measured (Anderson and Wideman, 
2017; Bernstein and McNally, 2017; De Geus and Van Doornen, 1993; 
Klaperski et al., 2013; Mueller, 2007; Tsatsoulis and Fountoulakis, 
2006). 

This section has only briefly discussed some individual differences. 
Furthermore, these factors were summarized in relative isolation; in 
reality they are all closely linked, e.g. one cannot evaluate the impact of 
sex without considering age, experience, and many other factors. The 
complexity of these responses cannot be overlooked and any analysis or 
review of the stress literature must attend to these variables. That being 
said, it is not always possible to control for all individual variation in 
studies of stress responses so we must remain cognizant of this limitation 
as we evaluate the literature. 

3. Effects of neuromodulation 

3.1. Non-invasive brain stimulation (NIBS) 

Non-invasive brain stimulation (NIBS) techniques alter brain func-
tioning using an external device. NIBS interventions often have imme-
diate effects, which can be temporary or longer-lasting depending on the 
protocol used (To et al., 2018). The mechanisms of these prolonged ef-
fects are believed to be similar to long-term potentiation and long-term 
depression; for a more detailed review of these mechanisms see: 
(Chervyakov et al., 2015; Das et al., 2016; Di Lazzaro, 2013; Farzan 
et al., 2016). Due to their potential for long-lasting effects, there is a 
significant role for NIBS to serve as an important tool for both mecha-
nistic exploration of neural pathways and the development of thera-
peutic interventions for neuropsychiatric disorders. At present, NIBS 
techniques are used across a wide variety of research fields to improve 
our understanding of neural circuitry and are FDA-cleared for treatment 
of migraines, major depression, smoking cessation, and 
obsessive-compulsive disorder. Additionally, there is evidence for their 
ability to advance mechanistic understanding and provide new thera-
peutic options for several other disorders (Davis and Gaitanis, 2020; 
Elias et al., 2021; J.-P. Lefaucheur et al., 2020; McClintock et al., 2019; 
Moisset et al., 2020; Yamamoto et al., 2021). 

Common forms of NIBS include transcranial magnetic stimulation 
(TMS) and transcranial direct current stimulation (tDCS). TMS applies a 
direct current pulse through an electromagnetic coil placed on the scalp 
to generate a momentary magnetic field. A magnetic field of sufficient 
amplitude will induce a momentary electrical field (E-field) in the neural 
region under the coil and cause neural membrane depolarization (Sack 
and Linden, 2003). Multiple pulses over a short period of time, or re-
petitive TMS (rTMS) (Klomjai et al., 2015), can be applied at different 
frequencies with different effects. Low frequency (≤1Hz) stimulation 
leads to decreased cortical excitation and is considered inhibitory 
whereas high frequency (≥5Hz) stimulation leads to increased cortical 
excitation and is considered excitatory (Chen et al., 1997; Fitzgerald 

et al., 2006). Theta burst stimulation (TBS) is a newer type of rTMS, in 
which three to five very high frequency (≥50Hz) pulses are delivered in 
a 5Hz “bursting” pattern. If delivered continuously, (c)TBS leads to in-
hibition, if delivered intermittently, with 2 s of stimulation and 8 s of 
rest, (i)TBS leads to facilitation (Huang et al., 2005). One benefit of TMS 
is that there are various types of coils, enabling differential targeting of 
neural tissues (Deng et al., 2014). In contrast, tDCS is often less precise 
in its neural targeting (Bikson et al., 2013). With tDCS, two electrodes 
are placed on specific scalp locations and a low-amplitude direct current 
is passed between the electrodes. This direct current passes through the 
scalp area between the electrodes thereby altering the membrane po-
tential in the neurons below (Medeiros et al., 2012). tDCS can be anodal 
or cathodal: anodal stimulation leads to neuronal depolarization and 
increased excitability, whereas cathodal stimulation leads to neuronal 
hyperpolarization and decreased excitability (Jacobson et al., 2012). 

Despite key methodological differences between different forms of 
NIBS, consistent findings highlight their potential as both investigative 
and therapeutic interventions (Amidfar et al., 2019; Baptista et al., 
2020; Elias et al., 2021; Gault et al., 2018; Kekic et al., 2016; Marques 
et al., 2019). Although there have been considerable advances in NIBS 
research, there are still a few major methodological inconsistencies 
(Broadbent et al., 2011; Ekhtiari et al., 2019; Guerra et al., 2020; Polanía 
et al., 2018; Sandrini et al., 2011) and a need for more clinical and safety 
guidelines (Brunoni et al., 2013; J. P. Lefaucheur et al., 2020; Matsu-
moto and Ugawa, 2017). As a result of wide-ranging variation in stim-
ulation parameters, it can be difficult to critically evaluate the true 
efficacy of NIBS as a tool for mechanistic exploration and treatment. 

3.2. Neuromodulation and acute stressors 

We reviewed studies that evaluated effects of NIBS on behavioral and 
emotional responses to acute psychosocial stressors. Given highly vari-
able methodology, we focused on studies that involved healthy volun-
teers, used a psychosocial stressor (see Table 1), used rTMS or tDCS, and 
evaluated at least one outcome related to executive function or 
emotional reactivity. Table 2 shows the full list of studies considered. 
Experimental designs, outcomes, and neural targets vary considerably 
between studies; because these studies are not directly comparable, we 
primarily outline relevant findings without in-depth interpretation and 
analysis. For outcomes that seemed comparable across multiple studies, 
we collected data regarding pre- and post-neuromodulation measures 
either from the article itself or via direct communication with the au-
thors. This was possible for measures of emotional reactivity (Fig. 4) and 
salivary cortisol (Fig. 5). 

3.2.1. Executive functioning 
The effect of stressors on working memory is the most-studied and 

best-characterized among the three primary domains of EF. We found 4 
studies that examined the effect of neuromodulation on working mem-
ory during psychosocial stressors; all used anodal tDCS of either the right 
or left dlPFC. Two studies used the TSST and all included a control 
condition (friendly TSST); these studies all targeted the right dlPFC with 
anodal tDCS, and one also used cathodal tDCS. Ankri et al., 2020 found 
no main effect of stressor or neuromodulation on working memory. 
Bogdanov and Schwabe (2016) found a main effect of stressor, leading 
to decreased working memory performance (Corsi block task and digit 
span backwards) and a main effect of tDCS on working memory (digit 
span backwards). Both studies found an interaction between neuro-
modulation and stressor, but in different directions. Ankri et al., 2020 
found that tDCS led to decreased accuracy during the stress condition 
only. In contrast, Bogdanov and Schwabe, 2016 found that during stress 
conditions there was increased working memory performance (Corsi 
and digit span backwards) when receiving anodal tDCS vs. sham or 
cathodal tDCS. The within-session order of events is worth noting 
because Ankri et al., 2020 provided neuromodulation prior to stress 
induction, whereas Bogdanov and Schwabe, 2016 induced stress prior to 
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Table 2 
Overview of all studies identified that explored the effects of combined neuromodulation and psychosocial stressors in healthy populations.  

Stressor Paper Population 
(Healthy) 

Design NIBS/ 
Stress 
Order 

Main Effects Neuromodulation x Stress Effects 

Type/Target Detailsa Executive 
Function 

Emotional 
Reactivity 

Biomarkers Executive 
Function 

Emotional 
Reactivity 

Biomarkers      

tDCS/dlPFC 
(right) 

Anodal 2 mA 
Cfade-in/fade- 
out ramp of 30 s 
20mins 

Stress: None Stress: 
subjective stress 
reaction (STAI 
and VAS) 

Stress: 
salivary 
cortisol 

Stress only: 
tDCS (vs. 
sham) → ↓ n- 
back accuracy 

No interaction 
effect (STAI or 
VAS) 

Stress only: 
tDCS (vs. 
sham) → no 
stress-related 
↑ cortisol - 10–20 

system 
Sham: Yes NIBS: None NIBS: None NIBS: None 

Bogdanov 
et al. 2016 

♀ & ♂ 18–32 yrs 
"normal weight" 
(N = 120: 20 per 
group) 

Between- 
subject 

1. Stressor tDCS/ Anodal vs. 
cathodal 

Stress: ↓ 
working 
memory 
performance 
(Corsi block 
task and Digit 
span 
backwards) 

Stress: ↓ mood 
and calmness 
(vs. control) 

Stress: ↑ HR, 
DBP, SBP, 
salivary 
cortisol 

Stress only: 
anodal tDCS 
(vs. sham or 
cathodal) → ↑ 
working 
memory 
performance 

No data provided No interaction 
effect 
(salivary 
cortisol) 

6 groups 
(stress vs. 
control, 
NIBS vs. 
sham, and 
anodal vs. 
cathodal) 

2. NIBS dlPFC (right) 1.075 mA 8 s 
fade-in and 5s 
fade-out Ended 
once working 
memory task 
completed    

Control: 
Friendly 

2a. EF task 
during 
NIBS (1 
session) 

- 10–20 
system 

Sham: Yes NIBS: ↑ 
working 
memory 
performance 

NIBS: Not 
provided 

NIBS: None 

Antal et al. 
(2014) 

♂ 21–32 yrs (N =
60: 20 per group) 

Between 
subjects 

1. NIBS tDCS/ Anodal vs. 
cathodal 

Stress: N/A Stress: 
subjective stress 
reaction (KAB 
and STAI) 

Stress: ↑ 
salivary 
cortisol & 
medial 
frontal rCBF 

N/A No interaction 
effect (subjective 
stress) 

Anodal: ↑ 
rCBF in right 
mPFC (vs. 
sham) & ↑ 
rCBF in right 
amygdala & 
right superior 
PFC (vs. 
cathodal) 

3 groups 
(anodal vs. 
cathodal vs. 
sham) 

2. Stressor mPFC (right) 1m Cfade-in/ 
fade-out ramp of 
10s 20mins    

Control: 
None 

(1 session) - 10–20 
system 

Sham: Yes NIBS: N/A NIBS: None NIBS: 
Cathodal → ↑ 
cortisol & ↑ 
rCBF in right 
& left mPFC 

Carnevali 
et al. 
(2020) 

♂ (N = 30: 15 per 
group) 

Between 
subjects 

1. NIBS tDCS/ Anodal 2 mA? Stress: N/A Stress: None Stress: ↑ HR, 
↓ HRV, ↑ 
cortisol 

N/A Stress only: tDCS 
(vs. sham) → ↓ 
anxiety 

Stress: tDCS 
(vs. sham) → 
↓ HR & ↑ 
HRV; no 
cortisol effect 

2 groups 
(anodal vs. 
sham) 

1a. 
Stressor 
during 
NIBS 
(5mins 
after start) 

dlPFC (left) 15mins    

Control: 
None 

(1 session) - 10–20 
system 

Sham: Yes NIBS: N/A NIBS: ↓ anxiety 
(STAI) 

NIBS: None 

1. NIBS rTMS/ Stress: N/A Stress: ↓ HRV N/A 

(continued on next page) 
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Table 2 (continued ) 

Stressor Paper Population 
(Healthy) 

Design NIBS/ 
Stress 
Order 

Main Effects Neuromodulation x Stress Effects 

Type/Target Detailsa Executive 
Function 

Emotional 
Reactivity 

Biomarkers Executive 
Function 

Emotional 
Reactivity 

Biomarkers 

Pulopulos 
et al. 
(2020) 

♀ 18–35 yrs (N =
75) 

Between 
subjects 

20Hz 110% RMT 
40 trains of 2s 
duration, ITI 12s 
1600 pulses/ 
session? 

Stress: ↑ stress 
and tension 
(VAS), ↓ 
happiness (VAS) 

No interaction 
effect (VAS) 

No interaction 
effect (HRV or 
salivary 
cortisol) 

2 groups 
(active vs. 
sham) 

2. Stressor dlPFC (left) Sham: Yes    
Control: 
None 

(1 session) - Adjusted 
BeamF3 
algorithm  

NIBS: N/A NIBS: None 

NIBS: ↓ 
AUCi after 
active TMS 
(vs. sham) 
de Wandel 
et al., 2020 

♀ 
18–27 yrs (N =
34) 

Within 
subjects 
crossover 
(active vs. 
sham) 

1. Stressor rTMS/ 50 Hz (burst freq 
5Hz) 110% RMT 
54 cycles, 10 
burst of 3 pulses, 
train duration of 
2s, ITI of 6 s 
1620 pulses 2 
sessions of 5mins 

Stress: N/A Stress: Cannot 
be assessed 

Stress:↑ 
cortisol 

N/A No interaction 
effect (VAS) 

No interaction 
effect 
(cortisol) 

Control: 
None 

2. NIBS (2 
sessions; 
2nd 
occurred 
>1 week 
after 1st) 

dlPFC (left) - 
Individual 
MRI 
navigation 

Sham: Yes NIBS: N/A NIBS: None NIBS: None 

De Witte 
et al. 2019 

♀ 
“young adults” 
(N = 38) 

Within 
subjects 
crossover 
(active vs. 
sham) 

1. Stressor rTMS/dlPFC 
(left) 

50 Hz (burst freq 
5Hz) 110% RMT 
54 cycles, 10 
burst of 3 pulses, 
train duration of 
2s, ITI of 6 s 
1620 pulses 
5mins 

Stress: N/A Stress: ↑ anger 
and tension & ↓ 
cheerful (VAS), 
↑ momentary 
rumination 

Stress: ↑ 
cortisol 

N/A No interaction 
effect (VAS or 
momentary 
rumination) 

No interaction 
effect 
(cortisol) 

Control: 
None 

2. NIBS (2 
sessions; 
2nd 
occurred 
>1 week 
after 1st) 

- Individual 
MRI 
navigation 

Sham: Yes NIBS: N/A NIBS: None NIBS: None 

Pulopulos 
et al. 
(2019) 

♀ (N-35) Within 
subjects 
crossover 
(active vs. 
sham) 

1. Stressor rTMS/dlPFC 
(left) 

50 Hz (burst freq 
5Hz) 110% RMT 
54 cycles, 10 
burst of 3 pulses 
each, with a 
train duration of 
2s and ITI 6s 
1620 pulses 
5mins 

Stress: N/A Stress: ↑ 
vigorous, angry, 
tense (VAS), ↓ 
cheerful (VAS) 

Stress: ↑ 
cortisol 

N/A No interaction 
effect on mood 
(VAS) 

No interaction 
effect 
(cortisol) 

Control: None 2. NIBS (2 
sessions; 
2nd 

- 
Individual 

Sham: Yes NIBS: N/A NIBS: None NIBS: None 

(continued on next page) 
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Table 2 (continued ) 

Stressor Paper Population 
(Healthy) 

Design NIBS/ 
Stress 
Order 

Main Effects Neuromodulation x Stress Effects 

Type/Target Detailsa Executive 
Function 

Emotional 
Reactivity 

Biomarkers Executive 
Function 

Emotional 
Reactivity 

Biomarkers 

occurred 
>1 week 
after 1st) 

MRI 
navigation 

Critical 
Feedback 

De Raedt 
et al. 
(2017) 

♀ Undergraduates 
(N = 32) 

Within 
subjects 
crossover 
(active vs. 
sham) 

1. NIBS tDCS/dlPFC 
(left) 

Anodal 1.5 mA 
30s ramp up/ 
ramp down 
20mins 

Stress: N/A Stress: VAS 
changes (↑ 
tension and 
anger; ↓ vigor 
and 
cheerfulness) 

Stress: N/A N/A Stress only: tDCS 
(vs. sham) → ↓ in 
ruminative self- 
referential 
thinking; no VAS 
effects 

N/A 

Control: 
Neutral & 
Praise 

2. Stressor 
(2 
sessions; 
2nd 
occurred 
>48-hrs 
after 1st) 

- Individual 
MRI 
navigation 

Sham: Yes NIBS: N/A NIBS: None NIBS: N/A 

Baeken 
et al. 
(2018) 

♀ 20–30 yrs (N =
30) 

Within 
subjects 
crossover 
(active vs. 
sham) 

1. NIBS tDCS/dlPFC 
(left) 

Anodal 1.5 mA 
30s ramp up/ 
ramp down 
20mins 

Stress: N/A Stress: VAS 
changes (↑ 
anger) 

Stress: N/A N/A No interaction 
effect (VAS) 

tDCS (vs. 
sham): 
Stressor → ↓ 
perfusion in 
right pgACC/ 
mPFC Control: 

Neutral & 
Praise 

2. Stressor 
(2 
sessions; 
2nd 
occurred 
>48-hrs 
after 1st) 

- Individual 
MRI 
navigation 

Sham: Yes NIBS: N/A NIBS: None NIBS: N/A 

Remue 
et al. 2015 

♀ Undergraduates 
(N = 38: 19 per 
group) 

Between 
subjects 2 
groups (left 
vs. right) 

1. NIBS rTMS/ 20 Hz 110% 
RMT 40 trains of 
1.9 s duration, 
separated by an 
ITI 12.1s, 

Stress: N/A Stress: ↑ 
negative mood 
(VAS Total) 

Stress: ↑ HRV N/A No interaction 
effects for either 
side (mood (VAS 
total) or anxiety 
(STAI-S)) 

Stress only: 
left rTMS (vs. 
right or sham) 
→ ↑ HRV 

Within 
subjects 
crossover 
(active vs. 
sham) 

2. Stressor dlPFC (left 
vs. right) 

1560 pulses per 
session. ~10 
min.    

Control: 
None 

(2 
sessions; 
2nd 
occurred 
>3 days 
after 1st) 

- Individual 
MRI 
navigation 

Sham: Yes NIBS: N/A NIBS: None NIBS: None 

Baeken 
et al. 
(2014) 

♀ (N = 30) Within 
subjects 
crossover 
(active vs. 
sham) 

1. NIBS rTMS/dlPFC 
(left) 

20Hz 110% RMT 
20 trains of 1.9 s 
duration, 
separated by an 
ITI 12.1 s 1560 
pulses per 
session ? 

Stress: N/A Stress: ↓ vigor 
and cheerfulness 
(VAS), ↑ tension 
(VAS) 

Stress: None N/A No interaction 
effect (VAS) 

No interaction 
effect 
(salivary 
cortisol) 

Control: 
None 

2. Stressor 
(2 

Sham: Yes NIBS: N/A NIBS: None NIBS: ↓ 
cortisol after 

(continued on next page) 
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Table 2 (continued ) 

Stressor Paper Population 
(Healthy) 

Design NIBS/ 
Stress 
Order 

Main Effects Neuromodulation x Stress Effects 

Type/Target Detailsa Executive 
Function 

Emotional 
Reactivity 

Biomarkers Executive 
Function 

Emotional 
Reactivity 

Biomarkers 

sessions; 
2nd 
occurred 
>3 days 
after 1st) 

- Individual 
MRI 
navigation 

active vs. 
sham 

Psychosocial 
þ Physical 

Friehs et al. 
2020 

♀ & ♂ (N = 59: 29 
and 30 per group) 

Between 
subject 

1. Stressor tDCS/dlPFC 
(left) 

Anodal Stress: ↑ RT 
and accuracy 
(n-back) 

Stress: N/A Stress: ↑ 
cortisol, ↑ HR, 
HRV, ↑ PNS 
activation (LF 
power ↓ & HF 
power ↑) 

No interaction 
effect 
(accuracy or 
RT) 

N/A No interaction 
effect 
(cortisol, HR, 
HRV, or LF/ 
HF bands) 

2 groups 
(active vs. 
sham) 

2. NIBS - 10–20 
system 

0.5 mA 30s ramp 
up/ramp down     

Control: 
None 

(1 session)  19mins Sham: 
Yes 

NIBS: None NIBS: N/A NIBS: LF/HF 
bands 

NOTE: Only 
responders 
analyzed 

De Smet 
et al. 
(2021) 

♀ & ♂ 18–45 yrs 
(N = 69) 

Within 
subjects 
crossover 
(active vs. 
sham 
tDCS) +
active iTBS 

1. NIBS 1 tDCS/dlPFC 
(bifrontal) 

tDCS Anode and 
cathode were 
respectively 
placed over F3 
and F4 2 mA 30s 
ramp up/ramp 
down 20mins 
Sham: Yes 

Stress: N/A Stress: ↑ 
perceived stress 
& negative affect 

Stress: ↑ BP, 
HR, HRV, and 
EDA 

N/A No interaction 
effect (perceived 
stress and negative 
affect) 

No interaction 
effect (BP, 
HR, HRV, or 
EDA) 

Control: 
None 

2. NIBS 2 rTMS/dlPFC 
(left)      

3. Stressor 
(2 
sessions; 
2nd 
occurred 
>1 week 
after 1st) 

- Beam F3 
localization 
system 

rTMS 50 Hz 
(burst freq 5Hz) 
110% RMT 54 
cycles, 10 bursts 
of 3 pulses each, 
train duration of 
2 s and with a 
cycling period of 
8 s 1620 pulses 
7mins Sham: No 

NIBS: N/A NIBS: None NIBS: Lower 
HR in active 
tDCS vs. sham 
↑ HRV in 
active tDCS 
vs. sham 
Lower EDA in 
tDCS vs. sham 

PASAT Plewnia 
et al. 
(2015) 

♂ (N = 28: 14 per 
group) 

Between 
subjects 

1. NIBS tDCS/dlPFC 
(left) 

Anodal 1 mA 
linear fade-in/ 
fade-out phase of 
5 s 20mins 
Sham: Yes 

Stress: Cannot 
be assessed 

Stress: None Stress: N/A No interaction 
effect (ISI or 
errors) 

Stress: tDCS (vs. 
sham) → ↓ 
negative affect 
(PANAS) No 
interaction effect 
on positive affect 

N/A 

2 groups 
(anodal vs. 
sham) 

1a. 
Stressor 
during 
NIBS 
(5mins 
after start) 

- 10–20 
system    

Control: 
None 

(1 session)  NIBS: Anodal 
led to ↓ ISI (vs. 
sham) 

NIBS: Negative 
affect (PANAS) 

NIBS: N/A 

Cyberball Riva et al. 
(2012) 

♀ & ♂ (N = 79) Between 
subjects 

1. NIBS tDCS/vlPFC 
(right) 

Anodal 1.5 mA ? 
15mins Sham: 
Yes 

Stress: None Stress: ↑ social 
exclusion 

Stress: N/A No interaction 
effect (ball 
tosses 
identified) 

Stress only: tDCS 
(vs. sham) → ↓ 
social exclusion, 
unpleasant & hurt 
feelings 

N/A 

4 groups 
(active vs. 
sham and 

1a. 
Stressor 
during 

- 10–20 
system    

(continued on next page) 
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Table 2 (continued ) 

Stressor Paper Population 
(Healthy) 

Design NIBS/ 
Stress 
Order 

Main Effects Neuromodulation x Stress Effects 

Type/Target Detailsa Executive 
Function 

Emotional 
Reactivity 

Biomarkers Executive 
Function 

Emotional 
Reactivity 

Biomarkers 

inclusion 
vs. 
exclusion) 

NIBS 
(5mins 
after start) 

Control: 
Yes 

(1 session)  NIBS: None NIBS: None NIBS: N/A 

Riva et al. 
2014 
(study 1) 

♀ & ♂ 
University 
students (N = 82) 

Between 
subjects 

1. NIBS tDCS/vlPFC 
(right) 

Cathodal 1.5 mA 
? 15mins Sham: 
Yes 

Stress: ↓ 
correctly 
identified ball 
tosses 

Stress: ↑ social 
exclusion, hurt 
feelings, & 
negative 
emotions 

Stress: N/A No interaction 
effect (ball 
tosses 
identified) 

Stress only: tDCS 
(vs. sham) → ↑ 
Social exclusion, 
hurt feelings & 
negative emotions 

N/A 

4 groups 
(active vs. 
sham and 
inclusion 
vs. 
exclusion) 

1a. 
Stressor 
during 
NIBS 
(5mins 
after start) 

- 10–20 
system    

Control: 
Yes 

(1 session)  NIBS: None NIBS: Cathodal 
→ ↑ social pain 

NIBS: N/A 

Riva et al. 
2014 
(study 2) 

♀ & ♂ University 
students (N = 40) 

Between 
subjects 

1. NIBS tDCS/PPC 
(right) 

Cathodal 1.5 
mA? 15mins 
Sham: Yes 

Stress: Cannot 
be assessed 

Stress: Cannot 
be assessed 

Stress: N/A No interaction 
effect (ball 
tosses 
identified) 

No interaction 
effect (social 
exclusion, hurt 
feelings, or 
negative 
emotions) 

N/A 

2 groups 
(active vs. 
sham) 

1a. 
Stressor 
during 
NIBS 
(5mins 
after start) 

- 10–20 
system    

Control: 
Yes 

(1 session)  NIBS: None NIBS: None NIBS: N/A 

Fitzgibbon 
et al. 
(2017) 

♀ & ♂ (N = 29: 16 
and 13 per group) 

Between 
subjects 

1. NIBS rTMS/dlPFC 
(left) 

1 Hz 120% RMT 
20 consecutive 
minutes 1200 
pulses 20mins 
Sham: Yes 

Stress: ↓ 
correctly 
identified ball 
tosses 

Stress: ↑ 
unpleasantness 

Stress: N/A No interaction 
effect (ball 
tosses 
received) 

No interaction 
effect 
(unpleasantness) 

N/A 

2 groups 
(active vs. 
sham) 

2. Stressor - Beam 
system    

Control: 
Yes 

(1 session)  NIBS: ? NIBS: ? NIBS: N/A 

Abbreviations: TSST: Trier Social Stress Test, PASAT: Paced Auditory Serial Addition Task, NIBS: non-invasive brain stimulation, RMT: resting motor threshold, ITI: inter train interval STAI: State-Trait Anxiety Inventory, 
KAB: German version of the Short Questionnaire for Current Strain (Kurzfragebogen zur aktuellen Beanspruchung), VAS: Visual Analog Scale, PANAS: Positive Affect Negative Affect Scale, EF: executive functioning, ISI: 
inter-stimulus interval, HR: heart rate, HRV: heart rate variability, LF: low frequency, HF: high frequency, rCBF: resting cerebral blood flow, dlPFC: dorsolateral prefrontal cortex, mPFC: medial prefrontal cortex, vlPFC: 
ventrolateral prefrontal cortex, pgACC: pregenual anterior cingulate cortex, PPC: posterior parietal cortex. 

a Neuromodulation details are given in the following order: tDCS parameters: 1) Stimulation frequency, 2) Stimulation intensity, 3) Stimulation parameters, 4) Total stimulation time; rTMS parameters: 1) Stimulation 
frequency, 2) Stimulation intensity, 3) Simulation parameters, 4) Total pulses, 5) Total stimulation time. “?” indicates that those details were not found within the publication. 
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neuromodulation. This difference in event order is also seen in the final 
2 studies: one induced stress prior to neuromodulation (Friehs and 
Frings, 2020) and the other induced stress concurrently with neuro-
modulation (Plewnia et al., 2015). Both studies targeted the left dlPFC 
and used the socially evaluated cold pressor test (SECPT) or Paced 
Auditory Serial Addition Task (PASAT), respectively; neither included a 
control condition. Friehs et al., 2020 found that the stressor led to 
increased accuracy and reaction time (n-back task) but they found no 
main effect of tDCS or tDCS/stress interaction on measured EF out-
comes. Notably, cortisol response was used as a marker of stress 
response and only “cortisol responders” were included in subsequent 
analyses of neuromodulation response. Plewnia et al., 2015 did not 
measure pre- and post-stressor EF outcomes so it is unclear whether 
there was an effect of stress on EF; however, they found tDCS led to 

decreased PASAT interstimulus interval (i.e. led to faster stimulus pre-
sentation speed in this adaptive performance task) relative to sham, but 
had no effect on errors. 

Social exclusion induces psychosocial stress and is modeled in the 
cyberball task (Eisenberger et al., 2003; Williams et al., 2000). In the 
cyberball task, a virtual ball is tossed between several hypothetical 
players. The participant is either socially included to receive an equal 
percentage of ball tosses or socially excluded to receive a low percent-
age. The participant must monitor the percentage of ball tosses they 
receive during both conditions, which may induce cognitive inhibition 
of emotional reactivity to social exclusion. We found 4 studies (two 
within the same publication) that explored the effect of neuro-
modulation on cognitive inhibition during the psychosocial stressor. 
Each study used different neuromodulation protocols across 3 distinct 

Fig. 4. Forest plots to show effect sizes for emotional reactivity measures separated by neural target for studies from Table 2 for which data were obtained 
For each study, the following information is provided: 1) Neuromodulation type (rTMS and/or tDCS), 2) Order of neuromodulation and stressor (1st, 2nd, or 
concurrently [c]), 3) Neuromodulation frequency used. 

Fig. 5. Forest plots to show effect sizes for salivary cortisol separated by neural target for studies from Table 2 for which data were obtained 
For each study, the following information is provided: 1) Neuromodulation type (rTMS and/or tDCS), 2) Order of neuromodulation and stressor (1st, 2nd, or 
concurrently [c]), 3) Neuromodulation frequency used. 
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neural targets. Fitzgibbon et al., 2017 used 1Hz rTMS targeting the left 
dlPFC followed by stress induction using the cyberball task (Fitzgibbon 
et al., 2017). In the remaining 3 studies, neuromodulation and stress 
induction occurred concurrently with the cyberball task. Riva et al., 
2012 used anodal tDCS over the right vlPFC, Riva et al., 2014 study 1 
used cathodal tDCS over the right vlPFC, and study 2 used cathodal tDCS 
over the right posterior parietal cortex (PPC). Fitzgibbon et al., 2017 and 
Riva et al., 2014, study 1 found a main effect of stressor with the social 
exclusion condition leading to fewer correctly identified ball tosses 
compared to the social inclusion condition. None of the studies found a 
main effect of neuromodulation or an interaction effect on their EF 
outcome. 

The 8 studies outlined here targeted 4 distinct neural locations: right 
dlPFC, left dlPFC, right vlPFC, and right PPC in both excitatory and 
inhibitory neuromodulation paradigms, with the majority using tDCS 
rather than rTMS. Although all studies used a between-subjects design, 
there were no other common design features and the wide-ranging ap-
proaches prohibit clear conclusions from these studies about potential 
optimal targets for modulating the effects of stress on working memory. 

3.2.2. Emotional reactivity 
Measures of emotional reactivity and responsiveness vary; however, 

they are most commonly measured via the State Trait Anxiety Inventory 
(STAI), Positive and Negative Affect Scale (PANAS), and different visual 
analog rating (VAS) scales. Although data suggest that various 
emotional responses (e.g. anxiety, depressed mood) may occur through 
slightly different neural pathways, findings presented in section 2.2.3.1 
highlight common pathways involved in stress-induced emotional 
changes. Fig. 3 identifies key neural regions associated with some of 
these emotional responses, and highlights key locations that could serve 
as targets for NIBS. We will evaluate mood-related outcomes of the 
studies in Table 2 by target region. 

The most commonly targeted location is the dlPFC. We found 3 
studies targeting the right dlPFC, 11 targeting the left dlPFC, and 1 
targeting both concurrently. All 3 studies targeting the right dlPFC found 
a main effect of stressor (TSST or Critical Feedback Task [CFT]) on at 
least one mood measure (Ankri et al., 2020 [tDCS]; Bogdanov & 
Schwabe [tDCS], 2016; Remue et al., 2016 [rTMS]); however, none of 
those studies reported any main effects of right dlPFC neuromodulation 
or interaction effects on mood measures. Of the 11 studies targeting the 
left dlPFC, 9 found a main effect of stressor (TSST, CFT, or cyberball) on 
at least one mood measure (Baeken et al., 2014, 2018; De Raedt et al., 
2017; De Smet et al., 2021; De Witte et al., 2020; Fitzgibbon et al., 2017; 
Remue et al., 2016). Five of those studies used the TSST (Carnevali et al., 
2020 [tDCS]; De Witte et al., 2020 [rTMS]; Pulopulos et al., 2019; 2020 
[rTMS]; Wandel et al., 2020 [rTMS]) and only one found any effects of 
neuromodulation: Carnevali et al., 2020 used anodal tDCS on the left 
dlPFC; the group that received tDCS reported lower anxiety after stressor 
compared to sham. Four studies used critical feedback as the stressor; 
although all found a main effect of stressor on at least one mood mea-
sure, none found any effects of neuromodulation on mood (Baeken et al., 
2014 [tDCS]; Baeken et al., 2018 [tDCS]; De Raedt et al., 2017 [tDCS]; 
Remue et al., 2016 [tDCS]). One study used the PASAT and, despite no 
significant main effect of stressor on overall mood, found that anodal 
tDCS of the left dlPFC blocked stressor-related increases in feeling 
‘upset’ after performing the PASAT (Plewnia et al., 2015). Finally, one 
study targeted bilateral dlPFC using anodal tDCS alongside iTBS of the 
left dlPFC (De Smet et al., 2021); in this study, the stressor (Maastricht 
Acute Stress Test) increased perceived stress and negative affect; how-
ever, there was no effect of neuromodulation. 

The vlPFC is another location associated with responses to stressors. 
Two studies explored the effect of either anodal (Riva et al., 2012) or 
cathodal (Riva et al., 2015) tDCS to the right vlPFC in conjunction with 
the cyberball task. Both studies found that the stress condition increased 
feelings of social exclusion and negative emotions. There was an inter-
action effect of anodal stimulation: social exclusion resulted in less 

unpleasantness and hurt feelings in the tDCS group compared to sham; 
no differences were seen during social inclusion (Riva et al., 2012). 
Interestingly, vlPFC cathodal stimulation showed the opposite interac-
tion: during social exclusion there was an increase in hurt feelings and 
negative emotions in the tDCS group compared to sham; no differences 
were observed during social inclusion (Riva et al., 2015). Riva et al., 
2014 also targeted the right PPC under the same conditions as an active 
control and found no effects of neuromodulation. 

Although the mPFC is a key area in emotion regulation and stress 
response, we only found one study that targeted this location. Antal 
et al., 2014 examined how anodal or cathodal tDCS over the right mPFC 
impacted the responses to a subsequent stressor (TSST). There was a 
main effect of stressor on anxiety level (STAI) but no significant effects 
of neuromodulation on mood-related outcomes (Antal et al., 2014). 

The 18 studies outlined here targeted 5 distinct neural locations: 
right dlPFC, left dlPFC, right vlPFC, right PPC, and right mPFC in both 
excitatory and inhibitory neuromodulation paradigms with the majority 
using tDCS rather than rTMS. Major differences in study designs make it 
very difficult to compare outcomes. We were able to collect emotional 
reactivity data from 9 of these studies to create Forest plots of effect sizes 
for the two represented regions (Fig. 4: left dlPFC, right dlPFC). Despite 
more data relating to mood outcomes than EF outcomes, the study 
design differences are more pronounced and outcomes even less 
consistent. Due to these differences, it is not possible to identify neural 
regions or NIBS parameters from these studies that are clear targets for 
future studies looking to modulate the effects of psychosocial stressors; 
however, the results of vlPFC stimulation are the most promising for 
future study, especially given evidence for the role of the vlPFC in 
cognitive reappraisal and emotion regulation (Feffer et al., 2018; Wager 
et al., 2008). 

3.3. Independent factors affecting neuromodulation response 

The considerable variability in experimental design (just discussed) 
also highlights areas where individual differences may impact responses 
and provides insights into potential best practices for future experi-
mental designs. Many studies lacked a control condition (for stressor or 
neuromodulation) to appropriately evaluate a neuromodulation × stress 
interaction. Additionally, the order of events within sessions determines 
the effect of neuromodulation on stress reactivity: there is no consensus 
on whether neuromodulation should occur pre- or post-stressor for 
optimal effects. Finally, most studies discussed here use a between- 
subjects design, which may be problematic because many individual 
factors can affect responses to both the stressor and neuromodulation 
interventions. Given our understanding of the various individual dif-
ferences that impact responses to stressors, it is unsurprising that these 
factors can also affect neural response to neuromodulation. This review 
does not consider all possible factors that affect responses to neuro-
modulation (others have already done so (see: (Valero-Cabré et al., 
2017). 

In addition to the obvious differences in study design affecting out-
comes, various parameters of neuromodulation also differ between 
studies. These include variables that apply across multiple types of NIBS 
such as total number of sessions, session duration, and stimulation fre-
quency along with the more NIBS-type specific parameters such as pulse 
morphology, pulse amplitude, and stimulation intensity (de Jesus et al., 
2014; Niehaus et al., 2000; Rossi et al., 2021; Stokes et al., 2005). 
Although there are well-established safety guidelines for rTMS that 
dictate safe ranges for these parameters, there is still considerable 
variability within what is considered safe (Rossi et al., 2021). This wide 
range of NIBS parameters complicates comparison between studies and 
highlights an area in need of increased understanding and consistency 
within the field. 
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4. Future directions in research on neuromodulation & stress 

4.1. State of current research 

There is extensive research outlining the ways in which different 
types of stressors impact physiology and behavior along with a clear 
understanding of the varying mechanisms underlying these responses. In 
contrast, while research into NIBS mechanisms has expanded consid-
erably in recent years (Beynel et al., 2020; Chervyakov et al., 2015), 
there remains much to uncover regarding the precise mechanisms and 
impacts of various methodologies. Thus, we are left with an expanding 
body of literature exploring ways that NIBS can affect stress response 
without the ability to appropriately compare and contrast between 
studies. Nonetheless, each study has the ability to highlight important 
experimental design details and identify potential targets for future 
study. 

4.2. Promising neural circuits and targets 

A theoretical, mechanistic-driven approach to neural targets may be 
the most effective. In developing this approach, we recognize that the 
negative effects of psychosocial stressors occur via multiple related but 
distinct neural pathways. Thus, it is fair to assume there may be multiple 
effective neuromodulation targets and their efficacy may depend on the 
outcome of interest. In this review, we focused on the EF and emotional 
impacts of psychosocial stressors, which led to the evaluation of multiple 
distinct neural circuits. Based on current evidence, the dlPFC—a key 
structure within the CEN—appears to be the best-supported target for 
addressing EF-related effects of stressors. In contrast, the vlPFC—a key 
structure in cognitive reappraisal circuits—may be the best-supported 
target to affect stress modulation of emotional responses. 

In addition to the focused attention on theoretically-driven neural 
targets, we must also consider the role of biomarkers that may reflect 
changes in these neural circuits and can be used to identify efficacious 
neuromodulation therapy. Details of these biomarkers exceed the scope 
of this review (see (Cirillo et al., 2017; Kim et al., 2021), but it will be 
important to conceptualize and incorporate this information into future 
studies. 

4.3. Individual differences 

One major barrier in the current research in this field is the signifi-
cant impact of individual differences on responses to both stressors and 
neuromodulation. As we highlighted, many state and trait variables may 
play a significant role in an individual’s responses. It is not feasible to 
control and track all variables for every study; however, it is important 
they are controlled whenever possible and that any analysis and eval-
uation of intervention efficacy consider these issues. Where possible, 
fully within-subject study designs that include sham stimulation and 
protocol crossover will mitigate many of these concerns. Future studies 
should examine which of these factors explain the most variance, so that 
researchers can focus efforts on controlling and addressing those factors 
in their study designs. 

4.4. Relevance to psychopathology 

Stressors are not pleasant experiences for any individual; however, 
for individuals with existing psychopathology the addition of acutely 
stressful situations may significantly worsen outcomes. One key 
example comes from individuals with substance use disorders (SUDs). 
We know that people with SUDs experience impairments in EF and 
emotional regulation, which are associated with alterations in the same 
neural circuitry affected by acutely stressful situations (Bruijnen et al., 
2019; Koob and Volkow, 2010; Madoz-Gúrpide et al., 2011). 
Stress-exposure is problematic for people trying to recover from any 
SUD because it weakens inhibition of automatic behaviors and may 

increase drug craving and likelihood of relapse (al’Absi, 2006b; Brady 
and Sinha, 2005; Brewer et al., 1998; Hyman et al., 2007; Kadam et al., 
2017). Neurochemical theories of addiction suggest there may be 
dysfunction in two fronto-striatal circuits: (1) elevated activity in the 
limbic circuit resulting in hyper-sensitivity to drug cues; and (2) 
decreased executive control resulting in a diminished ability to resist 
drug-craving (Kravitz et al., 2015). For individuals with SUDs who are 
attempting to reduce their substance use, current treatments are insuf-
ficient for addressing the effects of stressors on these already dysfunc-
tional neural pathways (Kotlyar et al., 2011; Leri et al., 2003; Ray et al., 
2013). This understanding lays the theoretical groundwork for devel-
oping NIBS targets and protocols for treating SUDs, particularly 
stress-induced substance use. 

The significant overlap between the pathways that are impaired in 
SUDs and those that are impacted by acute stressors provides a key 
example of the way in which these mechanistic findings can be trans-
lated to the treatment of psychopathology, but SUDs are by no means the 
only disorder that could benefit from these insights. A wide range of 
psychiatric disorders are characterized by inappropriate activation of 
the stress-response systems (e.g., anxiety disorders and post-traumatic 
stress disorder). Research has already demonstrated distinct impacts of 
acute stressors on populations with these disorders and understanding 
how NIBS can be used to modify stress responses in healthy populations 
could help in the development of interventions for these disorders. 
Furthermore, a more thorough mechanistic understanding of these ef-
fects could facilitate development of preventive interventions that may 
assist individuals in modulating their stress response in the aftermath of 
a trauma. Initial evidence examining pharmacological interventions that 
target ANS responses (e.g., beta-blockers) suggests the potential for 
medications that diminish the SNS response to reduce the consolidation 
of traumatic memories and later development of PTSD (Grillon et al., 
2004; Krauseneck et al., 2010; Villain et al., 2016, 2018); understanding 
how NIBS influences these stress responses may allow for similar neu-
romodulatory interventions. 

4.5. Intervention development 

This review highlights significant inconsistency in the development 
of neuromodulation interventions. Even within interventions of the 
same modality (e.g. rTMS or tDCS) the duration and pattern of stimu-
lation can vary considerably. The past two decades of neuromodulation 
research have demonstrated the importance of many of these neuro-
modulation variables (de Jesus et al., 2014; Lewis et al., 2016; Rossi 
et al., 2009; Valero-Cabré et al., 2017); as such, researchers should 
develop a consistent method of reporting these parameters to facilitate 
meaningful comparisons between studies. 

One important parameter within neuromodulation research that has 
not been considered in most studies until recently is the timing of the 
NIBS intervention and any concurrent stimuli. It is clear that participant 
mental state during stimulation can significantly impact the outcome of 
the stimulation (Silvanto et al., 2007). It is thought that engaging the 
neural target during stimulation can modulate outcomes; for example, 
completing a working memory task while receiving excitatory NIBS to 
the EF circuit may increase EF improvement induced by the stimulation. 
Given this knowledge, it stands to reason that when NIBS is performed 
relative to stressor induction may impact outcomes. Furthermore, it is 
possible that introduction of behavioral stress reduction strategies dur-
ing NIBS (e.g., mindfulness) may provide additional benefits. The 
studies presented here demonstrate considerable variability in the order 
of NIBS and stressor and this represents a key area for future research. 

Of equal importance is the method of targeting the appropriate 
neural location. Until recently, scalp measurement and the EEG 10–20 
system were standard (Herwig et al., 2003); however, we now have a 
concrete understanding of the variability that this type of targeting can 
create. At present, there are increasingly sophisticated techniques, 
including MRI-based structural and functional connectivity 

T.E.H. Moses et al.                                                                                                                                                                                                                             



Neurobiology of Stress 22 (2023) 100515

18

neuronavigation that can significantly improve the accuracy of the 
neuromodulation targeting (Cole et al., 2022; Schönfeldt-Lecuona et al., 
2010; Summers and Hanlon, 2017; Vila-Rodriguez and Frangou, 2021). 
Additionally, improved understanding and modeling of the E-field 
induced by TMS will provide a more precise understanding of both the 
specific locations impacted and the dose of the stimulation applied 
(Gomez et al., 2020). Most NIBS studies to date have focused on the 
dlPFC, an area for which there is already considerable research 
regarding optimal targeting methods and downstream effects of stimu-
lation. Given the potential of other brain regions, such as the vlPFC, to 
serve as effective targets in stress modulation, more consideration 
should be given to ensuring these regions are targeted correctly and 
specifically. Furthermore, as highlighted in Section 2.2, no neural region 
functions in isolation and an improved understanding of functional 
connectivity within relevant brain networks will provide important 
guidance into the efficacy of certain NIBS paradigms (Cash et al., 2021). 
Future neuromodulation research should endeavor to use these more 
validated and precise techniques for ensuring precise neural targeting 
and recording the exact dose of stimulation applied to the target 
location. 

5. Conclusions 

Existing research in this field provides an important foundation for 
development of future work exploring the impacts of NIBS on stress 
responses and highlights several key areas for improvement in the field. 
Research in this area should use consistent, reliable methods for stress 
induction and NIBS targeting. Measuring key physiological outcomes 
related to the SAM-axis are vital for research seeking to identify methods 
to reduce stress reactivity. Furthermore, wherever possible control 
stressor and NIBS arms, ideally within subjects, should be used to 
strengthen interpretation of results. At present, it is difficult to identify 
clear clinical targets for NIBS-related stress reduction; however, initial 
studies alongside a theoretical understanding of cognitive and psycho-
logical responses to stressors highlight key pathways that are strong 
candidates for more rigorous exploration. Specifically, we believe that 
the dlPFC and vlPFC are the best-supported targets at this time due to 
their clear role in the respective EF and emotional regulation networks 
alongside the existing evidence that stimulation of these locations may 
modulate these stress responses. There is significant room for further 
study within this field and, with the implementation of a more stan-
dardized methodology and awareness of key variables leading to indi-
vidual differences, there is a strong likelihood that reliable neural targets 
for NIBS intervention in stress responses will be identified. 
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