
sensors

Article

An API for Wearable Environments Development and
Its Application to mHealth Field †

Fabio Sartori *,‡

Department of Informatics, Systems and Communication, University of Milano-Bicocca, 20126 Milano, Italy
* Correspondence: fabio.sartori@unimib.it; Tel.: +39-02-6448-7910
† Presented at the Mobihoc ’19: The Twentieth ACM International Symposium on Mobile Ad Hoc Networking and

Computing, Catania, Italy, 2–5 July 2019.
‡ Current address: viale Sarca 336/14, 20126 Milan, Italy.

Received: 25 August 2020; Accepted: 19 October 2020; Published: 22 October 2020
����������
�������

Abstract: Wearable technologies are transforming research in traditional paradigms of software and
knowledge engineering. Among them, expert systems have the opportunity to deal with knowledge
bases dynamically varying according to real-time data collected by position sensors, movement sensors,
etc. However, it is necessary to design and implement opportune architectural solutions to avoid expert
systems are responsible for data acquisition and representation. These solutions should be able to
collect and store data according to expert systems desiderata, building a homogeneous framework
where data reliability and interoperability among data acquisition, data representation and data use
levels are guaranteed. To this aim, the wearable environment notion has been introduced to treat all
those information sources as components of a larger platform; a middleware has been designed and
implemented, namely WEAR-IT, which allows considering each sensor as a source of information that
can be dynamically tied to an expert system application running on a smartphone. As an application
example, the mHealth domain is considered.

Keywords: Android Wear; Bluetooth Low Energy; application configuration; wearable/mobile sensor
information; smart environments; Internet of Things; mHealth

1. Introduction

Wearable technology has the ability to provide applications with functionalities typically not present
in mobile and laptop devices. Examples of these functionalities are monitoring of physiological functions,
evaluation of environmental variables, etc. A number of smart applications can obtain benefits from
employing wearable devices; in particular, being important sources of data for reasoning, they could be
used in the design and implementation of a new generation of expert systems.

As reported in [1], developing expert systems and, more generally, intelligent systems, is a complex
task, where both deep understanding of the problem domain and the definition of heterogeneous
knowledge representation techniques and tools are needed. These techniques are usually based on
different paradigms and platforms.

In this framework, Internet of Things (IoT) has offered new and important possibilities for the design
and implementation of expert systems; currently, every device can be connected to the Internet and provide
valuable information for decision-making [2]. In the well-known tripartite vision of IoT [3], expert systems
are located in the semantic-oriented area, given that they have been always conceived as applications for

Sensors 2020, 20, 5970; doi:10.3390/s20215970 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5038-9785
http://dx.doi.org/10.3390/s20215970
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/21/5970?type=check_update&version=2

Sensors 2020, 20, 5970 2 of 26

reasoning about data; expert systems should be able to distribute knowledge bases, in order to gather data
from sparse resources maximizing the benefits for their reasoning strategies.

In a previous paper [4], the wearable expert systems (WES) notion is introduced as an innovative
paradigm to develop knowledge based systems able to modify deliberations dynamically, according to the
temporal evolution of data acquired from wearable devices. In that paper, the design and implementation
of WES from the knowledge engineering perspective is faced, focusing on the conceptual model necessary
to develop a complete rule-based system from a bottom-up analysis of the relations among the data
collected in the environment. In other words, data were assumed to be perfectly reliable and always
available, since the final goal was to test the capability of the WES framework to develop a correct reasoning
process depending on a variable set of observations.

In this paper, the goal is to show how the wearable expert systems can be connected to real-world
wearable devices in order to build effective mobile applications. To this aim, it is important to notice
that the data feeding the system are characterized by several parameters defining their suitability to
applications. For this reason, the WES notion has been extended in order to give a complete view of
modern mobile applications, defining the wider concept of Wearable Environment.

According to [5], the service-oriented vision considers IoT as “the inter-networking paradigm
enabled by technology stack which provides a seamless connectivity between physical and virtual
objects to facilitate the development of intelligent services and applications with self-configuring
capabilities.” A recent paper [6] on sustainability of wearable devices points out that the development
of middleware technology is crucial for the design and implementation of services that support users
through wearable devices. The main reason is the need for heterogeneous systems to co-exist into a unique
conceptual framework.

In this context, Wearable Environment Acquisition and Representation InfrasTructure (WEAR-IT) is a
collection of APIs to connect data gathered by wearables and WESs. The goal of WEAR-IT is to build an
overall view of a knowledge domain, where data are acquired from sets of wearables and applications can
choose the best data sources on the basis of their needs. This API layer allows the dynamic connection of
data sources to distributed applications. An App, accessing the WEAR-IT set of APIs, can be hosted on a
large number of smartphones and interrogated about the device capabilities and the willingness of the
owner to contribute certain data by periodically publishing sensor measurements.

2. Materials and Methods

2.1. Related Work

Much work has been carried out in recent years on the definition, specification and deployment of IoT
infrastructures (see, for instance, the following surveys [7,8]). However, the general problem of realizing
open, application-neutral platforms did not attract much attention, and it is far from having found a
satisfactory solution.

For instance, some proposals aimed at achieving interoperability at the protocol level privilege,
based on interworking gateways, overlooking the convenience of a common programming environment [9].
The many works stemming from the Web of Things model (see, for instance, [10–12]) provide solutions to
the information semantics problem, but they assume implicitly rather complex, resource-rich, endpoint
implementations. Moreover, they are not well suited to situations where the applications may be either
centralized or (fully or partially) distributed to the endpoints; in our view, providing a programming
model supporting any application distribution strategy would be beneficial. Finally, the issues of searching
for the needed sensors and enrolling and configuring them on-the-fly are almost absent from the literature.

Sensors 2020, 20, 5970 3 of 26

As reported in [13], wearable sensors have become very popular in many applications, being useful
in providing reliable and accurate information on people’s behavior. Most of these applications are related
to the medical [14–16] and sport and training [17–19] domains.

Ubiquitous healthcare systems [20] exploit many hardware and software components, e.g., wireless
sensor networks [21] and wireless body area networks [22]. Moreover, they typically use mobile devices
and wireless cloud services, with the aim to reach pervasive availability.

Indeed, the mHealth domain is one of the most interesting and promising fields of application of
wearable technologies. Despite this, they are still underutilized in the healthcare domain [23]. In [24],
four main causes are pointed out; in particular, the lack of interoperability and standardization in detecting and
storing acquired data is considered very significant. In this field, great efforts have been made to assess
the accuracy of wearable sensors in classifying activities of daily living (ADL). The utility of accelerometers
to evaluate the performance of ADL by elderly people monitored at home has been demonstrated [25].
A prototype system using in-shoe pressure and acceleration sensor has been proposed [26] to classify
activities such as sitting, standing and walking. Patients affected by degenerative disorders, such as
Parkinson’s disease, are an important target: in [27] an accelerometer-based device designed for step
counting in patients with Parkinson’s disease is presented. Wearable sensors were used in [28] to control
the rehabilitation of patients at home after abdominal surgery.

The important facilitating role of wearable technologies for the promotion of a healthy lifestyle is
stressed in [29]. Obese individuals support and the implementation of clinical interventions based on
promoting an active and healthy lifestyle through wearable technologies have been proposed [30,31].
Monitoring physiological data can improve the diagnosis and treatment of chronic conditions;
e.g., cardiovascular diseases can benefit from continuous monitoring of physiological parameters [32].

This paper presents an attempt to overcome the limitations of the architecture of the applications
above, which is based on wireless sensor networks communicating with fixed stations where data are
collected and managed. The approach is very similar to the principles of wireless sensor networks with mobile
elements (WSNME) proposed in [33]. In WSNME, special support nodes are introduced in addition to
sensor nodes and information sinks: these nodes act as intermediate data collectors or mobile gateways.

As reported in [34], mobility in WSNs is useful for several reasons, e.g., increased reliability and
reduced cost of data transmission, connectivity benefits and energy efficiency. The main difference between
WSNME and traditional applications such as body sensor networks is the introduction of this intermediate
layer, where data from sensors are collected, making them available to interested users. In our model,
interested users are wearable expert systems and the intermediate level is implemented by smartphones
communicating with an IoT platform; this approach leads to the following definition of a wearable
environment.

2.2. Definition of Wearable Environment

A wearable environment is a triple
WE = {A, MD, S}

where

• A = {a1, a2, . . . , an} is a set of applications, possibly interconnected;
• MD = {wd1, wd2, . . . , wdm} ∪ {sp1, sp2, . . . , spk} is a set of wearable devices and smartphones, possibly

interconnected; and
• S = {s1, s2, . . . , st} is a set of sensors.

Figure 1 shows how a wearable environment can be characterized in terms of the wearable devices
involved. Nowadays, wearable devices can cover the entire surface of a human body: in particular,

Sensors 2020, 20, 5970 4 of 26

smart-wristbands and smart-watches are very important from the mHealth perspective, since they can record
physiological parameters such as heart rate, calories burned during the day, etc; they are usually equipped
with movement tracking functions that keep trace of distance walked and the amount of time active.

In our definition of a wearable environment, the interconnection among all these devices is mediated
by a smartphone, which plays two roles, being both a data-generating device and a data collection hub
for other wearables. For a large-scale application, the wearable environment would include several
smartphones, each acting as the hub for a group of wearables: in the following, we describe the simplest
case of a single smartphone, although the extension to a larger environment is possible.

Figure 1. A sketch of the wearable devices involved in the definition of a wearable environment.

2.3. WES Level: Applications

Applications at reasoning level of a wearable environment are WES, typically characterized as
rule-based systems. They implement a specific decision making process exploiting the variability of the
related knowledge bases over the time [35,36]. This is due to the exploitation of information sources able
to gather data from the environment around; the observed system and its reference environment evolve
through a series of macroscopic states, each characterized by a specific set of relevant rules.

The transition from one state to the next causes that some events can become less important than
others; therefore, the inferences activated by such events should decrease their salience accordingly. To take
care of such dynamic evolution of WES knowledge bases, bayesian networks [37] have been integrated
into the WES specification, to identify, for each time frame, the set of rules fitting better with the current
macroscopic state, on the basis of a specific strategy [38].

2.4. API Level: A Bridge between Data and Applications

Applications at reasoning level could adopt different paradigms to implement their decision making
processes. Thus, they should be able to interact with data in the most profitable way accordingly. This issue
implies rethinking the relationship between applications and wearable devices providing data, enabling
the former to select, browse and query the preferred device according to their goals.

Sensors 2020, 20, 5970 5 of 26

Figure 2 depicts this change of perspective. The traditional two-tier architecture of a wearable expert
system, based on acquisition of data from sensors on a wearable device and reasoning exploiting them,
is extended to a three-tier architecture by adding an explicit data representation level. The main benefit
is the possibility to make the reasoning process independent of the specific representation of necessary
data: while in the first case (on the left in Figure 2) the WES must implement an opportune strategy for
representing information gathered by sensors, in the second one it must only notify the representation
level about the characteristics of needed data and their format, being notified when data are available
accordingly.

To reach this objective, a specific framework has been developed, namely Wearable Environment
Acquisition and Representation InfrasTructure (WEAR-IT). A complete API makes the reasoning level able to
communicate with the data one, which is described in the following section.

Figure 2. The API Level introduction: from a two-tier to a three-tier architecture.

3. The WEAR-IT API

3.1. Interpreting WEs as FSMs

Figure 3 presents a wearable environment as a Mealy [39] finite state machine (FSM):

WE = {I, U, S, f , g}

where the output state depends on the current state of the machine and the input received by it:

• I = {Scan, Connect, Sensors, Classi f y, Select, Play, Stop, Store} is the input alphabet, made of
primitives that can activate transitions of states.

• U = {∅, Wearable Device, Sensor, True, False, Path} is the output alphabet.
• S = {Reasoning, Representation, Acquisition} is the finite set of possible states; in particular, the initial

state S0 = Reasoning;.

Sensors 2020, 20, 5970 6 of 26

• f : I × S −→ S: is the transition function S(t + 1) = f (I(t), S(t)), mapping pairs of a state and an
input symbol to the corresponding next state.

• g : I × S −→ U: is the output function U(t) = g(I(t), S(t)), mapping pairs of a state and an input
symbol to the corresponding output symbol.

This schema is useful to understand the role of the representation level in the wearable environment
architecture, as well as the characterization of a wearable environment as a whole composed of
heterogeneous entities.

When an application, i.e., a WES, is activated on the smartphone, the wearable environment enters
the reasoning level. This is the initial state of the FSM: in fact, the information flow within a wearable
environment is always started according to the needs of one or more applications. It is important to notice
that the reasoning level is the final state too: the application could decide to execute its own decision
making process and terminate without interacting with other levels, depending on its strategy. Otherwise,
it will move to the representation level to obtain necessary data to complete the body. This state is activated
by a scan input, which specifies the application needs to know which wearable devices and sensors are
available nearby to gather data. From now on, the wearable environment can maintain the representation
level, move to acquisition level or come back to reasoning level. The sensors and classify inputs cause the
level maintenance, being actions that provide lists of sensors around and their clustering according to
the nature of detected data; the connect, select, play and stop inputs cause the transition to the acquisition
state, being actions that allow establishing a connection with a specific wearable device, selecting one
sensor on it and starting/stopping detection of data through it. Finally, coming back to the reasoning state
is performed when the store input is given, since all the data necessary to the reasoning level to accomplish
its actions are available.

Figure 3. A Wearable Environment representation as a finite state machine.

Note that the transition from acquisition level to the representation one is automatic, at the end of the
required primitive. Table 1 resumes the state transition table of a wearable environment.

Sensors 2020, 20, 5970 7 of 26

Table 1. State transition table of a wearable environment.

States
Input Scan Connect Sensors Classify Select Play Stop Store {Absent}

−→Reasoning Representation ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Representation ∅ Acquisition Representation Representation Acquisition Acquisition Acquisition Reasoning ∅

Acquisition ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Representation

Table 2 presents the output function g for each state. The Scan transition from reasoning to representation
returns a list of wearable devices. During the persistence in the representation state many transitions occur.
Towards the acquisition state, the Connect input returns the identification of a wearable devices among
the previously scanned; the Sensors one allows obtaining a (possibly empty) list of sensors the previously
connected wearable devices is equipped with; the Classi f y transition arranges such sensors in a tree-like
structure according to their nature; the Select input allows deciding which sensor to query; and the
Play/Stop actions start/terminate the acquisition of data from the selected sensor returning True/False
values on the basis of sensor availability. Finally, the Store transition towards the reasoning state provides
the path to the data storage. As introduced above, the transitions from acquisition state to the representation
one are automatic at the end of the necessary operations. Since the goal of acquisition state is to finalize
the interaction with selected wearable device or sensor, the result of such finalization is returned as a
boolean value.

Table 2. Output function for each state of a wearable environment.

Reasoning State

g(S× I) U
g (Reasoning, Scan) List <Wearable Device >

Representation State

g(S× I) U
g (Representation, Connect) Wearable device
g (Representation, Sensors) ∅, List <Sensor >
g (Representation, Classify) Tree <Sensor>
g (Representation, Select) Sensor
g (Representation, Play) True/False
g (Representation, Stop) True/False
g (Representation, Store) Path

Acquisition State

g(S× I) U
g (Acquisition, Wearable device) True/False

g (Acquisition, Sensor) True/False
g (Acquisition, True/False) List<SensorValue>

3.2. Operational Semantics

The last step of the wearable environment API formalization is the definition of an operational semantics
to detail the interactions among the states. This is necessary to clearly define which kinds of services can
be invoked by a state. Each primitive is represented as a method (see Table 3) characterized by:

• Name: the name of the method, to identify the service in a non ambiguous way.
• Parameters: the (possibly empty) list of values necessary to perform the required service.
• Description: a brief explanation of the method body.
• Return value: the value obtained by the service invoking entity at the end of the method. This value

must be coherent with Table 2.

Sensors 2020, 20, 5970 8 of 26

Table 3. Definition of a primitive structure.

Return Value Method Name, Parameters, Description

Value name Primitive(parameter 1, parameter 2, ..., parameter n) Description

3.2.1. Scan()

This function searches all the wearable devices wd within a wearable environment that can be
associated to a smartphone sp (see Table 4).

Table 4. The Scan() definition.

Return Value Method Name, Parameters, Description

List <WearableDevice>
Scan()
Returns the collection of wearable devices available in a wearable
environment.

3.2.2. Connect(sp, wd)

This function (see Table 5) returns true if the pairing operation between the smartphone sp and one of
the wearable devices wd previously listed by Scan() succeeds, false otherwise. Pairing is made thanks to
BluetoothTM technology.

Table 5. The Connect(sp, wd) definition.

Return Value Method Name, Parameters, Description

True/False
Connect (Smartphone sp, WearableDevice wd)
Returns True if pairing sp and wd succeed; False otherwise.

3.2.3. Sensors(sp) and Sensors(wd)

These methods (see Table 6) enable the invoking application to obtain a complete list of sensors
available on the smartphone sp it is running on, as well as a previously connected wearable device wd.

Table 6. The Sensors(sp) and Sensors(wd) definition.

Return Value Method Name, Parameters, Description

List <Sensor>
Sensors (Smartphone sp)
Returns the list of sensors on the smartphone on the smartphone sp.

List <Sensor>
Sensors (WearableDevice wd)
Returns the list of sensors on the wearable device wd.

3.2.4. Classify(sp) and Classify(wd)

These primitives (see Table 7) group all sensors on the smartphone sp where the invoking application
runs and/or on the wearable device wd, already paired with sp, according to a hierarchical structure.
This structure, depicted in Figure 4, complies with AndroidTM categorization of sensors in position sensors,
movement sensors and environment sensors.

Sensors 2020, 20, 5970 9 of 26

Figure 4. Hierarchical representation of sensors in AndroidTM.

Sensors 2020, 20, 5970 10 of 26

Table 7. The Classify(sp) and Classify(wd) definition.

Return Value Method Name, Parameters, Description

Tree <Sensor>
Classify (Smartphone sp)
Returns a tree-like cluster of sensors available on the smartphone sp.

Tree <Sensor>
Classify (WearableDevice wd)
Returns a tree-like cluster of sensors available on the wearable device wd.

3.2.5. Sensor(sp) and Sensor(wd)

The collection of sensors List < Sensor > returned by Sensors primitive depends on the device
characteristics. It is extremely rare that a device is equipped with the totality of sensors available on the
market. For example, accelerometer, magnetometer and gyroscope are common, while others can be derived
from them (e.g., the rotation vector).

Since sensors could deprecate their performance due to accidents and/or aging, it is very important
for an application to know if a specific sensor is working, even though it has been listed in the Sensors(sp)
and/or Sensors(wd) result. Sensor(sp, s) and Sensor(wd, s), shown in Table 8, return true if the sensor s is
really available for data gathering on a smartphone sp and/or a wearable device wd.

Table 8. The Sensor(sp, s) and Sensor(wd, s) definition.

Return Value Method Name, Parameters, Description

True/False
Sensor (Smartphone sp, Sensor s)
Returns True if the sensor s is available on the smartphone sp;
False otherwise.

True/False
Sensor (WearableDevice wd, Sensor s)
Returns True if the sensor s is available on the wearable device wd;
False otherwise.

3.2.6. Select(sp, s) and Select(wd, s)

Once the wished sensor s has been identified and verified by the application, through the
Sensors(sp, s)/Sensors(wd, s) and Sensor(sp, s)/Sensor(wd, s) primitives, respectively, the Select() function
in Table 9 allows activating s on sp or wd:

Table 9. The Select(sp, s) and Select(wd, s) definition.

Return Value Method Name, Parameters, Description

Sensor
Select (Smartphone sp, Sensor s)
Returns the ID code of the sensor s if it has been correctly activated on the smartphone sp;
an empty string otherwise

Sensor
Select (WearableDevice wd, Sensor s)
Returns the ID code of the sensor s if it has been correctly activated on the wearable device wd;
an empty string otherwise.

The method returns information about the sensor to the invoking application. In particular, the sensor
identifier (e.g., the UUID) is exploited by the reasoning level of the wearable environment for the next
operations on it.

Sensors 2020, 20, 5970 11 of 26

3.2.7. Play(sp) and play(wd)

The Play() function is the most important part of the WEAR-IT API: given a sensor s, which has been
previously identified, verified and selected on a smartphone sp and/or wearable device wd, it allows
querying the sensor at different levels of granularity, in order to obtain detection of data from it, according
to the reasoning level specification.

Table 10 shows the most extended interface of this function: the method can be properly overloaded
according to the needs of the application. The parameters required are:

• Frequency f: This is the sampling frequency to collect data from the sensor s. The default setting is
5000 milliseconds.

• Time period [t0, tn]: This is the time interval during which the application wishes to collect data from
sensor s at the given frequency f. Typically, t0 is the instant when the primitive is invoked and tn > t0;
if t0 = tn only one value will be instantaneously returned, while tn < t0 will generate an error.

Possible variants are Play(sp, s, n)/Play(wd, s, n), which allows obtaining n consecutive readings of
sensor s value on a smartphone sp and/or a wearable device wd, sampled at the default frequency and
Play(sp, s)/Play(wd, s), which simply reads a value from sensor s when invoked.

Table 10. The Play(sp, s, t0, tn, f) and Play(wd, s, t0, tn, f) definition.

Return Value Method Name, Parameters, Description

List <SensorValue>
Play (Smartphone sp, Sensor s, Time t0, Time tn, Frequency f)
Returns a list of values gathered by sensor s on smartphone sp
according to the parameters settings.

List <SensorValue>
Play (WearableDevice wd, Sensor s, Time t0, Time tn, Frequency f)
Returns a list of values gathered by sensor s on wearable device wd
according to the parameters settings.

3.2.8. Stop(sp, s) and Stop(wd, s)

This primitive interrupts the data collection from a sensor s, being it on a smartphone sp or a wearable
device wd. Table 11 resumes it. This function can only be used if Play() has been previously invoked.
The following cases can verify:

• If Play(*, s) has been invoked, with * = sp or * = wd, then Stop(*, s) is not mandatory.
• If Play(*, s, t0, tn, f) has been activated, with * = sp or * = wd and t0 < tn, then Stop(s) can be used to

terminate the execution of Play(*, s, t0, tn, f) before the normal exit at the end of the [t0, tn] time period.

Table 11. The Stop(sp, s) and Stop(wd, s) definition.

Return Value Method Name, Parameters, Description

Void
Stop (Smartphone sp, Sensor s)
Data detection on sensor s of smartphone sp is terminated.

Void
Stop (WearableDevice wd, Sensor s)
Data detection on sensor s of wearable device wd is terminated.

3.2.9. Store()

Given a list of values, possibly composed of only one element, acquired by a previous Play() call,
the Store() primitive allows archiving the data under different formats, such as JSON, XML, CSV, etc.

Sensors 2020, 20, 5970 12 of 26

As per the others, the Store() function aims to provide the applications at reasoning level of a wearable
environment with a set of configurations to meet their needs. The default settings for parameters are the
following ones:

• File name: a string composed by the name of the sensor and a timestamp, joined by “_”.
• Archiving directory: the default directory of the application within the device where it runs.
• Format: the format of the file may depend on the type of data gathered by the sensor; the JSON

(or XML) format is used to standardize it.
• Access mode: data are generally appended to the file, in order to preserve possible existing information.

Each variant of Store() returns the path of the file according to the operation result. In the case of
errors, an error code is generated. In the case of success, the returned value could be an absolute path
within the device (if default settings are active) or an URI/URL in the case of distributed resources. Table 12
summarizes the most extended interface of the Store() method.

Table 12. The Store() definition for smartphones and wearable devices.

Return Value Method Name, Parameters, Description

Path

Store (Sensor s, Smartphone sp, Artifact a, List<SensorValue> sensorValues, Format f)
Stores a set of data sensorValues gathered by sensor s within the Artifact a, according to
the format f . In case of success, the path to the storage is returned;
an error code is generated otherwise.

Path

Store (Sensor s, Wearable device wd, Artifact a, List<SensorValue> sensorValues, Format f)
Stores a set of datasensorValues gathered by sensor s within the Artifact a, according to
the format f . In case of success, the path to the storage is returned;
an error code is generated otherwise.

3.3. An Example

WEAR-IT has been developed under AndroidTM OS, since many wearable devices fully compatible
with the AndroidWearTM interface are available at low cost on the market. Android OS provides a collection
of primitives through which the sensors of a smartphone, or an Android Wear device, can be queried.

While developing WEAR-IT, other methods of interconnections among wearable devices have been
considered, focusing on BluetoothLowEnergyTM technology. Other possibilities are the subject of future
works (see Section 6).

Algorithm 1 shows a sketch of the usage of the WEAR-IT APIs. As shown in Figure 1, the smartphone
sp is the only input necessary. Through the scan operation, the smartphone is able to determine the set
of other available wearable devices, showing them to the user, which can be either a human being (if
the graphical user interface is employed) or a software application. The user is then enabled to choose
one specific wearable device wd, by means of the connect primitive; wd can then return the list of sensors
it is equipped with and the user can select one of them exploiting the select operation. Finally, the play
and stop functions are invoked between two distinct time instants t1 and tn, in order to detect raw data
from the sensor for the desired period of time. As reported above, if t1 = tn, the datas variable contains a
single value.

Sensors 2020, 20, 5970 13 of 26

Algorithm 1 WEAR-IT API.

Require: sp
Ensure: s, wd, datas

{wdi} = scan(sp), i ∈ [1...k]
connect to a device wd suitable for the application
connect(wd, sp)
identify the sensors in the wearable environment
{sj} = classi f y(sensors(sp) ∪ sensors(wd)), j ∈ [1...m]

select the needed sensor of type T
s = select({sj}, T)
play(s)
measurement takes place
datas = stop(s)
return store(datas, wd)

Algorithm 2 Distributed data collection with WEAR-IT.

{spi} = search(area, N)

for all i do
{sj} = sensors(spi)

st = select({sj}, TEMPERATURE)
if st <> NULL then

t = play(st)
end if
sr = select({sj}, PRESSURE)
if sr <> NULL then

p = play(sr)
end if
sh = select({sj}, HUMIDITY)
if sh <> NULL then

h = play(sh)
end if
if t <> NULL then

store(spi.st, t)
end if
if p <> NULL then

store(spi.sr, p)
end if
if h <> NULL then

store(spi.sh, h)
end if

end for

An interesting extension of the algorithm above would be the remotization of WEAR-IT through the
integration of IoT platforms. This would allow implementing dynamically the communication component

Sensors 2020, 20, 5970 14 of 26

of a smart city application. To provide a complete support to this kind of applications, it is possible to
extend the API with the primitives needed to identify and select the endpoints suitable to the specific
application needs. The primary extension is a search(area, N) primitive which, in its simplest form,
returns a list of up to N smartphones supporting WEAR-IT, presently located within the area boundaries.
As an example, consider an application which requires a snapshot of the climate conditions (temperature,
pressure and humidity) in a specific area. The implementation could follow the simple schema sketched in
Algorithm 2.

Figure 5 shows how Algorithm 1 works in practice, by means of an AndroidTM app developed to test
the proposed API.

Here, it is supposed that

WEAR-ITwd = {sp ∪ {WearOSi} ∪ {BLEj}}

with j ∈ [1...n] and j ∈ [1...m], being possible that {WearOSi} = ∅ and {BLEj} = ∅. At launch,
the application allows scanning the wearable devices around the host smartphone and choose the device
to connect with; this device belongs to one of the WEAR-ITwd subsets (Steps 1 and 2 in Figure 5). Then,
the classify primitive is invoked (Step 3 in Figure 5). The wd sensors are clustered into four categories:

• Sensor available provides the list of all sensors mounted on the wearable device, alphabetically ordered.
This function is useful to have a quick view about all the possible data an application at the reasoning
level can exploit from the current device. The list of sensors can be exported to be used by applications.

• Motion, environment and position sensors group the sensors involved in the detection of the values
necessary for the correct execution of an application, on the basis of its goals. The sensors (e.g.,
accelerometer) belonging to motion category can be exploited by applications interested in the analysis
of the user movement, e.g., recommender systems for training. The sensors (e.g., light) belonging to
the environment category can be interesting for applications suggesting actions to take in response
to changes in the wearable environment context, e.g., personalized entertainment. The sensors (e.g.,
orientation) belonging to position category can be queried by applications interested in the analysis of
the user geographic position, e.g., systems for suggesting places to eat.

The select primitive usage is shown as Step 4 in Figure 5; accessing a category returned by classify, it is
possible to watch the list of clustered sensors. Finally, raw data can be acquired and permanently stored by
means of play, stop and store functions (Steps 5 and 6 in Figure 5). The final configuration of the wearable
environment obtained at the end of the algorithm in also shown.

Sensors 2020, 20, 5970 15 of 26

Figure 5. An application of Algorithm 1 for the generation of a wearable environment.

4. Case Study

Figure 6 shows a concrete implementation of the wearable environment conceptual model (see Figure 3
into a computational model, where an mHealth app, namely MoveUp, is considered at reasoning
level. The diagram presents all the interactions among the different components of the wearable
environment as well as interactions with external entities, such as the storage, allowed by the primitives
previously described.

Looking at this diagram, the wearable environment is a platform where software components, i.e.,
wearable expert systems), hardware components, such as smartphone, wearable devices and their sensors,
and external resources, like storage, are homogeneously managed. Thanks to the API provided by WEAR-IT,
the MoveUp wearable expert system can access data from sensors on wearable devices in a transparent way.

The Domain Dependence label in Figure 6 illustrates the main technologies and operating systems
currently available: wearable expert systems obtain data in a format depending on the desired sensor
and wearable device. This format varies according to the domain: sensors available in Android Wear are
different from sensors available on a BLE device. The WEAR-IT API makes the WES obtain data from the
sensor without being aware of the sensor features. Solid arrows in Figure 6 show the current development
of WEAR-IT API from the domain dependence perspective; dashed arrows specify under-development or
possible future implementations.

Figure 7 presents a typical situation where wearable environments are exploited. Each user has some
applications installed on his/her smartphone. Moreover, the smartphone is equipped with the WEAR-IT
framework. The applications interact with WEAR-IT to acquire data from wearable devices distributed
around the environment. Storage of data is on the cloud, to maximize the sharing of data among different
users and/or applications, if involved in the same overall project. To this aim, WEAR-IT can communicate
with opportune IoT platforms such as KAA (https://www.kaaproject.org/).

https://www.kaaproject.org/

Sensors 2020, 20, 5970 16 of 26

Figure 6. The wearable environment FSM model implemented into a case study.

Figure 7. Information flow in the proposed scenario.

The MoveUp app supports personalized training programs in people at risk from the cardiovascular
disease point of view. Physical activity (PA) is a very important factor to prevent chronic diseases; although
guidelines have been produced about the amount of PA to accomplish, and they are continuously updated,
much of the population continues to follow a sedentary lifestyle [40]. Traditional behavioral interventions
have produced scarce results from the PA promotion point of view [41]; on the contrary, the availability
of new, wearable technologies has allowed developing new applications to support people in modifying
their behavior with respect to PA.

In the case study, the user exploits an application suggesting him/her how much physical activity
to accomplish during the week; the evaluation is based both on quantitative, physical (e.g., “how much
time do you train during a week?”) and qualitative, psychological variables (e.g., “how well did you
feel during the training session?”). From the physical point of view, the metabolic equivalent of task (MET)
variable is used to estimate the amount and intensity of PA accomplished. The approach is based on

Sensors 2020, 20, 5970 17 of 26

guidelines provided by WHO [42] and it has been validated during an experiment involving 60 people,
as presented in [43]. Here, the focus is not on the application itself, but on how the WEAR-IT introduction
can be exploited to increase efficiency in the design and implementation of mHealth applications, as well
as thinking at their development as an iterative process where new modules can be added that use the
same wearable devices and data.

To develop the MoveUp reasoning strategy, the relationships between MET and heart rate (HR) has
been used, given by the following formula [44]:

MET = 4 ∗ TimeMPA + 8 ∗ TimeIPA (1)

where TimeMPA and TimeIPA are the periods of time the subject is involved in moderate and intense physical
activity, respectively, measured in minutes.

Thus, the wearable environment in Figure 7 is configured to detect HR values from one connected
wearable device starting at a given time instant and frequency and for a given period of time, as suggested by
the application. Let us suppose that the user must accomplish 120 MET of physical activity: according
to WHO guidelines (see https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/),
120 METs correspond to 30 min of MPA or 15 min of IPA. A PA session is defined moderate if the registered
HR values are in the range [6∗MHR

10 , 7∗MHR
10], with MHR = 220− age is the subject’s maximum heart rate,

depending on his/her age. A PA session is defined intense if the registered HR values are in the range
(7∗MHR

10 , 8∗MHR
10].

This means that HR values should be sampled from a HR sensor over a 30-min time horizon.
Algorithm 3 shows a sketch of Algorithm 1 related to the HR detection in MoveUp. The wearable device
used in the example is a PulseOnTM (see https://pulseon.com/) smartwatch.

Figure 8 shows how WEAR-IT is involved in the development of the related wearable expert system.
Starting from raw data acquisition from wearable devices (e.g., the heart rate), the MoveUp module
provides suggestions about the amount of physical activity to accomplish week by week (further details
about the conceptual model in [45]), thanks to WEAR-IT API use.

Algorithm 3 WEAR-IT API use in MoveUp.

Require: sp
Ensure: s, wd, datas

Comment: scan the wearable environment
{PulseOnTM, ...} = scan(sp), i ∈ [1...k]
Comment: connect to PulseOnTM suitable for the application
connect(PulseOnTM, sp)
Comment: identify the sensors in the PulseOnTM wearable device
{sj

PulseOnTM} = classi f y(sensors(PulseOnTM)), j ∈ [1...m]

Comment: select the needed sensor of type HEART_RATE
s = select({sj

PulseOnTM}, HEART_RATE)
Comment: measurement takes place for 30 min at default frequency; stop is not mandatory
play(s, t0, t0 + 30 min)
Comment: data gathered by HR sensor are stored in XLS format
return store(s, PulseOnTM, Pathdatas , datas, XLS)

https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/
https://pulseon.com/

Sensors 2020, 20, 5970 18 of 26

Figure 8. The three stages of app development in the case study.

5. Discussion

In this paper, a conceptual and computational approach to the design of IoT-based intelligent systems
is presented. The main idea is the definition of a wearable environment where intelligent systems can
interact with sensors in order to maximize the performance of their reasoning strategy. To do this,
a middleware layer has been inserted between the application and data layers, to provide the former with
an opportune API to gather data from the latter. The main benefits emerging from this choice, represented
in the diagram of Figure 6, are interoperability among applications at reasoning level and reliability of data
made available to applications. In the following, these two aspects are further explained.

5.1. Interoperability at Reasoning Level

It is important to notice that such API has been designed and implemented taking care of the goal of a
wearable environment: to define a mean to allow an application at reasoning level to perform its decision
making process being sure to find and obtain necessary data.

Figure 9 refers to the case study above: two distinct BLE devices, namely PulseOnTM (see https:
//pulseon.com/) and NokiaSteelHRTM (see https://www.withings.com/uk/en/steel-hr) smartwatches,
are included in the wearable environment definition. Both of them have a HR sensor, thus the
MoveUp application could choose the one or the other indifferently, from its performance point of
view. Unfortunately, if the NokiaSteelHRTM were selected to query its sensors, the WEAR-IT framework
would not be able to discover available data sources. This means that BLE configuration of the device is
not standard, thus no data can be delivered to a WES.

https://pulseon.com/
https://pulseon.com/
https://www.withings.com/uk/en/steel-hr

Sensors 2020, 20, 5970 19 of 26

Figure 9. BLE devices comparison in WEAR-IT.

This is a problem common to many wearable devices, for which opportune APIs are (maybe partially)
not available and they can only be interrogated through their official apps (e.g., HealthMateTM (see https:
//www.withings.com/nl/en/health-mate)); the possibility to connect a proprietary app such as Health
Mate to a middleware such as WEAR-IT, in order to overcome the problem described so far could open new
possibilities of developing innovative application in mobile domains; one possible solution, according to
the wearable environment definition, would be to extend the APIs set of WEAR-IT to allow an application
ai “playing” another application aj:

APIaiaj
= {play(aj), stop(aj), store(aj)}

An example of such interoperability is the development of MoveUp VR.The users of the MoveUp
module are people characterized by sedentary lifestyle and great difficulties to perform regular physical
activities due to many reasons. They result to be very frail psychologically and they could be discouraged
by well-known barriers [46].

To support the users to plan their training session, an interactive function for calculating the best route
to run across has been designed and implemented. Figure 10 shows the information flow concerning this
goal. First, the user chooses the starting point on the map: this point could be concrete (e.g., the address of
the hotel where the person stays during a business trip) or desirable (e.g., a beautiful point of interest).
Then, an input form is activated where the following data must be inserted:

• Duration of the PA session: This value can be calculated from the MET amount suggested by MoveUp
(remind that 120 MET are equivalent to 30 min of moderate PA). The user is free to setup the value
according to his/her wishes.

• Speed: This value is set by default at 6 km/h, but the user can modify it according to his/her conditions.

https://www.withings.com/nl/en/health-mate
https://www.withings.com/nl/en/health-mate

Sensors 2020, 20, 5970 20 of 26

• Direction: This value is set by default at 0 degrees, but the user can modify it exploiting the rotation
vector sensor (if available) provided by WEAR-IT; for example, he/she could point towards a POI
he/she sees on the map, in order to force the application to consider it in the calculation.

At the end of the calculation, the proposed route is highlighted on the map and the user can simulate
to run it through the StreetViewTM activation. Doing so, he/she will be able to decide if the route
neighborhood fits with his/her expectations or modifying it otherwise. In this case, the MET value
exploited in the route calculus is asked to the MoveUp application; the MET value is not gathered from
a sensor, being derived from HR thanks to the MoveUp decision’s model. Much work must be done to
extend the WEAR-IT API to enable an application to interface with another one to obtain data, and this is
being addressed by ongoing work.

Figure 10. The information flow to calculate the path for running in MoveUp.

5.2. Data Reliability

Expert systems, and wearable expert systems too, are generally able to work if some data are missing.
The availability of faulty data is more critical, since the decision making process could be erroneously
conducted. The probability that measures from wearable devices are incorrect is high, especially when data
gathered concern medical parameters such as HR [47]. One of the most important goals of the wearable
environment described is allowing applications at reasoning level to deal with reliable data. To this aim,
some experiments on the wearable environment storage have been conducted.

Given an IoT device to measure temperature, humidity, luminosity and battery voltage, data gathered have
been archived in the KAA platform for a period of 36 days. The resulting table contained 2,313,682 records.
Table 13 summarizes the number of anomalies detected on them.

Table 13. Analysis of anomalies on data measurements.

Values Parameter

Temperature Humidity Luminosity Voltage

Null 901 (0.03%) 902 (0.03%) 93,880 (4%) 526 (0.02%)

Outliers 383,443 (16.6%) 299,084 (12.9%) 0 8 (0.03%)

Sensors 2020, 20, 5970 21 of 26

Figure 11 shows the distribution of values for the temperature and humidity variables. It is possible
to notice how the temperature curve is uniformly distributed between 10 and 35 ◦C; these values are
much more than others, constituting the set of correct values for the temperature detection. Moreover,
there are some peaks of anomaly values that are very frequent. i.e., 0.51 and 121.49 ◦C. About humidity,
the distribution is Gaussian between 24% and 60% and uniform between 0% and 24%; moreover, there are
very few measurements in the (60%, 100%] range, with a significant peak of anomaly at 114.45% (about
4000 units).

Figure 12 presents the distribution of values for the luminosity and voltage parameters. The luminosity
distribution is linear on the whole interval, except for peaks at the limits (0 and 1600 lux respectively) and
some anomalies at 41, 43 and 48 lux values. Finally, the battery voltage distribution is Gaussian, without
any significant peak or anomaly.

Figure 11. Distribution of luminosity and battery voltage values archived in the KAA storage.

The analysis of curves of parameters values allowed deriving opportune sets of acceptable values for
sensors measurements, as shown in Table 14. The temperature range was extended to [−15 ◦C, 50 ◦C] to take
care of winter and summer periods (the experiment was conducted łlast spring).

Sensors 2020, 20, 5970 22 of 26

Table 14. Acceptable values for temperature, humidity, luminosity and voltage.

Parameter Measurement

Minimum Value Maximum Value

Temperature −15 ◦C 50 ◦C
Humidity 0% h 100% h

Luminosity 0 Lux 2500 Lux
Voltage 1, 5 Volts 3, 5 Volts

The last step of the intervention is the nullification of out of bounds values. The consequent loss
of information due to the deletion of data from the storage is compensated by the lower probability of
taking wrong decisions as a consequence of sensors failures. Figure 13 shows the decrease of standard
deviation of variables at the end of this intervention. According to the knowledge domain, out of bound
values could be substituted by reasonable, standard values: for example, in the MoveUp case study, a
possible strategy to improve the data quality could be replacing extremely high outlier values of HR with
user’s MHR.

Figure 12. Distribution of temperature and humidity values archived in the KAA storage.

Sensors 2020, 20, 5970 23 of 26

Figure 13. Standard deviation of temperature, humidity, luminosity and voltage values before and after
nullification.

6. Conclusions

In this paper, we propose the wearable environment notion and architecture as a means to cast into
a unique conceptual and computational framework data acquisition from sensors, data representation
through wearable devices and their use by means of wearable expert systems. The heart of this notion
is the data acquisition and representation layer, where the WEAR-IT platform has been designed and
implemented to build an efficient, reliable and scalable bridge between raw data and applications.

To our knowledge, only three applications provide services comparable to WEAR-IT: SensorCap,
Sensor Toolbox and LightBlue Explorer (see https://play.google.com/store/apps/details?id=br.ufmg.dcc.
ssig.sensorcap; https://play.google.com/store/apps/details?id=com.galaxy.sensortoolbox; and https:
//play.google.com/store/apps/details?id=com.punchthrough.lightblueexplorer). With respect to them,
only WEAR-IT can be integrated (see Figure 8) into a wearable environment at the moment, while the others
can be used as external services to collect and store data that can be then elaborated by the application.

Indeed, data reliability is one of the most important factor for WES development. Consequently,
given that, in a wearable environment, WEAR-IT acts as an intermediate data collector, it is important to
ensure that the quality of data stored is high enough (see Section 5.2). This issue is currently addressing
our research [48].

Finally, a future extension of the present work concerns the definition of an extended wearable
environment infrastructure, where many users, each one equipped with a personal wearable environment,
could be asked to join an integrated, geographically distributed and scalable wearable environment. In this
environment, an application could query end-points and acquire data from them according to their position
and reachability from mobile nodes [33].

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

https://play.google.com/store/apps/details?id=br.ufmg.dcc.ssig.sensorcap
https://play.google.com/store/apps/details?id=br.ufmg.dcc.ssig.sensorcap
https://play.google.com/store/apps/details?id=com.galaxy.sensortoolbox
https://play.google.com/store/apps/details?id=com.punchthrough.lightblueexplorer
https://play.google.com/store/apps/details?id=com.punchthrough.lightblueexplorer

Sensors 2020, 20, 5970 24 of 26

Abbreviations

The following abbreviations are used in this manuscript:

API Application Program Interface
BLE Bluetooth Low Energy
GUI Graphical User Interface
HR Heart Rate
IoT Internet of Things
IPA Intense Physical Activity
MET Metabolic Equivalent of Task
mHealth Mobile Health
MHR Maximum Heart Rate
MPa Moderate Physical Activity
NCD Non-communicable Diseases
NTP Network Time Protocol
OS Operating System
PA Physical Activity
SE Self Efficacy
VR Virtual Reality
WES Wearable Expert System
UUID Universal Unique IDentifier
WBAN Wireless Body Area Network
WSN Wireless Sensor Network
WSNME Wireless Sensor Networks with Mobile Elements
WHO World Health Organization

References

1. Jovanović, J.; Gašević, D. Achieving knowledge interoperability: An XML/XSLT approach. Expert Syst. Appl. 2005,
29, 535–553. [CrossRef]

2. Garcia-de Prado, A.; Ortiz, G.; Boubeta-Puig, J. COLLECT: COLLaborativE ConText-aware service oriented
architecture for intelligent decision-making in the Internet of Things. Expert Syst. Appl. 2017, 85, 231–248.
[CrossRef]

3. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
4. Sartori, F.; Melen, R. Wearable expert system development: Definitions, models and challenges for the future.

Program 2017, 51, 235–258. [CrossRef]
5. Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies, challenges, and open

research issues. Comput. Netw. 2018, 144, 17–39. [CrossRef]
6. Lee, J.; Kim, D.; Ryoo, H.Y.; Shin, B.S. Sustainable wearables: Wearable technology for enhancing the quality of

human life. Sustainability 2016, 8, 466. [CrossRef]
7. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling

technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
8. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture, enabling

technologies, security and privacy, and applications. IEEE Int. Things J. 2017, 4, 1125–1142. [CrossRef]
9. Kim, J.; Yun, J.; Choi, S.C.; Seed, D.N.; Lu, G.; Bauer, M.; Al-Hezmi, A.; Campowsky, K.; Song, J. Standard-based

IoT platforms interworking: Implementation, experiences, and lessons learned. IEEE Commun. Mag. 2016, 54,
48–54. [CrossRef]

10. Zeng, D.; Guo, S.; Cheng, Z. The web of things: A survey. JCM 2011, 6, 424–438. [CrossRef]
11. Wong, B.P.; Kerkez, B. Real-time environmental sensor data: An application to water quality using web services.

Environ. Model. Softw. 2016, 84, 505–517. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2005.04.024
http://dx.doi.org/10.1016/j.eswa.2017.05.034
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1108/PROG-09-2016-0061
http://dx.doi.org/10.1016/j.comnet.2018.07.017
http://dx.doi.org/10.3390/su8050466
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1109/MCOM.2016.7514163
http://dx.doi.org/10.4304/jcm.6.6.424-438
http://dx.doi.org/10.1016/j.envsoft.2016.07.020

Sensors 2020, 20, 5970 25 of 26

12. Al Rasyid, M.U.H.; Sayfudin, A.; Basofi, A.; Sudarsono, A. Development of semantic sensor web for monitoring
environment conditions. In Proceedings of the 2016 International Seminar on Intelligent Technology and Its
Applications (ISITIA), Lombok, Indonesia, 28–30 June 2016; pp. 607–612.

13. Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15,
1321–1330. [CrossRef]

14. Edwards, J. Wireless sensors relay medical insight to patients and caregivers [special reports]. IEEE Signal
Process. Mag. 2012, 29, 8–12. [CrossRef]

15. Shaltis, P.A.; Reisner, A.T.; Asada, H.H. Cuffless blood pressure monitoring using hydrostatic pressure changes.
IEEE Trans. Biomed. Eng. 2008, 55, 1775–1777. [CrossRef]

16. Poh, M.Z.; Kim, K.; Goessling, A.; Swenson, N.; Picard, R. Cardiovascular monitoring using earphones and a
mobile device. IEEE Pervasive Comput. 2012, 11, 18–26. [CrossRef]

17. Salvo, P.; Di Francesco, F.; Costanzo, D.; Ferrari, C.; Trivella, M.G.; De Rossi, D. A wearable sensor for measuring
sweat rate. IEEE Sens. J. 2010, 10, 1557–1558. [CrossRef]

18. Strohrmann, C.; Harms, H.; Kappeler-Setz, C.; Troster, G. Monitoring kinematic changes with fatigue in running
using body-worn sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 983–990. [CrossRef] [PubMed]

19. Ermes, M.; Pärkkä, J.; Mäntyjärvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors
in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26. [CrossRef]

20. Rodgers, M.M.; Pai, V.M.; Conroy, R.S. Recent advances in wearable sensors for health monitoring. IEEE Sens. J.
2015, 15, 3119–3126. [CrossRef]

21. Alemdar, H.; Ersoy, C. Wireless sensor networks for healthcare: A survey. Comput. Netw. 2010, 54, 2688–2710.
[CrossRef]

22. Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless body area networks: A survey.
IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [CrossRef]

23. Appelboom, G.; Camacho, E.; Abraham, M.E.; Bruce, S.S.; Dumont, E.L.; Zacharia, B.E.; Connolly, E.S. Smart
wearable body sensors for patient self-assessment and monitoring. Arch. Public Health 2014, 72, 28. [CrossRef]
[PubMed]

24. Casselman, J.; Onopa, N.; Khansa, L. Wearable healthcare: Lessons from the past and a peek into the future.
Telemat. Inform. 2017, 34, 1011–1023. [CrossRef]

25. Mathie, M.J.; Coster, A.C.; Lovell, N.H.; Celler, B.G.; Lord, S.R.; Tiedemann, A. A pilot study of long-term
monitoring of human movements in the home using accelerometry. J. Telemed. Telecare 2004, 10, 144–151.
[CrossRef]

26. Sazonov, E.S.; Fulk, G.; Sazonova, N.; Schuckers, S. Automatic recognition of postures and activities in stroke
patients. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Minneapolis, MI, USA, 2–6 September 2009; pp. 2200–2203.

27. Giansanti, D.; Maccioni, G.; Morelli, S. An experience of health technology assessment in new models of care
for subjects with Parkinson’s disease by means of a new wearable device. Telemed. Health 2008, 14, 467–472.
[CrossRef]

28. Aziz, O.; Atallah, L.; Lo, B.; ElHelw, M.; Wang, L.; Yang, G.Z.; Darzi, A. A pervasive body sensor network for
measuring postoperative recovery at home. Surg. Innov. 2007, 14, 83–90. [CrossRef]

29. Patel, M.S.; Asch, D.A.; Volpp, K.G. Wearable devices as facilitators, not drivers, of health behavior change.
JAMA 2015, 313, 459–460. [CrossRef]

30. Amft, O.; Tröster, G. Recognition of dietary activity events using on-body sensors. Artif. Intell. Med. 2008, 42,
121–136. [CrossRef]

31. Benedetti, M.G.; Di Gioia, A.; Conti, L.; Berti, L.; Degli Esposti, L.; Tarrini, G.; Melchionda, N.; Giannini, S.
Physical activity monitoring in obese people in the real life environment. J. Neuroeng. Rehabil. 2009, 6, 47.
[CrossRef]

http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/MSP.2012.2183489
http://dx.doi.org/10.1109/TBME.2008.919142
http://dx.doi.org/10.1109/MPRV.2010.91
http://dx.doi.org/10.1109/JSEN.2010.2046634
http://dx.doi.org/10.1109/TITB.2012.2201950
http://www.ncbi.nlm.nih.gov/pubmed/22677321
http://dx.doi.org/10.1109/TITB.2007.899496
http://dx.doi.org/10.1109/JSEN.2014.2357257
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1109/SURV.2013.121313.00064
http://dx.doi.org/10.1186/2049-3258-72-28
http://www.ncbi.nlm.nih.gov/pubmed/25232478
http://dx.doi.org/10.1016/j.tele.2017.04.011
http://dx.doi.org/10.1258/135763304323070788
http://dx.doi.org/10.1089/tmj.2007.0078
http://dx.doi.org/10.1177/1553350607302326
http://dx.doi.org/10.1001/jama.2014.14781
http://dx.doi.org/10.1016/j.artmed.2007.11.007
http://dx.doi.org/10.1186/1743-0003-6-47

Sensors 2020, 20, 5970 26 of 26

32. Sciacqua, A.; Valentini, M.; Gualtieri, A.; Perticone, F.; Faini, A.; Zacharioudakis, G.; Karatzanis, I.; Chiarugi, F.;
Assimakopoulou, C.; Meriggi, P.; et al. Validation of a flexible and innovative platform for the home monitoring
of heart failure patients: Preliminary results. In Proceedings of the 2009 36th Annual Computers in Cardiology
Conference (CinC), Park City, UT, USA, 13–16 September 2009; pp. 97–100.

33. Di Francesco, M.; Das, S.K.; Anastasi, G. Data collection in wireless sensor networks with mobile elements:
A survey. ACM Trans. Sens. Netw. 2011, 8, 1–31. [CrossRef]

34. Anastasi, G.; Conti, M.; Di Francesco, M.; Passarella, A. Energy conservation in wireless sensor networks:
A survey. Ad Hoc Netw. 2009, 7, 537–568. [CrossRef]

35. Sartori, F.; Melen, R. Time Evolving Expert Systems Design and Implementation: The KAFKA Approach.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, Part
of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge
Management (IC3K 2015), Lisbon, Portugal, 12–14 November 2015; pp. 84–95.

36. Melen, R.; Sartori, F.; Grazioli, L. Modeling and understanding time-evolving scenarios. In Proceedings of the
19th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 12–15 July 2015; pp.
267–272.

37. Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2010.
38. Sartori, F.; Melen, R.; Lombardi, M.; Maggiotto, D. Virtual round table knights for the treatment of chronic

diseases. J. Reliab. Intell. Environ. 2019, 5, 131–143. [CrossRef]
39. Mealy, G.H. A method for synthesizing sequential circuits. Bell Syst. Tech. J. 1955, 34, 1045–1079. [CrossRef]
40. Hallal, P.C.; Bauman, A.E.; Heath, G.W.; Kohl 3rd, H.W.; Lee, I.M.; Pratt, M. Physical activity: More of the same

is not enough. Lancet 2012, 380, 190. [CrossRef]
41. Conn, V.S.; Hafdahl, A.R.; Mehr, D.R. Interventions to increase physical activity among healthy adults:

Meta-analysis of outcomes. Am. J. Public Health 2011, 101, 751–758. [CrossRef] [PubMed]
42. WHO. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland,

2010.
43. Baretta, D.; Sartori, F.; Greco, A.; D’Addario, M.; Melen, R.; Steca, P. Improving physical activity mhealth

interventions: Development of a computational model of self-efficacy theory to define adaptive goals for exercise
promotion. Adv. Hum. Comput. Interact. 2019, 2019. [CrossRef]

44. Armstrong, T.; Bonita, R. Capacity building for an integrated noncommunicable disease risk factor surveillance
system in developing countries. Ethn. Dis. 2002, 13, S13-8.

45. Baretta, D.; Sartori, F.; Greco, A.; Melen, R.; Stella, F.; Bollini, L.; D’addario, M.; Steca, P. Wearable devices and
AI techniques integration to promote physical activity. In Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and Services Adjunct, Florence, Italy, 6–9 September 2016;
pp. 1105–1108.

46. Manaf, H. Barriers to participation in physical activity and exercise among middle-aged and elderly individuals.
Singap. Med. J. 2013, 54, 581–586.

47. Kumar, M.S.; Dhulipala, V.S.; Baskar, S. Fuzzy unordered rule induction algorithm based classification for
reliable communication using wearable computing devices in healthcare. J. Ambient. Intell. Humaniz. Comput.
2020, 1–12. [CrossRef]

48. Sartori, F.; Melen, R.; Giudici, F. IoT Data Validation Using Spatial and Temporal Correlations. In Proceedings of
the Research Conference on Metadata and Semantics Research, Rome, Italy, 28–31 October 2019; pp. 77–89.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1993042.1993049
http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://dx.doi.org/10.1007/s40860-019-00089-8
http://dx.doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://dx.doi.org/10.1016/S0140-6736(12)61027-7
http://dx.doi.org/10.2105/AJPH.2010.194381
http://www.ncbi.nlm.nih.gov/pubmed/21330590
http://dx.doi.org/10.1155/2019/3068748
http://dx.doi.org/10.1007/s12652-020-02219-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Related Work
	Definition of Wearable Environment
	WES Level: Applications
	API Level: A Bridge between Data and Applications

	The WEAR-IT API
	Interpreting WEs as FSMs
	Operational Semantics
	Scan()
	Connect(sp, wd)
	Sensors(sp) and Sensors(wd)
	Classify(sp) and Classify(wd)
	Sensor(sp) and Sensor(wd)
	Select(sp, s) and Select(wd, s)
	Play(sp) and play(wd)
	Stop(sp, s) and Stop(wd, s)
	Store()

	An Example

	Case Study
	Discussion
	Interoperability at Reasoning Level
	Data Reliability

	Conclusions
	References

