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Back and forth transmission of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) between humans and animals will establish wild
reservoirs of virus that endanger long-term efforts to control COVID-19 in
people and to protect vulnerable animal populations. Better targeting sur-
veillance and laboratory experiments to validate zoonotic potential
requires predicting high-risk host species. A major bottleneck to this effort
is the few species with available sequences for angiotensin-converting
enzyme 2 receptor, a key receptor required for viral cell entry. We overcome
this bottleneck by combining species’ ecological and biological traits with
three-dimensional modelling of host-virus protein–protein interactions
using machine learning. This approach enables predictions about the zoono-
tic capacity of SARS-CoV-2 for greater than 5000 mammals—an order of
magnitude more species than previously possible. Our predictions are
strongly corroborated by in vivo studies. The predicted zoonotic capacity
and proximity to humans suggest enhanced transmission risk from several
common mammals, and priority areas of geographic overlap between
these species and global COVID-19 hotspots. With molecular data available
for only a small fraction of potential animal hosts, linking data across bio-
logical scales offers a conceptual advance that may expand our predictive
modelling capacity for zoonotic viruses with similarly unknown host ranges.
1. Introduction
The ongoing COVID-19 pandemic has surpassed 4.8 million deaths globally as
of 1 October 2021 [1,2]. Like previous pandemics in recorded history, COVID-19
originated from the spillover of a zoonotic pathogen, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a betacoronavirus originating from
an unknown animal host [3–6]. The broad host range of SARS-CoV-2 is due
in part to its use of a highly conserved cell surface receptor to enter host
cells, the angiotensin-converting enzyme 2 receptor (ACE2) [7] found in all
major vertebrate groups [8].

The ubiquity of ACE2 coupled with the high prevalence of SARS-CoV-2 in
the global human population explains multiple observed spillback infections
since the emergence of SARS-CoV-2 in 2019 (see natural infections listed in elec-
tronic supplementary material, table S1). In spillback infection, human hosts
transmit SARS-CoV-2 virus to cause infection in non-human animals.
In addition to threatening wildlife and domestic animals, repeated spillback
infections may lead to the establishment of new animal hosts from which
SARS-CoV-2 can then pose a risk of secondary spillover infection to humans
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through bridge hosts (e.g. [9]) or newly established enzootic
reservoirs. Indeed, this risk has been realized in Denmark
[10] and The Netherlands, where SARS-CoV-2 spilled back
from humans to farmed mink (Neovison vison) with the sec-
ondary spillover of a SARS-CoV-2 variant from mink back
to humans [11]. A major concern in such secondary spillover
events is the appearance of a mutant strain affecting host
range [12] or leading to increased transmissibility in
humans [13,14] (but see [15,16]), reduced sensitivity to neu-
tralizing antibodies [10] and reduced vaccine efficacy [17].
Conversely, human-derived variants pose spillback risks to
animals. For example, in contrast with previous infection
trials [18], two new human variants have overcome the
species barrier to infect laboratory mice (Mus musculus) [19].

Spillback infections from humans to animals are already
occurring worldwide with pets, domesticated animals, zoo
animals and wildlife now documented as new hosts of
SARS-CoV-2 (figure 1; electronic supplementary material,
table S1). SARS-CoV-2 has been found for the first time in
wild and escaped mink in multiple states in the United
States, with viral sequences identical to SARS-CoV-2 in
nearby farmed mink [33–35]. The global scale of human infec-
tions and the increasing range of known animal hosts
demonstrate that SARS-CoV-2 has the capacity to establish
novel infection cycles in animals. In response, recent compu-
tational studies predict the susceptibility of particular animal
species to SARS-CoV-2 [12,21–28,36] by comparing known
sequences of ACE2 orthologues across species (sequence-based
studies), or bymodelling the structure of the viral spike protein
bound to ACE2 orthologues (structure-based studies) to yield a
wide range of predictions with varying degrees of agreement
with laboratory animal experiments (figure 1).

Sequence-based studies predict host susceptibility based
on amino acid sequence similarity between human (hACE2)
and non-human ACE2, and assume that a high degree of simi-
larity correlateswith stronger viral binding, especiallyat amino
acid residues where hACE2 interacts with the SARS-CoV-2
spike glycoprotein. For some species, such as rhesusmacaques
[37], these qualitative predictions are borne out by in vivo
studies (figure 1), but predictions from these methods do not
consistently match real-world outcomes. For example,
sequence similarity predicted weak viral binding for minks
and ferrets, which have both been confirmed as highly suscep-
tible [11,22,38] (figure 1). Mismatches to in vivo outcomes may
arise in part because protein three-dimensional structure, the
main determinant of the interaction between host ACE2 and
the viral spike protein, is incompletely represented by one-
dimensional amino acid sequences [39,40].

Structure-based studies model the three-dimensional
structure of protein-protein complexes to address some of
the limitations of sequence-based approaches. Structural
models have proven useful for predicting how different
ACE2 orthologues bind to the SARS-CoV-2 viral spike
protein receptor-binding domain (RBD) [12,28]. These studies
leverage known structures of the hACE2 receptor bound to
the SARS-CoV-2 RBD and use powerful simulations to pre-
dict how variation across different ACE2 orthologues affects
binding with the viral RBD. While these approaches success-
fully predicted strong binding for species that have been
infected (e.g. domestic cat, tiger, dog and ferret) and weak
binding for species in which experimental infections have
failed (e.g. chicken, duck [38], mouse [18]), the results are
also not consistently supported by experiments. For instance,
while guinea pig ACE2 scored favourably in one structure-
based study [12], this orthologue was shown experimentally
not to bind to the SARS-CoV-2 RBD [29].

Although structural modelling has produced the most
accurate results to date, all currently available approaches
for predicting the host range of SARS-CoV-2 are fundamen-
tally constrained by the availability of ACE2 sequences
across species. ACE2 is ubiquitous across chordates, probably
because of its role in highly conserved physiological path-
ways, for example in regulating blood pressure, salt and
water [41]. The vast majority of mammal species (greater
than 6000 species) are likely to have ACE2, but sequences
are available for only around 300 species. The functional
importance of the ACE2 receptor suggests that it has evolved
in association with other intrinsic organismal traits for which
data are available for many more species. These suites of cor-
related organismal traits may provide a robust statistical
proxy that can be leveraged to predict biologically permissive
hosts for SARS-CoV-2. Previous trait-based analyses applied
machine learning techniques to accurately distinguish the
zoonotic capacity of various organisms [42–44] and predict
likely hosts for particular groups of related viruses [45,46],
predictions which have subsequently been validated through
independent laboratory and field investigations (e.g. [47,48]).

Here, we combine structural modelling of viral binding
with machine learning of species ecological and biological
traits to predict zoonotic capacity for SARS-CoV-2 across
5400 mammal species, expanding our predictive capacity
by an order of magnitude (figure 2). Crucially, this integrated
approach enables predictions for the vast majority of species
whose ACE2 sequences are currently unavailable by lever-
aging information from viral binding dynamics and
biological traits. In our workflow (figure 2), we first carry
out structural modelling to quantify the binding strength of
SARS-CoV-2 RBD for vertebrate species using published
ACE2 amino acid sequences [49]. We then collate species
traits and train a machine learning model to predict the
zoonotic capacity for 5400 mammals.

AsCOVID-19 is primarilya disease affecting humans, spill-
back infection of SARS-CoV-2 from humans to animals is the
most likely mode by which new animal hosts will become
established. We therefore identify a subset of species for
which the threat of spillback infection appears greatest due to
geographic overlaps and opportunities for contact with
humans in areas of high SARS-CoV-2 prevalence globally.
These approaches underscore the utility of establishing inter-
disciplinary and iterative processes that join computational
modelling, field surveillance and laboratory experiments to
more efficiently quantify zoonotic risk [50], and better inform
next steps to prevent enzootic SARS-CoV-2 transmission and
spread. Our analyses are based on the initial dominant
SARS-CoV-2 variant in humans, but these methods can be
readily adjusted to enable host range predictions for new var-
iants as their hACE2-RBD crystal structures become available.
2. Methods
(a) Structural modelling of ACE2 orthologues bound to

SARS-CoV-2 spike
We assembled ACE2 sequences from the NCBI GenBank and
MEROPS databases. The modelling of 326 ACE2 orthologues
bound to SARS-CoV-2 spike RBD was carried out using the
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Figure 1. A heatmap summarizing predicted susceptibility to SARS-CoV-2 for species with confirmed infection from in vivo experimental studies or from docu-
mented natural infections. Studies that make predictions about species susceptibility are shown on the x-axis, organized by the method of prediction (those relying
on ACE2 sequences, estimating binding strength using three-dimensional structures, or laboratory experiments). Predictions about zoonotic capacity from this study
are listed in the second to last column, with high and low categories determined by zoonotic capacity observed in Felis catus. Confirmed infections for species along
with the y-axis are depicted as a series of filled or unfilled circles. Bolded species have been experimentally confirmed to transmit SARS-CoV-2 to naive conspecifics.
Species predictions range from warmer colours (yellow: low susceptibility or zoonotic capacity for SARS-CoV-2) to cooler colours ( purple: high susceptibility or
zoonotic capacity). See electronic supplementary material, Methods [20] for detailed methods about how predictions from past studies were categorized as
low, medium or high. For a comparison of predictions of species susceptibility from multiple methods, including our study, see electronic supplementary material,
figure S1. (Online version in colour.)
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Figure 2. A flowchart showing the progression of our workflow combining evidence from limited laboratory and field studies with additional data types to predict
zoonotic capacity across mammals through multi-scale statistical modelling (grey boxes, steps 1–5). For all vertebrates with published ACE2 sequences, we modelled
the interface of species’ ACE2 bound to the viral RBD using HADDOCK. We then combined the HADDOCK scores, which approximate binding strength, with species’
trait data and trained machine learning models (generalized boosted regression) for both mammals and vertebrates. Predictive modelling of host zoonotic capacity
focused on mammals only because there are currently no non-mammalian hosts for SARS-CoV-2 and imbalanced ACE2 sequences among non-mammals. Mammal
species predicted to have high zoonotic capacity were then compared to results of in vivo experiments and in silico studies that applied various computational
approaches. Based on predictions from our model, we identified a subset of species with particularly high risk of spillback and secondary spillover potential to
prioritize additional laboratory validation and field surveillance (dashed line). (Online version in colour.)
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HADDOCK software as described previously [13], with a few
differences. For details on how we processed sequences, and
on our structural modelling of ACE2 orthologues bound to
SARS-CoV-2 spike (PDB ID: 6m0j [51]; see electronic supplemen-
tary material, Methods [20]). For each species, we estimated
binding strength based on HADDOCK score—a combination of
van der Waals, electrostatics and desolvation energies. A lower
(more negative) HADDOCK score predicts stronger binding
between the two proteins. We hereafter refer to predicted bind-
ing strength, or simply binding strength, to indicate
HADDOCK score. The HADDOCK server is freely available,
and we provide code to reproduce analyses or to aid in the appli-
cation of this modelling approach to similar problems [52].
Though the effects of multiple simultaneous mutations on bind-
ing affinity remain difficult to predict, HADDOCK has been used
to explore how minor changes to the structure of the RBD (e.g.
from point mutations or deletions in SARS-CoV-2 variants)
affect viral binding [12]. These variations are accounted for by
the HADDOCK software by estimating and considering their
effects on both strong and weak forces that together determine
both local and interfacial molecular contacts [53]. As crystal
structures of novel variants become available, the modelling
pipeline we present here can be applied to predict how differ-
ences in binding strengths to ACE2 orthologues affect host
range and the risk of spillover transmission across species.

(b) Trait data collection and cleaning
We gathered ecological, life history, phylogenetic and biological
trait data from AnAge [54], Amniote Life History Database [55],
EltonTraits [56], PanTHERIA [57] and taxonomic databases [58],
among other databases. Non-mammal hosts have yet to be con-
firmed as both susceptible and capable of onward transmission
of SARS-CoV-2. Therefore, while we gathered data on certain
traits across all vertebrates, we gathered data on additional traits
formammals. Formammal species,we applied boosted regression
(BRT) using the gbm package [59] in R v. 4.0.0 [60] to imputemiss-
ing trait data (e.g. [44]; see electronic supplementary material,
Methods for imputation methods and results). Data and descrip-
tions of each variable can be found in the electronic
supplementary material, table S2. For details on data processing,
see electronic supplementary material, Methods [20].

(c) Modelling
(i) Quantifying a threshold for zoonotic capacity using HADDOCK
ACE2 binding is necessary for viral entry into host cells, but it is
not sufficient for SARS-CoV-2 transmission. Multiple in vivo
experiments suggest that some species are capable of binding
SARS-CoV-2 but not capable of transmitting active infection to
other individuals (e.g. cattle, Bos taurus [61]; bank voles,
Myodes glareolus [62]). Viral replication and viral shedding that
enables onward transmission are both required to become a suit-
able bridge or reservoir host for SARS-CoV-2. We constrained
our predictions to species with the greatest potential for
onward transmission by training our models on a binary label
created using a conservative threshold of binding strength
(HADDOCK score =−129). This value falls between the scores
for two species: the domestic cat (Felis catus), currently the
species with weakest predicted binding but confirmed conspeci-
fic transmission [63], and the pig (Sus scrofa), which shows the
strongest estimated binding for which experimental inoculation
failed to cause detectable infection [38]. Binding strength was
binarized according to this threshold, above which it is more
likely that both infection and onward transmission will occur
following the results of multiple empirical studies (figure 1; elec-
tronic supplementary material, table S1). There are susceptible
species whose predicted binding strength is weaker than
cats, but conspecific transmission has not been confirmed in
these species. For additional modelling details, see electronic
supplementary material, Methods.
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(d) Trait-based modelling to predict zoonotic capacity
We applied generalized BRT [64] to host trait data to predict
mammal species’ zoonotic capacity (for descriptions and results
from additional uninformative models, including models using
a vertebrate dataset, see electronic supplementary material,
Methods and electronic supplementary material table S3). Code
for BRT modelling, along with data for training models and
making predictions, can be found at https://github.com/Han-
LabDiseaseEcology/zoonotic_capacity.
g/journal/rspb
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3. Results
Currently available ACE2 protein sequences came from 326
species spanning eight classes and 87 orders [52]. The
majority of sequences belonged to the classes Actinopterygii
(22.1%), Aves (23.3%) and Mammalia (46.6%). We predicted
binding strength for 299 vertebrates, including 142 mammals
(electronic supplementary material, figures S2–S6). Among
well-represented mammalian orders (those containing at
least 10 species with binding strength predictions), Primates
and Carnivora showed predicted mean binding strengths
that were stronger than domestic cats (electronic supplemen-
tary material, figure S2).

We next constructed a trait-based machine learning
model to predict zoonotic capacity (a binarized binding
threshold) in mammals. We used the best-performing
model to generate predictions of zoonotic capacity among
mammal species (corrected test AUC of 0.72; for results of
all other model variations see electronic supplementary
material, table S3). Citation count in Web of Science, used
as a proxy for study effort, had approximately 1% relative
importance (electronic supplementary material, figure S7),
suggesting that sampling bias across species had little
influence on the model.

Thismodel predicted 540 species spanning 13orders to have
zoonotic capacity within the 90th percentile (0.826 or higher,
with a total of 2401 mammal species with prediction scores
above 0.5; see electronic supplementarymaterial, file S1 for pre-
dictions on all 5400 species [20]). Most primates were predicted
to have high zoonotic capacity and collectively showed stronger
viral binding compared to other mammal groups (figure 3).
Additional orders predicted to have high zoonotic capacity (at
least 75% of species above 0.5) include Hyracoidea (hyraxes),
Perissodactyla (odd-toed ungulates), Scandentia (treeshrews),
Pilosa (sloths and anteaters), Pholidota (pangolins) and non-
cetacean Artiodactyla (even-toed ungulates) (figure 3). Results
ofmodel bootstrap iterationpredictions can be found in the elec-
tronic supplementary material, file S1 and electronic
supplementary material figure S10.
(a) Comparing model predictions to in vivo outcomes
These model predictions matched the experimental infection
outcomes of several in vivo studies (figure 1). For instance,
experiments on deer mice (Peromyscus maniculatus [65,66])
and raccoon dogs (Nyctereutes procyonoides [67]) confirmed
SARS-CoV-2 infection and transmission to naive conspecifics.
Our model also estimated a high probability of zoonotic
capacity of American mink for SARS-CoV-2 (Neovison vison,
probability = 0.83, 90th percentile), in which farmed individ-
uals present severe infection and demonstrate the capacity
to transmit to conspecifics as well as to humans [11]. Our
model also correctly predicted relatively low zoonotic
capacity for big brown bats (Eptesicus fuscus [68]).

There were notable differences between our model
results and currently available experimental studies. Our
model estimated high zoonotic capacity for pigs (Sus scrofa,
probability = 0.72, approximately 80th percentile), but in vivo
studies report no detectable infection or onward transmission
[38,69]. Similarly for cattle (Bos taurus), our model estimated a
moderately high probability for zoonotic capacity (0.72,
approximately 80th percentile), whereas in a live animal exper-
iment, cattle were susceptible but with no onward transmission
to conspecifics [61].
4. Discussion
We combined structure-based models of viral binding with
species-level data on biological and ecological traits to predict
the capacity of mammal species to become zoonotic hosts of
SARS-CoV-2 (zoonotic capacity). Importantly, this approach
extends our predictive capacity beyond the limited number
of species for which ACE2 sequences are currently available.
Numerous mammal species were predicted to have zoonotic
capacity that meets or exceeds the viral susceptibility and
transmissibility observed in experimental infections with
SARS-CoV-2 (figure 1; electronic supplementary material,
table S1). Many species with high model-predicted zoonotic
capacity also live in human-associated habitats and overlap
geographically with global COVID-19 hotspots (figure 4).
Below we discuss predictions of zoonotic capacity for a
number of ecologically and epidemiologically relevant cat-
egories of mammalian hosts.

(a) Captive, farmed or domesticated species
Given that contact with humans fundamentally underlies
transmission risk, it is notable that our model predicted
high zoonotic capacity for multiple captive species that
have also been confirmed as susceptible to SARS-CoV-2.
These include numerous carnivores, such as large cats from
multiple zoos and pet dogs and cats. Our model also pre-
dicted high SARS-CoV-2 zoonotic capacity for many
farmed and domesticated species. The water buffalo (Bubalus
bubalis), widely kept for dairy and plowing, had the highest
probability of zoonotic capacity among livestock (0.91).
Model predictions in the 90th percentile also included Amer-
ican mink (Neovison vison), red fox (Vulpes vulpes), sika deer
(Cervus nippon), white-lipped peccary (Tayassu pecari), nilgai
(Boselaphus tragocamelus) and raccoon dogs (Nyctereutes pro-
cyonoides), all of which are farmed. The escape of farmed
individuals into wild populations has implications for the
enzootic establishment of SARS-CoV-2 [33]. These findings
also have implications for vaccination strategies, for instance,
prioritizing people in contact with potential bridge species
(e.g. slaughterhouse workers, farmers, veterinarians).

(b) Live traded or hunted wildlife species
The Macaca genus comprised the majority of live-traded pri-
mates. Our model predicted high zoonotic capacity for all
Macaca species (20/21 species, with all species within the
top 10% of predictions except M. assamensis). Several live-
traded carnivores and pangolins were also assigned high
zoonotic capacity, including the Asiatic black bear (Ursus

https://github.com/HanLabDiseaseEcology/zoonotic_capacity
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https://github.com/HanLabDiseaseEcology/zoonotic_capacity
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thibetanus), grey wolf (Canis lupus) and jaguar (Panthera onca),
and the Philippine pangolin (Manis culionensis) and Sunda
pangolin (M. javanica). One of the betacoronaviruses with
the highest sequence similarity to SARS-CoV-2 was isolated
from Sunda pangolins [70]. Interestingly, pangolin burrows
are known to be occupied by other animal species, including
numerous bats [71].

Commonly hunted species in the top 10% of predictions
include duiker (Cephalophus zebra, West Africa), warty pig
(Sus celebes, Southeast Asia) and two deer (Odocoileus
hemionus and O. virginianus, Americas). The white-tailed
deer (O. virginianus) was recently confirmed to transmit
SARS-CoV-2 to conspecifics via aerosolized virus particles
[72].
(c) Bats
Our model identified 35 bat species within the 90th percentile
of zoonotic capacity. Within the genus Rhinolophus, our
model identified the large rufous horseshoe bat (Rhinolophus
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rufus) as having the highest probability of zoonotic capacity
(0.89). Rhinolophus rufus is a known natural host for bat
betacoronaviruses [73] and a congener to three other horseshoe
bats harbouring betacoronaviruses with high nucleotide
sequence similarity to SARS-CoV-2 (approx. 92–96%) [6,74,75].
For these other three species, our model assigned a range of
probabilities for SARS-CoV-2 zoonotic capacity (Rhinolophus affi-
nis (0.58), R. malayanus (0.70) and R. shameli (0.71)) and also
predicted relatively high probabilities for two congeners, Rhino-
lophus acuminatus (0.84) and R. macrotis (0.70). These predictions
agreewith recent experiments demonstrating efficient viral bind-
ing of SARS-CoV-2 RBD for R. macrotis [76] and confirmation of
SARS-CoV-2-neutralizing antibodies in field-caught R. acuminatus
harbouring a closely related betacoronavirus [77].

Our model also identified 17 species in the genus Pteropus
(flying foxes) with high probabilities of zoonotic capacity for
SARS-CoV-2. Some of these species are confirmed reservoirs
of other zoonotic viruses (e.g. henipaviruses in P. lylei, P. vam-
pyrus, P. conspicillatus and P. alecto), with Southeast Asia also
having the most mammal species with a high predicted zoo-
notic capacity (figure 4). Annual outbreaks attributed to
spillover transmission from bats illustrate a persistent epizoo-
tic risk to humans [78–80] and confirm that gaps in systematic
surveillance of zoonotic viruses, including betacoronaviruses,
remain an urgent priority (e.g. [81]).

(d) Rodents
Our model identified 76 rodent species with high zoonotic
capacity. Among these are the deer mouse (Peromyscus mani-
culatus) and white-footed mouse (P. leucopus), which are
reservoirs for multiple zoonotic pathogens and parasites in
North America [82–84]. Experimental infection, viral shedding
and sustained intraspecific transmission of SARS-CoV-2 were
recently confirmed for P. maniculatus [65,66]. Also in the top
10% were two rodents considered to be human commensals
whose geographic ranges are expanding due to human activi-
ties: Rattus argentiventer (0.84) and R. tiomanicus (0.79)
(electronic supplementary material, file S1) [85–87]. It is
notable that many of these rodent species are preyed upon
by carnivores, such as the red fox (Vulpes vulpes) or domestic
cats (Felis catus) who themselves were predicted to have high
zoonotic capacity by our model.

(e) Strengthening predictive capacity for zoonoses
While there was a wide agreement between our model pre-
dictions and empirical studies, examining mismatches
between experimental results and model-generated predic-
tions focuses attention on characterizing what factors
underlie these disconnects. For instance, this study and
others predicted that pigs (Sus scrofa) would be susceptible
to SARS-CoV-2 (figure 1), but these predictions have not
been supported by whole-animal inoculations [38,69]. Simi-
larly, SARS-CoV-2 replicated in adult cattle but onward
transmission has not been observed in vivo [61].

Disconnects between real-world observations, in vivo
experimental results, and in silico predictions of zoonotic
capacity offer insight upon which to iterate further study.
For instance, mismatches may arise because host suscepti-
bility and transmission capacity are necessary but not
sufficient for zoonotic risk to be realized in natural settings.
These processes are embedded in a broader ecological context
that impacts host susceptibility, intra-host infection dynamics
(latency, recrudescence, tolerance) and viral persistence that
collectively determine where and when viral shedding and
spillover will occur [88–91]. Infection processes also depend
strongly on the cellular environments in which cell entry
and viral replication take place (e.g. the presence of key pro-
teases [7]), and on host immunogenicity [91], factors which
are themselves influenced by the environment [92]. Insofar
as data limitations preclude perfect computational predic-
tions of zoonotic capacity (e.g. limited ACE2 sequences,
crystal structures or trait data), laboratory experiments are
also limited. For SARS-CoV-2 and other host–pathogen sys-
tems, animals that are readily infected in the laboratory
may be less susceptible elsewhere (ferrets in the laboratory
versus mixed results in ferrets as pets [69,93,94]; rabbits in
the laboratory versus rabbits as pets [95,96]). Moreover, wild-
life hosts confirmed to shed multiple zoonotic viruses in
nature (e.g. bats [97]) can be much less tractable for whole-
animal laboratory investigations (for instance, requiring
high biosecurity containment and very limited sample
sizes). While laboratory experiments are critical for under-
standing mechanisms of pathogenesis and disease, without
field surveillance they offer imperfect reflections of zoonotic
capacity realized in natural settings.

These examples illustrate that there is no single meth-
odology sufficient to understand and predict zoonotic
transmission, for SARS-CoV-2 or any zoonotic pathogen.
They also demonstrate the need to capitalize on underused
or disconnected data sources, such as natural history col-
lections, which are well-positioned to fill knowledge gaps
about the spatial and temporal extents of animal hosts
and their pathogens [98,99]. Integration of methods and
data across biological scales creates avenues to more effi-
cient iteration between computational predictions,
laboratory experiments and targeted animal surveillance
necessary to connect transmission mechanisms to the
broader conditions underpinning zoonotic disease emer-
gence in nature.

Data accessibility. All data, code and models required for recreating our
structural modelling analysis with HADDOCK are available from
Zenodo: https://doi.org/10.5281/zenodo.4517509) [52]. All data
and code required for BRT modelling using species trait data are
available from GitHub: https://github.com/HanLabDiseaseEcol-
ogy/zoonotic_capacity. Additional methods, tables, figures and
files of our model predictions can be found in the supplemental
material of this article and on Figshare: https://doi.org/10.25390/
caryinstitute.c.5293339.v5 [20].
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