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Abstract
Natural selection is a major force in the evolution of vertebrate brain size, but the role 
of sexual selection in brain size evolution remains enigmatic. At least two opposing 
schools of thought predict a relationship between sexual selection and brain size. 
Sexual selection should facilitate the evolution of larger brains because better cogni-
tive abilities may aid the competition for mates. However, it may also restrict brain size 
evolution due to energetic trade-offs between brain tissue and sexually selected traits. 
Here, we examined the patterns of selection on brain size and brain anatomy in male 
anurans (frogs and toads), a group where the strength of sexual selection differs mark-
edly among species, using a phylogenetically controlled generalized least-squared 
(PGLS) regression analyses. The analysis revealed that in 43 Chinese anuran species, 
neither mating system, nor type of courtship, or testes mass was significantly associ-
ated with relative brain size. While none of those factors related to the relative size of 
olfactory nerves, optic tecta, telencephalon, and cerebellum, the olfactory bulbs were 
relatively larger in monogamous species and those using calls during courtship. Our 
findings support the mosaic model of brain evolution and suggest that while the inves-
tigated aspects of sexual selection do not seem to play a prominent role in the evolu-
tion of brain size of anurans, they do impact their brain anatomy.
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Sexual selection impacts brain anatomy in frogs and toads

Yu Zeng1 | Shang Ling Lou1 | Wen Bo Liao1 | Robert Jehle2 | Alexander Kotrschal3

1  | INTRODUCTION

Most theories of vertebrate brain size evolution consider natural 
selection as the main evolutionary force shaping its diversification 
(Striedter, 2005). Indeed, a great number of comparative and exper-
imental studies demonstrated the interplay between natural selection 
and brain size evolution (Aiello & Wheeler, 1995; Gonzalez-Voyer & 
Kolm, 2010; Kotrschal et al., 2013; Liao, Lou, Zeng, & Merilä, 2015; 
Sol, Székely, Liker, & Lefebvre, 2007; Tsuboi et al., 2015). Additionally, 
within the last years, evidence across a wide range of taxa has ac-
cumulated that sexual selection might also affect brain size evolu-
tion (Boogert, Fawcett, & Lefebvre, 2011; Fitzpatrick et al., 2012; 
Garamszegi, Eens, Erritzøe, & Møller, 2005; García-Peña, 2013; 

Gonzalez-Voyer & Kolm, 2010; Kotrschal et al., 2015; Lemaitre, Ramm, 
Barton, & Stockley, 2009; Pitnick, Jones, & Wilkinson, 2006). The sub-
set of studies that provide empirical evidence that sexual selection 
and brain size are associated, base their argument on the rationale that 
better cognitive skills afforded by larger brains increase the chances 
of obtaining mates (Boogert et al., 2011; Garamszegi et al., 2005). We 
adhere to the broad definition of “cognition” as comprising “all mech-
anisms that invertebrates and vertebrates have for taking in informa-
tion through the senses, retaining it, and using it to adjust behavior 
to local conditions” (Kotrschal & Taborsky, 2010; Shettleworth, 2010).

In contrast to the studies suggesting positive effects of sexual 
selection on brain size, other studies propose that sexual selection 
should restrict brain size evolution on the grounds of a trade-off. The 
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development of costly sexual traits may limit the energy available 
for the development of the brain (Fitzpatrick et al., 2012; Gonzalez-
Voyer & Kolm, 2010; Pitnick et al., 2006). However, several studies 
did not detect any relationships between the investigated aspects 
of sexual selection and brain size, such as testes size (Lemaitre et al., 
2009; Schillaci, 2006), or sexual coloration (Kotrschal et al., 2013). The 
degree to which sexual selection impacts brain evolution is therefore 
still an open question.

Within the field of sexual selection, the mating system of a species 
has been suggested to drive the evolution of its brain size (García-
Peña, 2013; Pitnick et al., 2006; Schillaci, 2006). Again, two opposing 
hypotheses predict the evolutionary relationship between the mating 
system and the brain size of vertebrates. The “sexual conflict hypoth-
esis” argues that the ongoing struggle between males and females to 
subvert the reproductive investment of the other sex is cognitively 
demanding (Arnqvist & Rowe, 2005). As a result, promiscuous spe-
cies will have relatively larger brains than species with genetic monog-
amy (Rice & Holland, 1997). Conversely, the “expensive sexual tissue” 
hypothesis contends that more intense sexual selection will constrain 
the evolution of brain size again due to energetic trade-offs with 
costly sexual organs, ornaments, or armaments (Garamszegi et al., 
2005; Pitnick et al., 2006). Empirical evidence only partially supports 
this hypothesis. For instance, while Pitnick et al. (2006) found that bat 
species with larger brains have smaller testes than bats with smaller 
brains, Dechmann and Safi (2009) did not find such a relationship for 
another set of bat species. Besides whole brain size, the mating system 
can also affect the size of some brain regions. In primates, for example, 
the intensity of male–male competition is negatively associated with 
neocortex size and the neocortex is larger in monogamous species 
(Schillaci, 2008). Similarly, in cichlid fishes, the region analogous to the 
primates neocortex, the telencephalon, is larger in monogamous com-
pared to polygamous species (Pollen et al., 2007). Like the neocortex 
in porimates, the fish telencephalon integrates more complex cogni-
tive processes; both are likely selected for by the cognitive challenges 
of long-term pair bonds, which are typical for monogamous species. In 
contrast, a later study on a greater number of cichlid species did not 
find any association between sexual selection and telencephalon size 
(Gonzalez-Voyer & Kolm, 2010).

Courtship is often crucial in sexual selection (Andersson, 1994) 
and courtship calls and mate searching are two common behaviors 
during courtship. They give cues of the male’s reproductive status 
during female mate choice as well as during competition among males 
(Duellman & Trueb, 1986). Yet despite recognition that species differ-
ences in courtship behavior are modulated via differences in distinct 
cell groups in different parts of the brain and that these cell groups 
have independent effects (Balaban, 1997), the relationship between 
the type of courtship and the evolution of the brain and its regions 
remains enigmatic.

Here, we examined the associations between relative brain size, 
the size of five main brain regions, and three fundamental traits of sex-
ual selection among 43 anuran species. Within this group, it is already 
established how phylogeny and ecology contribute to variation in brain 
morphology (Liao et al., 2015). Here, we investigated the effect of the 

mating system (monandry vs. polyandry), the courtship type (attract-
ing mates with courtship calls vs. searching for mates quietly), and 
the intensity of sexual selection (using testes mass as proxy) on brain 
morphology by means of phylogenetically controlled generalized least-
squared (PGLS) regression analyses. Anurans are an excellent model 
system to test these relationships because of their diverse breeding 
systems, ecology, and life histories (Byrne & Roberts, 2012; Duellman 
& Trueb, 1986). The extreme variance in the degree of sexual selection 
across species (Byrne, Simmons, & Roberts, 2003) allowed us to com-
prehensively test whether mating system and courtship type are asso-
ciated with differences in brain size and the size of brain regions (viz. 
olfactory nerves, olfactory bulbs, telencephalon, optic tectum, and 
cerebellum). Olfactory nerves were included because these are also 
used by most anurans to process olfactory information, often called 
smaller/accessory olfactory bulbs, and they may represent a distinct 
olfactory system (Taylor, Nol, & Boire, 1995).

There is debate whether vertebrate brain regions evolve in a mosaic 
or concerted manner, that is, whether brain regions increase and/or 
decrease with overall brain size or whether specific selection pressures 
can select for size changes of brain regions independently (see e.g., 
Barton & Harvey, 2000; Finlay, Darlington, & Nicastro, 2001; Gonzalez-
Voyer, Winberg, & Kolm, 2009; Liao et al., 2015; Yopak et al., 2010). Our 
data set allows testing for those alternatives. If anuran brain regions 
evolve in a mosaic manner in response to sexual selection, we would 
expect single regions to vary independently. Concerted evolution would 
be indicated if overall brains but not single regions would vary in size. 
For the relationship between brain size and the chosen traits of sex-
ual selection, the hypotheses above give clear, yet at times opposing, 
predictions. However, for brain region volumes, it is difficult to make 
such predictions. This is so because the function of the separate brain 
regions is still only partly understood and because single regions some-
times have multiple functions (Striedter, 2005). However, the olfactory 
bulbs and optic tectum mainly integrate olfactory and visual informa-
tion, respectively; those regions are generally more prominent in spe-
cies with better olfactory and visual acuity (Butler & Hodos, 2005). Both 
vision and olfaction play prominent roles in anuran mate choice (Liao 
& Lu, 2009, 2010), we therefore predict that in species searching for 
mates (instead of calling), those regions should be larger to facilitate 
mate search efficiency. For volumes of the other regions, we avoid mak-
ing predictions and treat this part of the analysis as a prospect to iden-
tify the regions of the brain that are most affected by sexual selection.

2  | MATERIALS AND METHODS

2.1 | Field sampling

We collected a total of 200 adult male individuals from 43 anuran 
species during the breeding seasons 2007–2013 from the Hengduan 
Mountains of China. Individuals were transferred to the laboratory 
and then killed by double-pithing (Mi et al., 2012, Jin et al., 2016). We 
obtained volumetric measures of overall brain size and the five major 
different brain regions (viz. olfactory nerves, olfactory bulbs, telen-
cephalon, optic tectum, and cerebellum) for all individuals (Table 1). 
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Medulla volume was not determined because pithing damaged the 
structural integrity of the brain stem; whole brain mass is not affected 
by this method, however (Jiang et al., 2015). All specimens were pre-
served in 4% phosphate-buffered formalin for tissue fixation. After 
2 weeks to 2 months of preservation, body size (snout-vent length: 
SVL) was measured to the nearest 0.01 mm with calipers. Brains and 
testes were dissected out and weighed to the nearest 0.1 mg with an 
electronic balance. The number of days samples spent in the buffered 
formalin did not affect relative brain weight (Liao et al., 2015) and tes-
tes mass (Zeng, Lou, Liao, & Jehle, 2014). We chose the species on the 
basis of diversity of courtship behavior and mating system, access to 
samples, as well as on the basis of available phylogenetic information.

2.2 | Brain measurements

All dissections, digital imaging, and measurements were performed 
by two persons (LSL and LWB). All measurements were taken with 
the experimenter blind to the species identity because specimens 
were coded by uninformative ID-number. We used a Motic Images 
3.1 digital camera mounted on a Moticam 2006 light microscope at a 
400× magnification to take digital images of the dorsal, ventral, left, 
and right sides of the brain and brain regions. For dorsal and ventral 
views, we ensured that the view of the brain being photographed 
was horizontal and that the brain was symmetrically positioned such 
that one hemisphere did not appear larger than the other. For paired 
regions, we only measured the width of the right hemisphere and 
doubled the volume estimate. We used a tpsDig 1.37 software to 
measure length (L), width (W), and height (H) of the brain and the five 
brain regions from the digital photographs. Brain and brain regions 
were defined as the greatest distance enclosed by the given region, 

and the used landmarks are shown in Fig. 1. Finally, we used an ellip-
soid model: volume = (L*W*H) π/(6*1.43) to obtain the volumetric 
estimates of different brains (see details in Liao et al., 2015). For 
43 species, both intrameasurer and intermeasurer repeatabilities of 
the intermeasurer repeatability for all brain traits are very high (Liao 
et al., 2015). Average brain size and average size of brain regions 
were used in all analyses. Before all analyses, all variables were log10-
transformed to meet distributional assumptions. Because some of 
the measurements were smaller than one, all data were multiplied by 
1000 prior to log transformation (Sokal & Rohlf, 1995). We found no 
evidence for heterogeneity in variability across the five brain regions 
(Liao et al., 2015). All data are deposited on Dryad (doi:10.5061/
dryad.j4754).

2.3 | Data analyses

Following Zeng et al. (2014), mating system for each species was clas-
sified as: 1 = polyandry—two or more males simultaneously releas-
ing sperm or sequentially releasing sperm in a time frame that allows 
for the occurrence of sperm competition; 2 = monandry—a females 
mates with one male over the course of a breeding season by depos-
iting part of a single clutch. The courtship types were classified as: 
1 = courtship calls—males have well-developed vocal sacs and attract 
mates through their vocalization; 2 = searching mates—males do not 
have well-developed vocal sacs and search for females or eggs. The 
classification of different species to different categories can be found 
in Table 1 based on the references (Liao, Zeng, & Yang, 2013; Zeng 
et al., 2014) and our own observation. We used dichotomous vari-
ables because for most species detailed descriptions of mating behav-
ior are unavailable.

F IGURE  1 Dorsal, ventral, and lateral 
views of frog brain. Shown are the 
measures (length, width, and height) that 
were taken from each of the five brain 
structures (viz. olfactory nerves, olfactory 
bulbs, telencephalon, optic tectum, and 
cerebellum)

http://dx.doi.org/10.5061/dryad.j4754
http://dx.doi.org/10.5061/dryad.j4754
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For our comparative analysis, we used the phylogeny of Pyron and 
Wiens (2011) to reconstruct a phylogenetic tree for the 43 species 
(Fig. 2). The relationships between (log) brain size, size of five brain 
regions, and three indicators of sexual selection (i.e., mating system, 
type of courtship, and testes mass) were assessed in a series of phylo-
genetically controlled linear models. To account for the evolutionary 
relationships among species, we performed phylogenetically con-
trolled generalized least-squared (PGLS) regression analyses (Martins 
and Hansen 1997) using log-transformed data in the APE-package 
(R Development Core Team 2011) in R software package (V.2.13.1; 
Paradis, Claude, & Strimmer, 2004). The PGLS regression estimates 
a phylogenetic scaling parameter λ using maximum-likelihood 
method. The parameter λ estimates the effect of phylogenetic sig-
nal on the relationship between brain size and other factors ana-
lyzed (λ = 0 indicating no phylogenetic signal, and λ = 1 indicating 
strong phylogenetic signal). We found strong phylogenetic signals 
for all traits examined in our study (λ: brain siz = 0.426, olfactory 

nerves = 0.377, olfactory bulbs = 0.358, telencephalon = 0.382, 
optic tectum = 0.640, and cerebellum = 0.315). As brains are sub-
ject to a wide range of selective pressures that act simultaneously, 
the relationships between both brain and brain regions and sexually 
selected traits were assessed using multiple regressions in phyloge-
netic ANOVAs with body size added as a covariate in all analyses to 
account for allometric effects.

3  | RESULTS

Across all species of amphibians tested, brain size was positively 
correlated with body size when correcting phylogenetic effects 
(slope = 3.65, t = 5.85, p < .001; Fig. 3). When controlling for body size, 
none of the sexually selected traits (mating system, type of courtship, 
testes mass) were significantly related to the amount of variation in 
relative brain size, and the same was true also in the case of the size of 

F IGURE  2 The phylogenetic tree of the 
43 anurans species used in the comparative 
analysis following Pyron and Wiens (2011). 
Also see Liao et al. (2015)
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olfactory nerves, optic tecta, telencephalon, and cerebellum (Table 2). 
However, the size of the olfactory bulbs was significantly associated 
with mating system, being larger in monandrous than in polyandrous 
species (Table 2; Fig. 4). Olfactory bulbs size was further significantly 
associated with the type of courtship; calling species exhibiting larger 
olfactory bulbs than searching species (Table 2; Fig. 5).

4  | DISCUSSION

Here, we find no evidence that three prominent aspects of sexual 
selection are related to the overall brain size of 43 species of amphib-
ians. However, both mating system and type of courtship influenced 
brain anatomy on a finer scale, albeit partly opposite to our predic-
tions. The olfactory bulbs were larger in monandrous species and 
species that use calls during courtship.

F IGURE  3 Scaling of the total brain size as functions of body size 
across 43 anuran species

Lo
g 
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[m
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3 )]

)

Log (body size [mm])

TABLE  2 Regression models of (log) brain size and size of different brain structures in relation to various predictor variables for males across 
43 anurans species when controlling for phylogeny (PGLS). Body size was added as a covariate and was significantly positively related to brain 
size and size of different brain structures in all models. The sample size, partial regression slopes (β) for the predictor variable, t- and p-values 
are presented for each model

Source β d.f. Predictor t p

Brain −0.03250 1,43 Mating system −0.43286 .6676

0.03720 1,43 Courtship types 0.61762 .5406

0.04327 1,43 Log testes mass 0.98914 .3290

1.34431 1,43 Log body size 5.80040 <.0001

0.01007 1,43 Number of sampling 1.27637 .2870

Olfactory nerves −0.42542 1,43 Mating system −1.91488 .0633

0.26184 1,43 Courtship types 1.46829 .1505

0.00265 1,43 Log testes mass 0.02047 .9838

3.57151 1,43 Log body size 5.20755 <.0001

−0.00224 1,43 Number of sampling −0.17103 .8651

Olfactory bulbs −0.28688 1,43 Mating system −2.21295 .0331

0.12004 1,43 Courtship types 2.15353 .0256

0.00961 1,43 Log testes mass 0.12719 .8995

2.10592 1,43 Log body size 5.26218 <.0001

−0.00232 1,43 Number of sampling −0.30353 .7632

Telencephalon 0.00140 1,43 Mating system 0.01767 .9860

−0.00206 1,43 Courtship types −0.03236 .9744

0.05481 1,43 Log testes mass 1.18666 .2429

1.18870 1,43 Log body size 4.85819 <.0001

0.01362 1,43 Number of sampling 1.91736 .1624

Optic tecta 0.01854 1,43 Mating system 0.17360 .8631

0.05349 1,43 Courtship types 0.62404 .5364

0.08723 1,43 Log testes mass 1.40183 .1693

1.08735 1,43 Log body size 3.29851 .0022

0.01048 1,43 Number of sampling 1.66567 .1042

Cerebellum −0.11904 1,43 Mating system −0.76493 .4492

0.09630 1,43 Courtship types 0.77094 .4456

−0.04524 1,43 Log testes mass −0.4989 .6208

1.53099 1,43 Log body size 3.18686 .0029

0.01563 1,43 Number of sampling 1.70504 .0966
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The social brain hypothesis (Dunbar, 1998; Dunbar & Shultz, 
2007) could be applied to predict an association between brain size 
and anuran mating system. It states that higher social complexity 
selects for larger brains because they should enable individuals to bet-
ter cope with the cognitive challenges of intricate social situations. 
Hence, polyandrous anuran species with much shorter interaction 
time between individuals could be expected to show relatively smaller 
brains than monogamous species that usually spend extended periods 
of time together. This may be seen as an analogy to what has been 
reported in birds, where species with long-term bonds or more com-
plex social structures face higher cognitive demands and therefore 
show larger brain size (Shultz & Dunbar, 2010). In this study, however, 
we did not find a significant association between brain size and mating 
system. If this negative result holds true, we may speculate that differ-
ences in brood care could underlie this discrepancy between birds and 
amphibians. While monogamous birds generally also show extended 
periods of brood care, likely allowing the offspring to develop a larger 

brain, the anurans in our study do not show brood care. Whether this 
is the case should be determined by investigating brain morphology in 
brood-caring anurans.

In contrast to the whole brain, the size of the olfactory bulbs was 
influenced by mating system. A larger olfactory center is commonly 
associated with higher olfactory acuity (Kotrschal, van Staaden, & 
Huber, 1998). The fact that we found larger bulbs in monandrous, com-
pared to polyandrous species, was unexpected but may be explained 
by a prominent role of olfaction in anuran mate choice (Chivers, 
Kiesecker, & Blaustein, 1998). The advantage of choosing better mates 
due to better olfactory acuity during male mate choice could drive the 
evolution of olfactory bulb size (Verrell, 1985). Alternatively olfactory 
bulb evolution in monandrous animals may be driven via selection 
on female olfactory ability during mate choice (Candolin, 2003); the 
larger olfactory bulbs we observe may be the consequence of the 
males’ and females’ brains inability to evolve independently from each 
other within species (Finlay et al., 2001; but see Kotrschal, Räsänen, 
Kristjánsson, Senn, & Kolm, 2012). Future studies in female brain size 
and anatomy are needed to determine whether the larger olfactory 
bulbs are also found in monandrous females.

The second effect of sexual selection on the olfactory bulbs was 
opposite to our predictions; we found smaller bulbs in species search-
ing for mates than in species using courtship calls. Whether this is 
directly related to searching/producing courtship calls or driven by 
some unknown third factor is currently unclear and will be investi-
gated in upcoming studies.

Signals produced during courtship behavior often provide cues 
on male reproductive status and quality (Duellman & Trueb, 1986). 
More complex signals should be cognitively demanding to produce, 
and sexual selection may so lead to the coevolution of the size of the 
involved brain regions and for instance the level of complexity or the 
presence/absence of courtship calls. Indeed, in bird species with more 
complex song structure, the areas related to song production are larger 
(Devoogd, Krebs, Healy, & Purvis, 1993). Even the evolution of the 
unusually large human brain may have been driven by complex signals 
of courtship such as art, humor, or music (Miller, 2000). Although anu-
ran courtship calls are not directly comparable to those complex, often 
learned, vocalizations of bird and mammals, they are produced by motor 
pattern generators in the brain (stem) (Satou, Matsushima, Kusunoki, 
Oka, & Ueda, 1981), we had therefore expected that whether or not 
a species relied on courtship calls during mate acquisition would be 
reflected in its brain size. While brain stem data were not available, we 
did not find such a difference in whole brain mass. Upcoming experi-
ments will therefore specifically target brain stem volumes.

It is evident that analogous to ecological factors (Liao et al., 2015), 
the level of promiscuity can impose selection on specific brain regions 
in anurans. Interestingly, in contrast to those ecological factors, which 
impact several brain regions, sexual selection seems to only affect the 
olfactory bulbs. Both those results support the mosaic hypothesis of 
brain evolution and are therefore in line with a range of studies in 
other taxa finding evidence for this hypothesis (e.g., fish (Gonzalez-
Voyer et al., 2009), birds (Iwaniuk, Dean, & Nelson, 2004), or mammals 
(Barton & Harvey, 2000)).

F IGURE  4 Differences in mean relative bulbus olfactorius size 
as a function of mating system across 43 anurans species using 
data corrected for phylogenetic effects. The plotted values refer to 
residuals from regression of bulbus olfactorius size on body size

–0.2

–0.1

0

0.1

Polyandry Monandry

B
ul

bu
s 

ol
fa

ct
or

iu
s

(R
es

., 
[m

m
3 ] 

± 
S

.E
.) 

Mating system 

F IGURE  5 The mean relative bulbus olfactorius size in courtship 
types in 43 anurans species when correcting phylogenetic effects. 
The plotted values refer to residuals from regression of bulbus 
olfactorius size on body size
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Finally, the expensive sexual tissue hypothesis predicts that 
intense sexual selection should constrain the evolution of larger brains 
due to energetic trade-offs with sexual traits. In species with high lev-
els of sperm competition, as in many amphibians, the size of the testes 
provides an adequate indicator of the level of the intensity of sexual 
selection (Hosken & Ward, 2001). The fact that we did not find a nega-
tive association between testes mass and brain size in our study, how-
ever, does not support this hypothesis. While this lack of association 
may not be surprising due to the relatively small testicular volume of 
anurans (Liao et al., 2015), taken together with the lack of association 
of brain size with mating system and type of courtship, it becomes evi-
dent that for the aspects we investigated, the expensive sexual tissue 
hypothesis is implausible for brain size evolution in the anurans here 
investigated. Potentially more fine-scaled proxies of sexual selection, 
such as sex ratio during courtship/egg laying or mating effort, may 
reveal such relationships in future studies.

In conclusion, while traits of sexual selection appear to be unre-
lated to brain size evolution, aspects of brain anatomy such as the 
olfactory bulbs are clearly shaped by both mating system and the 
nature of mate acquisition in male anurans.
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